1
|
Wang L, Zhang J, Zhao Y, Li J, Lu X, Song J, Zhang L, Niu Q. Nuclear factor kappa B (NF-κB) participates in the aluminum-induced down-regulation of miR29a/b1. J Trace Elem Med Biol 2023; 80:127309. [PMID: 37801786 DOI: 10.1016/j.jtemb.2023.127309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Studies have shown that aluminum (Al) is one of the environmental risk factors leading to Alzheimer's disease (AD), and Al exposure can cause elevated levels of BACE1mRNA, β-secretase (BACE1), and amyloid beta (Aβ) in vivo and in vitro. Previous studies by our research group have shown that this is partly caused by the negative regulation of BACE1 by miRNA29a/b1 (miR29a/b1). Despite the observed the role of nuclear factor kappa B (NF-κB) on many miRNAs, the upstream regulation of NF-κB protein on miR29 remains poorly understood. The purpose of this study was to better define the relationship between NF-κB and miR29a/b1 and the potentially relevant signaling pathways. METHODS On the one hand, we constructed the animal model of Al exposure by the intraperitoneal injection of aluminum-maltolate (Al(mal)3) in rats. Conversely, NF- κB inhibitors were added to adrenal phaeochromocytoma (PC12) cells exposed to Al(mal)3. RESULTS We verified that NF-κB shows an increasing trend with Al accumulation in the brain of rats, which is accompanied by a downward trend of miR29a/b1. Notably, the suppression of NF-κB significantly increased miR29a/b1 and affected the expression of BACE1mRNA and downstream proteins. CONCLUSION Al-induced NF-κB can negatively regulate the expression of miR29a/b1, which then significantly enhances the expression of BACE1 and Aβ plaques.
Collapse
Affiliation(s)
- Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Jingqi Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Yue Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Juan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis (Shanxi), Medical University, Taiyuan, 030001 Shanxi Province, China.
| |
Collapse
|
2
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
3
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
4
|
de Wit NM, Mol K, Rodríguez-Lorenzo S, de Vries HE, Kooij G. The Role of Sphingolipids and Specialized Pro-Resolving Mediators in Alzheimer's Disease. Front Immunol 2021; 11:620348. [PMID: 33633739 PMCID: PMC7902029 DOI: 10.3389/fimmu.2020.620348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide giving rise to devastating forms of cognitive decline, which impacts patients’ lives and that of their proxies. Pathologically, AD is characterized by extracellular amyloid deposition, neurofibrillary tangles and chronic neuroinflammation. To date, there is no cure that prevents progression of AD. In this review, we elaborate on how bioactive lipids, including sphingolipids (SL) and specialized pro-resolving lipid mediators (SPM), affect ongoing neuroinflammatory processes during AD and how we may exploit them for the development of new biomarker panels and/or therapies. In particular, we here describe how SPM and SL metabolism, ranging from ω-3/6 polyunsaturated fatty acids and their metabolites to ceramides and sphingosine-1-phosphate, initiates pro- and anti-inflammatory signaling cascades in the central nervous system (CNS) and what changes occur therein during AD pathology. Finally, we discuss novel therapeutic approaches to resolve chronic neuroinflammation in AD by modulating the SPM and SL pathways.
Collapse
Affiliation(s)
- Nienke M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kevin Mol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Hsu HW, Rodriguez-Ortiz CJ, Zumkehr J, Kitazawa M. Inflammatory Cytokine IL-1β Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience 2021; 453:69-80. [PMID: 33246059 PMCID: PMC7796931 DOI: 10.1016/j.neuroscience.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Effective clearance of neurotoxic amyloid-beta (Aβ) from the brain is a critical process to prevent Alzheimer's disease (AD). One major clearance mechanism is Aβ transcytosis mediated by low-density lipoprotein receptor-related protein 1 (LRP1) in capillary endothelial cells. A marked loss of endothelial LRP1 is found in AD brains and is believed to significantly impair Aβ clearance. Recently, we demonstrated that pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, significantly down-regulated LRP1 in human primary microvascular endothelial cells (MVECs). In this study, we sought to determine the underlying molecular mechanism by which IL-1β led to LRP1 loss in MVECs. Reduced LRP1 protein and transcript were detected up to 24 h post-exposure and returned to the baseline levels after 48 h post-exposure with 1 ng/ml IL-1β. This reduction was in part mediated by microRNA-205-5p, -200b-3p, and -200c-3p, as these microRNAs were concomitantly upregulated in MVECs exposed to IL-1β. Synthetic microRNA-205-5p, -200b-3p, and -200c-3p mimics recapitulated LRP1 loss in MVECs without IL-1β, and their synthetic antagomirs effectively reversed IL-1β-mediated LRP1 loss. Importantly, we found that the expression of these three microRNAs was controlled by NF-κB as pharmacological NF-κB inhibitor, BMS-345541, inhibited the IL-1β-mediated upregulation of these microRNAs and rescued LRP1 expression. siRNA-mediated silencing of IκB in MVECs elevated microRNA-200b-3p and decreased LRP1 transcript, partially confirming our overall findings. In conclusion, our study provides a mechanism by which pro-inflammatory IL-1β instigates the suppression of LRP1 expression in MVECs. Our findings could implicate spatiotemporal loss of LRP1 and impairment of the LRP1-mediated clearance mechanism by endothelial cells.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States.
| |
Collapse
|
6
|
Petersen CL, Chen JQ, Salas LA, Christensen BC. Altered immune phenotype and DNA methylation in panic disorder. Clin Epigenetics 2020; 12:177. [PMID: 33208194 PMCID: PMC7672933 DOI: 10.1186/s13148-020-00972-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Multiple studies have related psychiatric disorders and immune alterations. Panic disorder (PD) has been linked with changes in leukocytes distributions in several small studies using different methods for immune characterization. Additionally, alterations in the methylation of repetitive DNA elements, such as LINE-1, have been associated with mental disorders. Here, we use peripheral blood DNA methylation data from two studies and an updated DNA methylation deconvolution library to investigate the relation of leukocyte proportions and methylation status of repetitive elements in 133 patients with panic disorder compared with 118 controls. Methods and results We used DNA methylation data to deconvolute leukocyte cell-type proportions and to infer LINE-1 element methylation comparing PD cases and controls. We also identified differentially methylated CpGs associated with PD using an epigenome-wide association study approach (EWAS), with models adjusting for sex, age, and cell-type proportions. Individuals with PD had a lower proportion of CD8T cells (OR: 0.86, 95% CI: 0.78–0.96, P-adj = 0.030) when adjusting for age, sex, and study compared with controls. Also, PD cases had significantly lower LINE-1 repetitive element methylation than controls (P < 0.001). The EWAS identified 61 differentially methylated CpGs (58 hypo- and 3 hypermethylated) in PD (Bonferroni adjusted P < 1.33 × 10–7). Conclusions These results suggest that those with panic disorder have changes to their immune system and dysregulation of repeat elements relative to controls.
Collapse
Affiliation(s)
- Curtis L Petersen
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, 03766, USA.,Quantitative Biomedical Science Program, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - Ji-Qing Chen
- Program for Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA. .,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA. .,Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, 660 Williamson Translation Research Building, Lebanon, NH, 03756, USA.
| |
Collapse
|
7
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2020; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
8
|
Ju Hwang C, Choi DY, Park MH, Hong JT. NF-κB as a Key Mediator of Brain Inflammation in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:3-10. [PMID: 28782486 DOI: 10.2174/1871527316666170807130011] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is the most common form of dementia. It is characterized by betaamyloid peptide fibrils which are extracellular deