1
|
Bijelić D, Adžić M, Perić M, Reiss G, Milošević M, Andjus PR, Jakovčevski I. Tenascin-C fibronectin D domain is involved in the fine-tuning of glial response to CNS injury in vitro. Front Cell Dev Biol 2022; 10:952208. [PMID: 36092707 PMCID: PMC9462431 DOI: 10.3389/fcell.2022.952208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding processes that occur after injuries to the central nervous system is essential in order to gain insight into how the restoration of function can be improved. Extracellular glycoprotein tenascin-C (TnC) has numerous functions in wound healing process depending on the expression time, location, isoform and binding partners which makes it interesting to study in this context. We used an in vitro injury model, the mixed culture of cortical astrocytes and microglia, and observed that without TnC microglial cells tend to populate gap area in greater numbers and proliferate more, whereas astrocytes build up in the border region to promote faster gap closure. Alternatively spliced domain of TnC, fibronectin type III-like repeat D (FnD) strongly affected physiological properties and morphology of both astrocytes and microglia in this injury model. The rate of microglial proliferation in the injury region decreased significantly with the addition of FnD. Additionally, density of microglia also decreased, in part due to reduced proliferation, and possibly due to reduced migration and increased contact inhibition between enlarged FnD-treated cells. Overall morphology of FnD-treated microglia resembled the activated pro-inflammatory cells, and elevated expression of iNOS was in accordance with this phenotype. The effect of FnD on astrocytes was different, as it did not affect their proliferation, but stimulated migration of reactivated astrocytes into the scratched area 48 h after the lesion. Elevated expression and secretion of TNF-α and IL-1β upon FnD treatment indicated the onset of inflammation. Furthermore, on Western blots we observed increased intensity of precursor bands of β1 integrin and appearance of monomeric bands of P2Y12R after FnD treatment which substantiates and clarifies its role in cellular shape and motility changes. Our results show versatile functions of TnC and in particular FnD after injury, mostly contributing to ongoing inflammation in the injury region. Based on our findings, FnD might be instrumental in limiting immune cell infiltration, and promoting astrocyte migration within the injury region, thus influencing spaciotemporal organization of the wound and surrounding area.
Collapse
Affiliation(s)
- Dunja Bijelić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dunja Bijelić, ; Igor Jakovčevski,
| | - Marija Adžić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Mina Perić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, University Witten / Herdecke, Witten, Germany
| | - Milena Milošević
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Igor Jakovčevski
- Institute for Anatomy and Clinical Morphology, University Witten / Herdecke, Witten, Germany
| |
Collapse
|
2
|
Bijelić D, Adžić M, Perić M, Jakovčevski I, Förster E, Schachner M, Andjus PR. Different Functions of Recombinantly Expressed Domains of Tenascin-C in Glial Scar Formation. Front Immunol 2021; 11:624612. [PMID: 33679718 PMCID: PMC7934619 DOI: 10.3389/fimmu.2020.624612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix glycoprotein tenascin-C (TnC) is highly expressed in vertebrates during embryonic development and thereafter transiently in tissue niches undergoing extensive remodeling during regeneration after injury. TnC's different functions can be attributed to its multimodular structure represented by distinct domains and alternatively spliced isoforms. Upon central nervous system injury, TnC is upregulated and secreted into the extracellular matrix mainly by astrocytes. The goal of the present study was to elucidate the role of different TnC domains in events that take place after spinal cord injury (SCI). Astrocyte cultures prepared from TnC-deficient (TnC-/-) and wild-type (TnC+/+) mice were scratched and treated with different recombinantly generated TnC fragments. Gap closure, cell proliferation and expression of GFAP and cytokines were determined in these cultures. Gap closure in vitro was found to be delayed by TnC fragments, an effect mainly mediated by decreasing proliferation of astrocytes. The most potent effects were observed with fragments FnD, FnA and their combination. TnC-/- astrocyte cultures exhibited higher GFAP protein and mRNA expression levels, regardless of the type of fragment used for treatment. Application of TnC fragments induced also pro-inflammatory cytokine production by astrocytes in vitro. In vivo, however, the addition of FnD or Fn(D+A) led to a difference between the two genotypes, with higher levels of GFAP expression in TnC+/+ mice. FnD treatment of injured TnC-/- mice increased the density of activated microglia/macrophages in the injury region, while overall cell proliferation in the injury site was not affected. We suggest that altogether these results may explain how the reaction of astrocytes is delayed while their localization is restricted to the border of the injury site to allow microglia/macrophages to form a lesion core during the first stages of glial scar formation, as mediated by TnC and, in particular, the alternatively spliced FnD domain.
Collapse
Affiliation(s)
- Dunja Bijelić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Mina Perić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Igor Jakovčevski
- Institut für Neuroanatomie und Molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum, Germany
| | - Eckart Förster
- Institut für Neuroanatomie und Molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Pavle R Andjus
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Schreiber J, Schachner M, Schumacher U, Lorke DE. Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice. Acta Histochem 2013; 115:865-78. [PMID: 23701962 DOI: 10.1016/j.acthis.2013.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023]
Abstract
The extracellular matrix glycoprotein tenascin-C has been implicated in wound repair and axonal growth. Its role in mammalian spinal cord injury is largely unknown. In vitro it can be both neurite-outgrowth promoting and repellent. To assess its effects on glial reactions, extracellular matrix formation, and axonal regrowth/sprouting in vivo, 20 tenascin-C-deficient and 20 wild type control mice underwent lumbar spinal cord hemisection. One, three, seven and fourteen days post-surgery, cryostat sections of the spinal cord were examined by conventional histology and by immunohistochemistry using antibodies against F4/80 (microglia/macrophage), GFAP (astroglia), neurofilament, fibronectin, laminin and collagen type IV. Fibronectin immunoreactivity was significantly down-regulated in tenascin-C-deficient mice. Moreover, fourteen days after injury, immunodensity of neurofilament-positive fibers was two orders of magnitude higher along the incision edges of tenascin-C-deficient mice as compared to control mice. In addition, lymphocyte infiltration was seen two days earlier in tenascin-C-deficient mice than in control mice and neutrophil infiltration was increased seven days after injury. The increase in thin neurofilament positive fibers in tenascin-C-deficient mice indicates that lack of tenascin-C alters the inflammatory reaction and extracellular matrix composition in a way that penetration of axonal fibers into spinal cord scar tissue may be facilitated.
Collapse
Affiliation(s)
- Jenny Schreiber
- University Medical Center Hamburg-Eppendorf, Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, Martinistraße 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
4
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
5
|
Adhesion molecules close homolog of L1 and tenascin-C affect blood–spinal cord barrier repair. Neuroreport 2012; 23:479-82. [DOI: 10.1097/wnr.0b013e3283531e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
7
|
Chen J, Joon Lee H, Jakovcevski I, Shah R, Bhagat N, Loers G, Liu HY, Meiners S, Taschenberger G, Kügler S, Irintchev A, Schachner M. The extracellular matrix glycoprotein tenascin-C is beneficial for spinal cord regeneration. Mol Ther 2010; 18:1769-77. [PMID: 20606643 DOI: 10.1038/mt.2010.133] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tenascin-C (TNC), a major component of the extracellular matrix, is strongly upregulated after injuries of the central nervous system (CNS) but its role in tissue repair is not understood. Both regeneration promoting and inhibiting roles of TNC have been proposed considering its abilities to both support and restrict neurite outgrowth in vitro. Here, we show that spontaneous recovery of locomotor functions after spinal cord injury is impaired in adult TNC-deficient (TNC(-/-)) mice in comparison to wild-type (TNC(+/+)) mice. The impaired recovery was associated with attenuated excitability of the plantar Hoffmann reflex (H-reflex), reduced glutamatergic input, reduced sprouting of monaminergic axons in the lumbar spinal cord and enhanced post-traumatic degeneration of corticospinal axons. The degeneration of corticospinal axons in TNC(-/-) mice was normalized to TNC(+/+) levels by application of the alternatively spliced TNC fibronectin type III homologous domain D (fnD). Finally, overexpression of TNC-fnD via adeno-associated virus in wild-type mice improved locomotor recovery, increased monaminergic axons sprouting, and reduced lesion scar volume after spinal cord injury. The functional efficacy of the viral-mediated TNC indicates a potentially useful approach for treatment of spinal cord injury.
Collapse
Affiliation(s)
- Jian Chen
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dobbertin A, Czvitkovich S, Theocharidis U, Garwood J, Andrews MR, Properzi F, Lin R, Fawcett JW, Faissner A. Analysis of combinatorial variability reveals selective accumulation of the fibronectin type III domains B and D of tenascin-C in injured brain. Exp Neurol 2010; 225:60-73. [PMID: 20451518 DOI: 10.1016/j.expneurol.2010.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Tenascin-C (Tnc) is a multimodular extracellular matrix glycoprotein that is markedly upregulated in CNS injuries where it is primarily secreted by reactive astrocytes. Different Tnc isoforms can be generated by the insertion of variable combinations of one to seven (in rats) alternatively spliced distinct fibronectin type III (FnIII) domains to the smallest variant. Each spliced FnIII repeat mediates specific actions on neurite outgrowth, neuron migration or adhesion. Hence, different Tnc isoforms might differentially influence CNS repair. We explored the expression pattern of Tnc variants after cortical lesions and after treatment of astrocytes with various cytokines. Using RT-PCR, we observed a strong upregulation of Tnc transcripts containing the spliced FnIII domains B or D in injured tissue at 2-4 days post-lesion (dpl). Looking at specific combinations, we showed a dramatic increase of Tnc isoforms harboring the neurite outgrowth-promoting BD repeat with both the B and D domains being adjacent to each other. Isoforms containing only the axon growth-stimulating spliced domain D were also dramatically enhanced after injury. Injury-induced increase of Tnc proteins comprising the domain D was confirmed by Western Blotting and immunostaining of cortical lesions. In contrast, the FnIII modules C and AD1 were weakly modulated after injury. The growth cone repulsive A1A2A4 domains were poorly expressed in normal and injured tissue but the smallest isoform, which is also repellant, was highly expressed after injury. Expression of the shortest Tnc isoform and of variants containing B, D or BD, was strongly upregulated in cultured astrocytes after TGFbeta1 treatment, suggesting that TGFbeta1 could mediate, at least in part, the injury-induced upregulation of these isoforms. We identified complex injury-induced differential regulations of Tnc isoforms that may well influence axonal regeneration and repair processes in the damaged CNS.
Collapse
Affiliation(s)
- Alexandre Dobbertin
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Meiners S, Ahmed I, Ponery AS, Amor N, Harris SL, Ayres V, Fan Y, Chen Q, Delgado-Rivera R, Babu AN. Engineering electrospun nanofibrillar surfaces for spinal cord repair: a discussion. POLYM INT 2007. [DOI: 10.1002/pi.2383] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Su Z, Cao L, Zhu Y, Liu X, Huang Z, Huang A, He C. Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci 2007; 120:1877-87. [PMID: 17488779 DOI: 10.1242/jcs.03448] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The migration of olfactory ensheathing cells (OECs) is essential for pioneering the olfactory nerve pathway during development and for promoting axonal regeneration when implanted into the injured central nervous system (CNS). In the present study, recombinant Nogo-66 enhanced the adhesion of OECs and inhibited their migration. Using immunocytochemistry and western blot, we showed that the Nogo-66 receptor (NgR) was expressed on OECs. When NgR was released from the cell surface with phosphatidylinositol-specific phospholipase C or neutralized by NgR antibody, the effect of Nogo-66 on OEC adhesion and migration was markedly attenuated. Nogo-66 was found to promote the formation of focal adhesion in OECs and inhibited their membrane protrusion through the activation of RhoA. Furthermore, the co-culture migration assay demonstrated that OEC motility was significantly restricted by Nogo-A expressed on Cos7 cell membranes or oligodendrocytes. Moreover, treatment with anti-NgR antibody facilitated migration of implanted OECs in a spinal cord hemisection injury model. Taken together, we demonstrate, for the first time, that Nogo, a myelin-associated inhibitor of axon regeneration in the CNS, enhances the adhesion and inhibits the migration of OECs via NgR regulation of RhoA.
Collapse
Affiliation(s)
- Zhida Su
- Department of Neurobiology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Neural recognition molecules were discovered and characterized initially for their functional roles in cell adhesion as regulators of affinity between cells and the extracellular matrix in vitro. They were then recognized as mediators or co-receptors which trigger signal transduction mechanisms affecting cell adhesion and de-adhesion. Their involvement in contact attraction and repulsion relies on cell-intrinsic properties that are modulated by the spatial contexts of their expression at particular stages of ontogenetic development, in synaptic plasticity and during regeneration after injury. The functional roles of recognition molecules in cell proliferation and migration, determination of developmental fate, growth cone guidance, and synapse formation, stabilization and modulation have been well documented not only by in vitro, but also by in vivo studies that have been greatly aided by generation of genetically altered mice. More recently, the functions of recognition molecules have been investigated under conditions of neural repair and manipulated using a broad range of genetic and pharmacological approaches to achieve a beneficial outcome. The principal aim of most therapeutically oriented approaches has been to neutralize inhibitory factors. However, less attention has been paid to enhancing repair by stimulating the stimulatory factors. When considering potential therapeutic strategies, it is worth considering that a single recognition molecule can possess domains that are conducive or repellent and that the spatial distribution of recognition molecules can determine the overall function: Recognition molecules may be repellent for neurite outgrowth when presented as barriers or steep-concentration gradients and conducive when presented as uniform substrates. The focus of this review will be on the more recent attempts to study the conducive mechanisms with the expectation that they may be able to tip the balance from a regeneration inhospitable to a hospitable environment. It is likely that a combination of the two principles, as multifactorial as each principle may be in itself, will be of therapeutic value in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | | |
Collapse
|
12
|
Metzger M, Bartsch S, Bartsch U, Bock J, Schachner M, Braun K. Regional and cellular distribution of the extracellular matrix protein tenascin-C in the chick forebrain and its role in neonatal learning. Neuroscience 2006; 141:1709-19. [PMID: 16797128 DOI: 10.1016/j.neuroscience.2006.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 11/22/2022]
Abstract
The juvenile brain's pronounced synaptic plasticity in response to early experience and learning events is related to the fact that the genetically pre-programmed molecular machinery mediating neuronal development and synapse formation, is activated throughout postnatal brain development and thereby can be recruited for learning and long-term memory formation. In situ hybridization and immunocytochemistry experiments revealed that tenascin-C, one candidate molecule which we suspect to be involved in neonatal learning, is expressed in the forebrain of domestic chicks around the sensitive period during which auditory filial imprinting takes place. The involvement of tenascin-C in this juvenile learning task was tested by injections of monoclonal antibodies directed to distinct domains of the tenascin-C molecule into the avian prefrontal cortex analog, the medio-rostral nidopallium/mesopallium (formerly termed medio-rostral neostriatum/hyperstriatum ventrale), a forebrain area which has been shown to be critically involved in auditory filial imprinting. Injections of monoclonal antibody Tn 68, which is directed against a cell-binding domain of the tenascin-C molecule, strongly reduced the imprinting rate, as opposed to injections of the monoclonal antibody Tn 578, which binds to a domain involved in neurite outgrowth. Double labeling immunohistochemistry revealed that tenascin-C is associated with neurons which express the Ca(2+)-binding protein parvalbumin, and displays a staining pattern highly reminiscent of perineuronal nets of the extracellular matrix. These results indicate that a distinct domain of tenascin-C is functionally involved in the juvenile learning process of filial imprinting and further suggest a critical role of a specific neuronal subpopulation.
Collapse
Affiliation(s)
- M Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Schweitzer J, Becker T, Lefebvre J, Granato M, Schachner M, Becker CG. Tenascin-C is involved in motor axon outgrowth in the trunk of developing zebrafish. Dev Dyn 2006; 234:550-66. [PMID: 16110513 DOI: 10.1002/dvdy.20525] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Motor axons in the trunk of the developing zebrafish exit from the ventral spinal cord in one ventral root per hemisegment and grow on a common path toward the region of the horizontal myoseptum, where they select their specific pathways. Tenascin-C, a component of the extracellular matrix, is concentrated in this choice region. Adaxial cells and other myotomal cells express tenascin-C mRNA, suggesting that these cells are the source of tenascin-C protein. Overexpressing an axon repellent fragment containing the cysteine-rich region and the epidermal growth factor-like repeats of tenascin-C led to retarded growth of ventral motor nerves between their spinal exit point and the horizontal myoseptum. Injection of a protein fragment containing the same part of tenascin-C also induced slower growth of motor nerves. Conversely, knock down of tenascin-C protein resulted in abnormal lateral branching of ventral motor nerves. In the zebrafish unplugged mutant, in which axons display pathfinding defects in the region of the horizontal myoseptum, tenascin-C immunoreactivity was not detectable in this region, indicating an abnormal extracellular matrix in unplugged. We conclude that tenascin-C is part of a specialized extracellular matrix in the region of the horizontal myoseptum that influences the growth of motor axons.
Collapse
|
14
|
Liu HY, Nur-E-Kamal A, Schachner M, Meiners S. Neurite guidance by the FnC repeat of human tenascin-C: neurite attraction vs. neurite retention. Eur J Neurosci 2005; 22:1863-72. [PMID: 16262626 DOI: 10.1111/j.1460-9568.2005.04383.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The alternatively spliced fibronectin type-III repeat C of human tenascin-C (fnC) provides directional cues to elongating neurites in vitro. When given a choice at an interface with poly L-lysine (PLL), rat cerebellar granule neurites preferentially crossed onto fnC (defined herein as neurite attraction) whereas neurites originating on fnC preferentially remained on fnC (defined as neurite retention). Guidance motifs were further refined using synthetic peptides spanning the sequence of fnC. We found that a peptide with amino acid sequence DINPYGFTVSWMASE was sufficient to attract and retain neurites. Peptides with alterations in NPYG facilitated neurite retention but not attraction and, conversely, molecules with alterations in ASE facilitated neurite attraction but not retention. Hence neurite attraction and neurite retention mediated by fnC are separable events that can be independently regulated. This property may prove valuable for the strategic design of peptide reagents for use in strategies to facilitate directed axonal regrowth following CNS injury.
Collapse
Affiliation(s)
- Hsing-Yin Liu
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
15
|
Jang JH, Hwang JH, Chung CP, Choung PH. Identification and Kinetics Analysis of a Novel Heparin-binding Site (KEDK) in Human Tenascin-C. J Biol Chem 2004; 279:25562-6. [PMID: 15069070 DOI: 10.1074/jbc.m403170200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Intellectual Biointerface Engineering Center, Seoul National University College of Dentistry, Seoul 110-749, Korea.
| | | | | | | |
Collapse
|
16
|
Tsuji L, Yamashita T, Kubo T, Madura T, Tanaka H, Hosokawa K, Tohyama M. FLRT3, a cell surface molecule containing LRR repeats and a FNIII domain, promotes neurite outgrowth. Biochem Biophys Res Commun 2004; 313:1086-91. [PMID: 14706654 DOI: 10.1016/j.bbrc.2003.12.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mature peripheral nervous system has the ability to survive and to regenerate its axons following axonal injury. After nerve injury, the distal axonal and myelin segment undergoes dissolution and absorption by the surrounding cellular environment, a process called Wallerian degeneration. Using cDNA microarrays, we isolated FLRT3 as one of the up-regulated genes expressed in the distal segment of the sciatic nerve 7 days after transection relative to those of the intact sciatic nerve. FLRT3 is a putative type I transmembrane protein containing 10 leucine-rich repeats, a fibronectin type III domain, and an intracellular tail. The neurons plated on CHO cells expressing FLRT3 extended significantly longer neurites than those plated on wild-type CHO cells, demonstrating that FLRT3 promotes neurite outgrowth. FLRT3 mRNA was especially abundant in the basal ganglia, the granular layer of cerebellum, and the hippocampus, except the CA1 region in the adult rat brain. Thus, FLRT3 may contribute to regeneration following axonal injury.
Collapse
Affiliation(s)
- Lyuji Tsuji
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
18
|
Neidhardt J, Fehr S, Kutsche M, Löhler J, Schachner M. Tenascin-N: characterization of a novel member of the tenascin family that mediates neurite repulsion from hippocampal explants. Mol Cell Neurosci 2003; 23:193-209. [PMID: 12812753 DOI: 10.1016/s1044-7431(03)00012-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Tenascin-N, a novel member of the tenascin family, was identified and shown to encode characteristic structural motifs of a cysteine-rich stretch, 3.5 epidermal growth factor-like repeats, 12 fibronectin type III homologous domains, and a fibrinogen-like domain. The third fibronectin type III homologous domain is altered by RNA splicing. Characterization of the expression of tenascin-N by in situ hybridization analysis assigned transcripts to many types of neurons in the central nervous system, to the medullary region in the kidney, and to resident macrophages of the T-cell zone in the splenic white pulp. By immunohistochemistry, tenascin-N expression is detectable in all brain regions, with a characteristic staining pattern in the hippocampus demarcating the CA3 region. Recombinantly expressed protein fragments of the alternatively spliced isoforms were presented in choice assays on patterned substrates to neurites and migrating neurons from hippocampal CA3 region explant cultures. The smaller splice variant inhibited neurite outgrowth or cell migration, whereas the longer splice form did not inhibit these functions. These observations suggest that the novel tenascin family member mediates specific repulsive properties on neurites and neurons by generating splice isoforms.
Collapse
Affiliation(s)
- John Neidhardt
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Tenascin-C promotes neurite outgrowth of embryonic hippocampal neurons through the alternatively spliced fibronectin type III BD domains via activation of the cell adhesion molecule F3/contactin. J Neurosci 2002. [PMID: 12151539 DOI: 10.1523/jneurosci.22-15-06596.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tenascin-C is a multimodular glycoprotein that possesses neurite outgrowth-stimulating properties, and one functional site has been localized to the alternatively spliced fibronectin type III domain D. To identify the neuronal receptor that mediates this effect, neighboring pairs of fibronectin type III domains were expressed as hybrid proteins fused to the Fc fragment of human immunoglobulin. These IgFc fusions were tested for neurite outgrowth-promoting properties on embryonic day 18 rat hippocampal neurons, and both the combinations BD and D6 were shown to promote the elongation of the longest process, the prospective axon. Antibodies to the cell adhesion molecule F3/contactin of the Ig superfamily blocked the BD- but not the D6-dependent effect. Biochemical studies using F3/contactin-IgFc chimeric proteins confirmed that the adhesion molecule selectively reacts with the combination BD but not with other pairs of fibronectin type III repeats of tenascin-C. The alternatively spliced BD cassettes are prominently expressed in the developing hippocampus, as shown by reverse transcription PCR, and colocalize with F3 expression during perinatal periods when axon growth and the establishment of hippocampal connections take place. We conclude that F3/contactin regulates axon growth of hippocampal neurons in response to tenascin-C.
Collapse
|
20
|
Strekalova T, Sun M, Sibbe M, Evers M, Dityatev A, Gass P, Schachner M. Fibronectin domains of extracellular matrix molecule tenascin-C modulate hippocampal learning and synaptic plasticity. Mol Cell Neurosci 2002; 21:173-87. [PMID: 12359159 DOI: 10.1006/mcne.2002.1172] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extracellular matrix molecule tenascin-C (TN-C) has been shown to be involved in hippocampal synaptic plasticity in vitro. Here, we describe a deficit in hippocampus-dependent contextual memory in TN-C-deficient mice using the step-down avoidance paradigm. We further show that a fragment of TN-C containing the fibronectin type-III repeats 6-8 (FN6-8), but not a fragment containing repeats 3-5, bound to pyramidal and granule cell somata in the hippocampal formation of C57BL/6J mice and repelled axons of pyramidal neurons when presented as a border in vitro. Injection of the FN6-8 fragment into the hippocampus inhibited retention of memory in the step-down paradigm and reduced levels of long-term potentiation in the CA1 region of the hippocampus. In summary, our data show that TN-C is involved in hippocampus-dependent contextual memory and synaptic plasticity and identify the FN6-8 domain as one of molecular determinants mediating these functions.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Identification of a neurite outgrowth-promoting motif within the alternatively spliced region of human tenascin-C. J Neurosci 2001. [PMID: 11549732 DOI: 10.1523/jneurosci.21-18-07215.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our work centers on understanding how the extracellular matrix molecule tenascin-C regulates neuronal growth. We have found that the region of tenascin-C containing only alternately spliced fibronectin type-III repeat D, called fnD, when used by itself, dramatically increases neurite outgrowth in culture. We used overlapping synthetic peptides to localize the neurite outgrowth-promoting site within fnD to a 15 amino acid sequence, called D5. An antibody against D5 blocked promotion of neurite outgrowth by fnD as well as tenascin-C, indicating that this peptide sequence is functional in the context of the native molecule. Further testing of shorter synthetic peptides restricted the neurite outgrowth-promoting site to eight amino acids, VFDNFVLK. Of these, "FD" and "FV" are conserved in tenascin-C sequences derived from all the species available in the GenBank. To investigate the hypothesis that FD and FV are critical for the interaction with neurons, we tested a recombinant fnD protein and synthetic peptides with alterations in FD and/or FV. These molecules did not facilitate process extension, suggesting that the conserved amino acids are required for formation of the active site in fnD. We next investigated whether VFDNFVLK could be used as a reagent to overcome the neurite outgrowth inhibitory properties of chondroitin sulfate proteoglycans, the major inhibitory molecules in the glial scar. The peptide significantly enhanced outgrowth on proteoglycans and was more effective than laminin-1, L1-Fc, or intact tenascin-C, thus demonstrating the potential applicability of tenascin-C regions as therapeutic reagents.
Collapse
|
22
|
Meiners S, Mercado ML, Geller HM. The multi-domain structure of extracellular matrix molecules: implications for nervous system regeneration. PROGRESS IN BRAIN RESEARCH 2001; 128:23-31. [PMID: 11105666 DOI: 10.1016/s0079-6123(00)28004-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
23
|
Deckner M, Lindholm T, Cullheim S, Risling M. Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system. Exp Neurol 2000; 166:350-62. [PMID: 11085900 DOI: 10.1006/exnr.2000.7543] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The members of the tenascin family are involved in a number of developmental processes, mainly by their ability to regulate cell adhesion. We have here studied the distribution of mRNAs for tenascin-X, -C, and -R and the closely related molecule tenascin/J1 in the olfactory system and spinal cord. The olfactory bulb and nasal mucosa were studied during late embryonic and early postnatal development as well as in the adult. The spinal cord was studied during late embryonic development and after mechanical lesions. In the normal rat, the spinal cord and olfactory bulb displayed similar patterns of tenascin expression. Tenascin-C, tenascin-R, and tenascin/J1 were all expressed in the olfactory bulb and spinal cord during development, while tenascin/J1 was the only extensively expressed tenascin molecule in the adult. In both regions tenascin/J1 was expressed in both nonneuronal and neuronal cells. After a spinal cord lesion, mRNAs for tenascin-C, -X, -R, and/J1 were all upregulated and had their own specific spatial and temporal expression patterns. Thus, even if axonal outgrowth occurs to some extent both in the adult rat primary olfactory system and in spinal cord scar tissue after lesion, the tenascin expression patterns in these two situations are totally different.
Collapse
Affiliation(s)
- M Deckner
- Department of Neuroscience, Karolinska Institutet, Nobels väg 12a, Stockholm, S-171 77, Sweden
| | | | | | | |
Collapse
|
24
|
Sta Iglesia DD, Gala PH, Qiu T, Stepp MA. Integrin expression during epithelial migration and restratification in the tenascin-C-deficient mouse cornea. J Histochem Cytochem 2000; 48:363-76. [PMID: 10681390 DOI: 10.1177/002215540004800306] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the unwounded cornea, tenascin-C localizes to a short stretch of the basement membrane zone at the corneoscleral junction or limbus. To determine whether the function of the limbus is affected by the absence of tenascin-C, mice possessing a deletion of tenascin-C and strain-matched wild-type mice are used in corneal debridement wounding experiments. The expression of integrins (alpha3, alpha9, and beta4) in the tenascin-C knockout corneas is evaluated by producing polyclonal cytoplasmic domain antipeptide sera and performing immunofluorescence microscopy. In addition, we evaluate the localization of several other proteins involved in wound healing, including fibronectin, laminin beta1, nidogen/entactin, and VCAM-1, in both the tenascin knockout and wild-type mice. There are no differences in healing rate, scarring, or neovascularization after corneal debridement wounds. alpha9 integrin is expressed at the limbal border of unwounded tenascin-C knockout animals and is upregulated during migration only after the larger wounds. At 8 weeks after larger wounds, the localization of alpha9 again becomes restricted to the limbal border. Results show that tenascin-C is not required for development or maintenance of the corneal limbus or for normal re-epithelialization of corneal epithelial cells after debridement wounding.
Collapse
Affiliation(s)
- D D Sta Iglesia
- Department of Anatomy, The George Washington University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Tenascin-C has been implicated in regulation of both neurite outgrowth and neurite guidance. We have shown previously that a particular region of tenascin-C has powerful neurite outgrowth-promoting actions in vitro. This region consists of the alternatively spliced fibronectin type-III (FN-III) repeats A-D and is abbreviated fnA-D. The purpose of this study was to investigate whether fnA-D also provides neurite guidance cues and whether the same or different sequences mediate outgrowth and guidance. We developed an assay to quantify neurite behavior at sharp substrate boundaries and found that neurites demonstrated a strong preference for fnA-D when given a choice at a poly-L-lysine-fnA-D interface, even when fnA-D was intermingled with otherwise repellant molecules. Furthermore, neurites preferred cells that overexpressed the largest but not the smallest tenascin-C splice variant when given a choice between control cells and cells transfected with tenascin-C. The permissive guidance cues of large tenascin-C expressed by cells were mapped to fnA-D. Using a combination of recombinant proteins corresponding to specific alternatively spliced FN-III domains and monoclonal antibodies against neurite outgrowth-promoting sites, we demonstrated that neurite outgrowth and guidance were facilitated by distinct sequences within fnA-D. Hence, neurite outgrowth and neurite guidance mediated by the alternatively spliced region of tenascin-C are separable events that can be independently regulated.
Collapse
|
26
|
Joester A, Faissner A. Evidence for combinatorial variability of tenascin-C isoforms and developmental regulation in the mouse central nervous system. J Biol Chem 1999; 274:17144-51. [PMID: 10358070 DOI: 10.1074/jbc.274.24.17144] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix glycoprotein tenascin-C (TN-C) displays a restricted and developmentally regulated distribution in the mouse central nervous system. Defined modules of the molecule have been shown to mediate specific functions, such as neuron migration, neurite outgrowth, cell adhesion, and cell proliferation. The smallest TN-C form contains a stretch of eight fibronectin type III (FNIII) domains, which are common to all TN-C isoforms. Unrestricted and independent alternative splicing of six consecutive FNIII cassettes between the fifth and sixth constitutive FNIII domain bears the potential to generate 64 different combinations that might code for TN-C proteins with subtly different functions. To explore TN-C isoform variability in mouse brain, the alternatively spliced region of TN-C mRNAs was examined by the reverse transcription-polymerase chain reaction technique. Polymerase chain reaction products of uniform size were subcloned and analyzed using domain-specific probes to reveal the expression of particular combinations of alternatively spliced FNIII domains. 27 TN-C isoforms were identified to be expressed in mouse central nervous system, of which 22 are novel. Furthermore, during development, specific TN-C isoforms were found to occur in distinct relative frequencies, as demonstrated for isoforms containing two alternatively spliced FNIII domains. We conclude that TN-C is expressed in a complex and regulated pattern in mouse central nervous system. These findings highlight the potential role of TN-C in mediating specific neuron glia interactions.
Collapse
Affiliation(s)
- A Joester
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Borrell V, Ruiz M, Del Río JA, Soriano E. Development of commissural connections in the hippocampus of reeler mice: evidence of an inhibitory influence of Cajal-Retzius cells. Exp Neurol 1999; 156:268-82. [PMID: 10328935 DOI: 10.1006/exnr.1999.7022] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reelin is a large, extracellular matrix protein involved in neuronal migration and axonal growth. To analyze the contribution of Reelin to the development of the commissural projection in the hippocampus, we analyzed the ontogeny of this projection in the reeler mutant mouse. Injections of the lipophilic tracer DiI revealed many commissural fibers in the hippocampus of both reeler and control mice at P1-P2. At P5, at P12, and in the adult, the topography of commissural connections was normal in the CA1 region of reeler mice, with axons innervating the stratum radiatum and stratum oriens. In contrast, in the CA3/CA2 region, commissural fibers abnormally innervated the stratum lacunosum-moleculare and, in the dentate gyrus, some fibers were observed in the outer molecular layer. Next, we monitored the distribution of Cajal-Retzius cells in the hippocampus of reeler mutant mice and noted that the stratum lacunosum-moleculare of the CA3/CA2 region was largely devoid of Cajal-Retzius (CR) cells. Taken together, the above results indicate that in the absence of CR cells in the CA3/CA2, commissural axons abnormally grow to the stratum lacunosum-moleculare. To test this hypothesis a series of coculture experiments was performed in collagen gels, in which the CA3 axonal growth was monitored when confronted to the marginal zone. These experiments showed that the marginal zone containing CR cells exerts short-range inhibitory influences for commissural axonal growth.
Collapse
Affiliation(s)
- V Borrell
- Department of Animal and Plant Cell Biology, University of Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | | | | | | |
Collapse
|
28
|
Yang H, Xiao ZC, Becker B, Hillenbrand R, Rougon G, Schachner M. Role for myelin-associated glycoprotein as a functional tenascin-R receptor. J Neurosci Res 1999; 55:687-701. [PMID: 10220110 DOI: 10.1002/(sici)1097-4547(19990315)55:6<687::aid-jnr4>3.0.co;2-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The expression of the immunoglobulin superfamily member myelin-associated glycoprotein (MAG) and the extracellular matrix glycoprotein tenascin-R (TN-R) by oligodendrocytes overlaps in time and space. The two molecules can be neurite outgrowth-inhibitory or -promoting depending on the neuronal cell type and the environment in which they are presented. Here we show that the two molecules directly bind to each other in vitro and that binding sites on TN-R localize to two domains, the fibrinogen domain and the epidermal growth factor-like repeat domain with the N-terminal cysteine-rich stretch. We further show by a functional assay, namely the repulsion of MAG-transfected Chinese hamster ovary cells (CHO) cells from a TN-R substrate, that MAG is part of the signalling pathway of TN-R for cell repulsion. When coated as a uniform substrate, MAG was inhibitory for neurite outgrowth of hippocampal and cerebellar neurons in vitro, when compared to poly-L-lysine, while TN-R enhanced neurite outgrowth. When added to MAG, TN-R neutralized the neurite outgrowth-inhibitory effects of MAG, presumably by blocking the neurite outgrowth-inhibitory domain of MAG.
Collapse
Affiliation(s)
- H Yang
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Neurites are believed to be guided by astrocyte boundaries during development. We have previously shown that in vitro astrocyte boundaries can be generated by combining two different astrocyte cell lines, one which is inhibitory to neurite outgrowth (Neu7) with one that is permissive (A7). The extracellular matrix molecules tenascin-C, chondroitin sulfate proteoglycans (CSPG) and keratan sulfate proteoglycans (KSPG) were implicated in boundary formation. We have now further addressed the roles of these molecules using additional astrocyte cell lines that differ in their potential to permit neurite extension and in their expression of extracellular matrix molecules. T34-2 and 27A1 cells are permissive to neurite extension. T34-2 cells express high amounts of tenascin-C, but very low levels of proteoglycans, while 27A1 cells express CSPG and KSPG, but very little tenascin-C. T34-2 cells formed boundaries to neurites, and these boundaries are greatly reduced in the presence of blocking antitenascin-C antiserum. The addition of the antiserum did not affect neurite extension. 27A1 cells also formed boundaries without affecting neurite extension. Chondroitinase ABC, but not keratanase, treatment reduced the boundary, suggesting that CSPG is a major boundary component. These results demonstrate that astrocyte tenascin-C and proteoglycans are distinct components of astrocyte boundaries. More importantly, these results suggest that growing neurites can be directed to their targets by astrocyte-derived guidance molecules independent of effects on process extension.
Collapse
Affiliation(s)
- E M Powell
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
30
|
Anderson PN, Campbell G, Zhang Y, Lieberman AR. Cellular and molecular correlates of the regeneration of adult mammalian CNS axons into peripheral nerve grafts. PROGRESS IN BRAIN RESEARCH 1999; 117:211-32. [PMID: 9932411 DOI: 10.1016/s0079-6123(08)64018-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Studies of the regeneration of CNS axons into peripheral nerve grafts have provided information crucial to our understanding of the regenerative potential of CNS neurons. Injured axons in the thalamus and corpus striatum produce regenerative sprouts within a few days of graft implantation, apparently in response to living cells in the grafts. The regenerating axons often grow directly towards the grafts, and enter Schwann cell columns where they elongate surrounded by Schwann cell processes. The regenerating CNS axons, and the Schwann cell processes along which they grow, initially express the cell adhesion molecules NCAM, and L1. The axons also express polysialic acid and, unlike regenerating peripheral axons, bind tenascin-C derived from Schwann cells. Wherever peripheral nerve grafts are implanted into the CNS they appear to promote the differential regeneration of CNS axons. Most of the axons which grow into grafts in the thalamus are derived from the thalamic reticular nucleus (TRN), whereas grafts in the striatum promote regeneration of axons from the substantia nigra pars compacta (SNpc) and grafts in the cerebellum promote regeneration from deep cerebellar nuclei (DCN) and brainstem precerebellar neurons. In contrast most thalamocortical projection neurons, striatal projection neurons and Purkinje cells in the cerebellar cortex are poor at regenerating. There are patterns to the expression of regeneration-related molecules by axons injured by nerve grafts in the CNS. Most neurons which regenerate well (e.g. TRN and DCN neurons) upregulate GAP-43, L1 and the transcription factor c-jun in response to a graft, whereas those neurons which do not regenerate well (e.g. Purkinje cells, thalamocortical and striatal projection neurons) do not upregulate these molecules. These observations suggest that some classes of CNS neurons may be intrinsically unable to regenerate axons and the repair of injuries in the brain and spinal cord may consequently require some form of gene therapy for axotomised neurons.
Collapse
Affiliation(s)
- P N Anderson
- Department of Anatomy and Developmental Biology, University College London, UK.
| | | | | | | |
Collapse
|
31
|
Meiners S, Powell EM, Geller HM. Neurite outgrowth promotion by the alternatively spliced region of tenascin-C is influenced by cell-type specific binding. Matrix Biol 1999; 18:75-87. [PMID: 10367733 DOI: 10.1016/s0945-053x(98)00008-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated the impact of cellular environment on the neurite outgrowth promoting properties of the alternatively spliced fibronectin type-III region (fnA-D) of tenascin-C. FnA-D promoted neurite outgrowth in vitro when bound to the surface of BHK cells or cerebral cortical astrocytes, but the absolute increase was greater on astrocytes. In addition, different neurite outgrowth promoting sites were revealed within fnA-D bound to the two cellular substrates. FnA-D also promoted neurite outgrowth as a soluble ligand; however, the actions of soluble fnA-D were not affected by cell type. Therefore, we hypothesized that different mechanisms of cellular binding can alter the growth promoting actions of bound fnA-D. We found that fnA-D utilizes two distinct sequences to bind to the BHK cell surface as opposed to the BHK extracellular matrix. In contrast, only one of these sequences is utilized to bind to the astrocyte matrix as opposed to the astrocyte surface. Furthermore, Scatchard analysis indicated two types of receptors for fnA-D on BHK cells and only one type on astrocytes. These results suggest that active sites for neurite outgrowth within fnA-D are differentially revealed depending on cell-specific fnA-D binding sites. Therefore, the function of tenascin-C and its various domains must be considered in terms of cellular context.
Collapse
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
32
|
Srinivasan J, Schachner M, Catterall WA. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc Natl Acad Sci U S A 1998; 95:15753-7. [PMID: 9861042 PMCID: PMC28116 DOI: 10.1073/pnas.95.26.15753] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming alpha subunit and two smaller auxiliary subunits, beta1 and beta2. The beta subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the beta2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the beta2 subunit to tenascin-C and tenascin-R in vitro. Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent Kd of approximately 15 nM. Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of beta2 subunits. Both purified sodium channels and the extracellular domain of the beta2 subunit bound specifically to fibronectin type III repeats 1-2, A, B, and 6-8 of tenascin-C and fibronectin type III repeats 1-2 and 6-8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.
Collapse
Affiliation(s)
- J Srinivasan
- Departments of Pharmacology and Neurological Surgery, University of Washington, Seattle, WA 98195-7280, USA
| | | | | |
Collapse
|
33
|
Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 1998. [PMID: 9742148 DOI: 10.1523/jneurosci.18-19-07779.1998] [Citation(s) in RCA: 391] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelin expression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis, reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions, reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.
Collapse
|
34
|
Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P. A neurite outgrowth-inhibitory proteoglycan expressed during development is similar to that isolated from adult brain after isomorphic injury. JOURNAL OF NEUROBIOLOGY 1998; 36:16-29. [PMID: 9658335 DOI: 10.1002/(sici)1097-4695(199807)36:1<16::aid-neu2>3.0.co;2-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The expression of proteoglycans (PGs) in the mammalian central nervous system (CNS) appears to be strictly regulated both during development and after damage to the mammalian CNS. Recently, we have isolated from membranes of injured adult brain a neurite outgrowth-inhibitory proteoglycan (IMP), the activity of which could be specifically counteracted by a monoclonal antibody (mAB) against the PG. We described in this report the characterization of perinatal membrane proteoglycan (PMP), a heparan-sulfate/chondroitin-sulfate-containing PG expressed during brain development. Its maximal expression was observed around postnatal day 3, decreasing strongly in normal adult tissue. This PG was purified and characterized using mABs generated against IMP. The comparison of PMP and IMP properties indicates that the two PGs are highly related and share expression patterns, biochemical characteristics, and the ability to inhibit neurite initiation in culture. However, IMP and PMP displayed a distinct effect on neurite elongation, which may be explained by their differences in glycosilation pattern. The data presented in this report support the idea that proteoglycans expressed during CNS development are re-expressed following injury.
Collapse
|
35
|
Alvarez-Dolado M, González-Sancho JM, Bernal J, Muñoz A. Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 1998; 84:309-22. [PMID: 9580330 DOI: 10.1016/s0306-4522(97)00511-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tenascin-C is an extracellular matrix glycoprotein involved in cell adhesion and migration, and neurite outgrowth. Since these processes have been found to be under thyroid control in the developing rat brain, we have investigated the effect of congenital hypothyroidism on tenascin-C expression. At birth, in situ hybridization studies in hypothyroid rats show an abnormal up-regulation of tenascin-C in some areas (caudate-putamen, geniculate nuclei, ependymal epithelium of the lateral ventricles, hippocampus) and down-regulation in others (occipital and retrosplenial cortex, subiculum). With subsequent development, hypothyroid animals show higher tenascin-C expression also in the upper layers of the cerebral cortex and subplate, and the Bergmann glia of the cerebellum. Significantly, thyroxine treatment of hypothyroid rats led to normalization of tenascin-C levels in most areas. In agreement with the messenger RNA data, hypothyroid rats contain an uniformly higher level of immunoreactive tenascin-C protein throughout the brain, particularly in the cerebellum. Suggesting a direct cellular effect, thyroid hormone also decreases tenascin-C expression in two glial cell lines (C6, B3.1) expressing thyroid receptors. Our results show that congenital hypothyroidism causes specific alterations in the pattern of tenascin-C expression in the rat brain which may at least partially be responsible for some of the developmental disturbances observed in this syndrome.
Collapse
Affiliation(s)
- M Alvarez-Dolado
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier, Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Phillips GR, Krushel LA, Crossin KL. Domains of tenascin involved in glioma migration. J Cell Sci 1998; 111 ( Pt 8):1095-104. [PMID: 9512505 DOI: 10.1242/jcs.111.8.1095] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tenascin (TN) is an extracellular matrix protein found in areas of cell migration during development and expressed at high levels in migratory tumor cells. TN was previously shown to support the attachment and migration of glioma cells in culture. To determine the domains responsible for glioma migration and attachment, we produced recombinant fusion proteins that collectively span the majority of the molecule including its epidermal growth factor-like repeats, fibronectin type III repeats and fibrinogen domain. These domains were tested for their ability to support migration of C6 glioma cells in an aggregate migration assay. A recombinant fusion protein including fibronectin type III (FNIII) repeats 2–6 (TNfn2-6) was the only fragment found to promote migration of C6 glioma cells at levels similar to that promoted by intact TN. Evaluation of smaller segments and individual FNIII repeats revealed that TNfn3 promoted migration and attachment of glioma cells and TNfn6 promoted migration but not attachment. While TNfn3 and TNfn6 promoted migration individually, the presence of both TNfn3 and TNfn6 was required for migration on segments of the FNIII region that included TNfn5. TNfn5 inhibited migration in a dose dependent manner when mixed with TNfn3 and also promoted strong attachment and spreading of C6 glioma cells. TNfn3 and TNfn6 promote cell migration and may function cooperatively to overcome the inhibitory activity of TNfn5. Additional cell attachment studies suggested that both beta1 integrins and heparin may differentially influence the attachment of glioma cells to TN fragments. Together, these findings show that C6 glioma cells integrate their response upon binding to at least three domains within TN.
Collapse
Affiliation(s)
- G R Phillips
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Seiffert M, Beck SC, Schermutzki F, Müller CA, Erickson HP, Klein G. Mitogenic and adhesive effects of tenascin-C on human hematopoietic cells are mediated by various functional domains. Matrix Biol 1998; 17:47-63. [PMID: 9628252 DOI: 10.1016/s0945-053x(98)90124-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the adult organism, the extracellular matrix molecule tenascin-C is prominently expressed in the bone marrow. Bone marrow mononuclear cells can adhere to plastic-immobilized tenascin-C, and in the present study we have used bacterial expression proteins to map the domains of tenascin-C responsible for binding of hematopoietic cells. A strong binding site was found to be located within the fibrinogen-like domain, and this binding could be inhibited by heparin, suggesting interactions with membrane-bound heparan sulfate proteoglycans. A second strong binding site was identified within the fibronectin type III-like repeats 6-8, and was also inhibitable by heparin. Adhesion to both attachment sites could not be blocked by various anti-integrin antibodies. A third hematopoietic cell binding site is located in the fibronectin type III-like repeats 1-5, which harbor an RGD sequence in the third fibronectin type III-like repeat. Binding to this domain, however, seems to be RGD-independent, since RGD-containing peptides could not inhibit cell binding; the addition of heparin also did not block adhesion to this domain. Since contradictory results had been reported on a proliferative effect of soluble tenascin-C, we also analyzed its activity on hematopoietic cells. The heterogeneous bone marrow mononuclear cells show a striking proliferative response in the presence of tenascin-C which is concentration-dependent. This result indicates a strong mitogenic activity of tenascin-C on primary hematopoietic cells. Using recombinant fragments of human tenascin-C, we identified several mitogenic domains within the tenascin-C molecule. These adhesive and mitogenic effects of tenascin-C suggest a direct functional association with proliferation and differentiation of hematopoietic cells within the bone marrow microenvironment.
Collapse
Affiliation(s)
- M Seiffert
- University Medical Clinic, Dept. II, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Xiao ZC, Bartsch U, Margolis RK, Rougon G, Montag D, Schachner M. Isolation of a tenascin-R binding protein from mouse brain membranes. A phosphacan-related chondroitin sulfate proteoglycan. J Biol Chem 1997; 272:32092-101. [PMID: 9405406 DOI: 10.1074/jbc.272.51.32092] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated a chondroitin sulfate proteoglycan from mouse brain by affinity chromatography with a fragment of the extracellular matrix glycoprotein tenascin-R (TN-R) that comprises the amino-terminal cysteine-rich stretch and the 4.5 epidermal growth factor-like repeats. The isolated chondroitin sulfate proteoglycan has a molecular mass of 500-600 kDa and carries the HNK-1 carbohydrate epitope. Treatment with chondroitinase ABC reveals a major band of approximately 400 kDa and two minor bands at 200 and 150 kDa. Immunoblot analysis relates the molecule to phosphacan but not to the chondroitin sulfate proteoglycans neurocan and versican. Binding of the phosphacan-related molecule to the epidermal growth factor-like repeats of TN-R is Ca2+-dependent. Co-localization of the molecule with TN-R in the retina and optic nerve by immunocytochemistry suggests a functional relationship between the two molecules in vivo. Inhibition of neurite outgrowth from hippocampal neurons by the phosphacan-related molecule in vitro is neutralized by TN-R when coated as a uniform substrate. Furthermore, the phosphacan-related molecule neutralizes growth cone repulsion induced by TN-R coated as a sharp substrate boundary with or without prior treatment with chondroitinase ABC. These observations indicate that TN-R can interact with a phosphacan-related molecule and thereby modulate its inhibitory influence on neuritogenesis.
Collapse
Affiliation(s)
- Z C Xiao
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Wang X, Messing A, David S. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol 1997; 148:568-76. [PMID: 9417833 DOI: 10.1006/exnr.1997.6702] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the regeneration of corticospinal tract fibers and expression of various extracellular matrix (ECM) molecules and intermediate filaments [vimentin and glial fibrillary acidic protein (GFAP)] after dorsal hemisection of the spinal cord of adult GFAP-null and wild-type littermate control mice. The expression of these molecules was also examined in the uninjured spinal cord. There was no increase in axon sprouting or long distance regeneration in GFAP-/- mice compared to the wild type. In the uninjured spinal cord (i) GFAP was expressed in the wild type but not the mutant mice, while vimentin was expressed in astrocytes in the white matter of both types of mice; (ii) laminin and fibronectin immunoreactivity was localized to blood vessels and meninges; (iii) tenascin and chondroitin sulfate proteoglycan (CSPG) labeling was detected in astrocytes and the nodes of Ranvier in the white matter; and (iv) in addition, CSPG labeling which was generally less intense in the gray matter of mutant mice. Ten days after hemisection there was a large increase in vimentin+ cells at the lesion site in both groups of mice. These include astrocytes as well as meningeal cells that migrate into the wound. The center of these lesions was filled by laminin+/fibronectin+ cells. Discrete strands of tenascin-like immunoreactivity were seen in the core of the lesion and lining its walls. Marked increases in CSPG labeling was observed in the CNS parenchyma on either side of the lesion. These results indicate that the absence of GFAP in reactive astrocytes does not alter axonal sprouting or regeneration. In addition, except for CSPG, the expression of various ECM molecules appears unaltered in GFAP-/- mice.
Collapse
Affiliation(s)
- X Wang
- Centre for Research in Neuroscience, The Montreal General Hospital Research Institute and McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | | | | |
Collapse
|
40
|
Meiners S, Geller HM. Long and short splice variants of human tenascin differentially regulate neurite outgrowth. Mol Cell Neurosci 1997; 10:100-16. [PMID: 9361291 DOI: 10.1006/mcne.1997.0643] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C has been implicated in regulation of neurite outgrowth both during development and after injury; however, its role as permissive vs inhibitory remains controversial. We report that different tenascin splice variants may have dramatically different impacts on neuronal growth. In a cell culture model, the largest and smallest splice variants (TN.L and TN.S) of human tenascin both promoted process extension when surface-bound. In contrast, soluble TN.S inhibited outgrowth, whereas soluble TN.L had no inhibitory effect. Perturbation experiments with antibodies, and outgrowth experiments with recombinant tenascin fragments, indicate that the differential properties of these molecules can be attributed to their distinctive array of FN-III repeats. Monoclonal antibodies were used to demonstrate at least two distinct neurite outgrowth promoting domains within the alternatively spliced region. These results suggest that the effect of tenascin on axon growth is a function of splice variants, as well as the form or conformation of those variants.
Collapse
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
41
|
Clark RA, Erickson HP, Springer TA. Tenascin supports lymphocyte rolling. J Cell Biol 1997; 137:755-65. [PMID: 9151679 PMCID: PMC2139881 DOI: 10.1083/jcb.137.3.755] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1997] [Revised: 03/06/1997] [Indexed: 02/04/2023] Open
Abstract
Tenascin is a large extracellular matrix molecule expressed at specific sites in the adult, including immune system tissues such as the bone marrow, thymus, spleen, and T cell areas of lymph nodes. Tenascin has been reported to have both adhesive and anti-adhesive effects in static assays. We report here that tenascin supports the tethering and rolling of lymphocytes and lymphoblastic cell lines under flow conditions. Binding was calcium dependent and was not inhibited by treatment of lymphocytes with O-glycoprotease or a panel of glycosidases including neuraminidase and heparitinase but was inhibited by treatment of cells with proteinase K. Binding was to the fibrinogen-like terminal domain of tenascin as determined by antibody blocking studies and binding to recombinant tenascin proteins. When compared to rolling of the same cell type on E-selectin, rolling on tenascin was found to be smoother at all shear stresses tested, suggesting that cells formed a larger number of bonds on the tenascin substrate than on the E-selectin substrate. When protein plating densities were adjusted to give similar profiles of cell detachment under increasing shears, the density of tenascin was 8.5-fold greater than that of E-selectin. Binding to tenascin was not dependent on any molecules previously identified as tenascin receptors and is likely to involve a novel tenascin receptor on lymphocytes. We postulate that the ability of tenascin to support lymphocyte rolling may reflect its ability to support cell migration and that this interaction may be used by lymphocytes migrating through secondary lymphoid organs.
Collapse
Affiliation(s)
- R A Clark
- The Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Hemming FJ, Saxod R. Keratan sulphate is present in developing chick skin in vivo where it could constitute a barrier to advancing neurites as observed in vitro. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970415)48:2<133::aid-jnr6>3.0.co;2-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Wintergerst ES, Bartsch U, Batini C, Schachner M. Changes in the expression of the extracellular matrix molecules tenascin-C and tenascin-R after 3-acetylpyridine-induced lesion of the olivocerebellar system of the adult rat. Eur J Neurosci 1997; 9:424-34. [PMID: 9104585 DOI: 10.1111/j.1460-9568.1997.tb01620.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the central nervous system of rodents, the extracellular matrix glycoproteins tenascin-C and tenascin-R are expressed predominantly by astrocytes and oligodendrocytes respectively. Both molecules support neurite outgrowth from several neuronal cell types when presented as uniform substrates. When offered as a sharp boundary with a permissive substrate, however, both molecules prevent neurite elongation. On the basis of these observations it has been suggested that tenascin-C and tenascin-R may be relevant in determining the cellular response after injury in the adult rodent central nervous system. To investigate whether tenascin-C and tenascin-R may play important functional roles in the lesioned central nervous system, we have analysed their expression in the olivocerebellar system of the adult rat after 3-acetylpyridine-induced degeneration of nerve cells in the inferior olivary nucleus. Tenascin-C mRNA was not detectable at any time in the unlesioned or lesioned inferior olivary nucleus by in situ hybridization. In the cerebellar cortex, tenascin-C mRNA in Golgi epithelial cells was down-regulated 3 days after the lesion and returned to control values 80 days after the lesion. Tenascin-R mRNA was expressed by distinct neural cell types in the unlesioned olivocerebellar system. After a lesion, the density of cells containing tenascin-R transcripts increased significantly in the inferior olivary nucleus and in the white matter of the cerebellar cortex. Immunohistochemical and immunochemical investigations confirmed these observations at the protein level. Our data thus suggest differential functions of tenascin-C and tenascin-R in the injured central nervous system.
Collapse
Affiliation(s)
- E S Wintergerst
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
44
|
Chondroitin sulfate proteoglycan and tenascin in the wounded adult mouse neostriatum in vitro: dopamine neuron attachment and process outgrowth. J Neurosci 1997. [PMID: 8987827 DOI: 10.1523/jneurosci.16-24-08005.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular matrix (ECM) molecules, including chondroitin-4 or chondroitin-6 sulfate proteoglycans (CSPGs) and tenascin, are upregulated in and around wounds and transplants to the adult CNS. In the present study, striatal wounds from adult mice were used in a novel in vitro paradigm to assess the effects of these wound-associated molecules on embryonic dopamine cell attachment and neurite outgrowth. Light and electron microscopic immunocytochemistry studies have shown that astroglial scar constituents persist in cultured explants for at least 1 week in vitro, and despite the loss of neurons from adult striatal explants, there is a retention of certain structural features suggesting that the wound explant-neuron coplant is a viable model for analysis of graft-scar interactions. Explants from the wounded striatum taken at different times after a penetrating injury in vivo were used as substrates for embryonic ventral mesencephalon neurons that were plated on their surfaces. Dopamine cell attachment is increased significantly in relation to the expression of both CSPG and tenascin. The increase in neuronal attachment in this paradigm, however, is accompanied by a postlesion survival time-dependent significant decrease in neuritic growth from these cells. In vitro ECM antibody treatment suggests that CSPG may be responsible for heightened dopamine cell attachment and that tenascin simultaneously may support cell attachment while inhibiting neurite growth. The present study offers a new approach for the in vitro analysis of cell and molecular interactions after brain injury and brain grafting, in essence acting as a nigrostriatal transplant-in-a-dish.
Collapse
|
45
|
Forsberg E, Hirsch E, Fröhlich L, Meyer M, Ekblom P, Aszodi A, Werner S, Fässler R. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proc Natl Acad Sci U S A 1996; 93:6594-9. [PMID: 8692862 PMCID: PMC39070 DOI: 10.1073/pnas.93.13.6594] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A large number of functions have been demonstrated for tenascin-C by antibody perturbation assays and in vitro cell culture experiments. However, these results contrast sharply with the lack of any apparent phenotype in mice with a genetic deletion of tenascin-C. A possible explanation for the lack of phenotype would be expression of some altered but functional tenascin-C in the mutant. We report the generation of an independent tenascin-C null mouse and conclude that the original tenascin-C knockout, which is genetically very similar to ours, is also a true null. As found previously, the absence of tenascin-C has no influence on development, adulthood, life span, and fecundity. We have studied in detail two models of wound healing. After axotomy, the regeneration of the sciatic nerve is not altered without tenascin-C. During healing of cutaneous wounds, deposition of collagen I, fibulin-2, and nidogen is identical in mutant and wild-type mice. In contrast. fibronectin appears diminished in wounds of tenascin-C-deficient mice. However, the lack of tenascin-C together with the reduced amount of fibronectin has no influence on the quality of the healing process.
Collapse
Affiliation(s)
- E Forsberg
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiao ZC, Taylor J, Montag D, Rougon G, Schachner M. Distinct effects of recombinant tenascin-R domains in neuronal cell functions and identification of the domain interacting with the neuronal recognition molecule F3/11. Eur J Neurosci 1996; 8:766-82. [PMID: 9081628 DOI: 10.1111/j.1460-9568.1996.tb01262.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified distinct domains of the rat extracellular matrix glycoprotein tenascin-R using recombinant fragments of the molecule that confer neuronal cell functions. In short-term adhesion assays (0.5 h), cerebellar neurons adhered best to the fragment representing the fibrinogen knob (FG), but also the fibronectin type III (FN) repeats 1-2 and 6-8. FG, FN1-2 and FN3-5 were the most repellent fragments for neuronal cell bodies. Neurites and growth cones were strongly repelled from areas coated with fragments containing the cysteine-rich stretch and the EGF-like domains (EGF-L), FN1-2, FN3-5 and FG. Polarization of morphology of hippocampal neurons was exclusively associated with FG, while EGF-L prevented neurite outgrowth altogether. The binding site of the neuronal receptor for tenascin-R, the immunoglobulin superfamily adhesion molecule F3/11, was localized to EGF-L. The combined observations show distinct, but also overlapping functions for the different tenascin-R domains. They further suggest the existence of multiple neuronal tenascin-R receptors which influence the response of neurons to their extracellular matrix environment.
Collapse
Affiliation(s)
- Z C Xiao
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zurich, Switerland
| | | | | | | | | |
Collapse
|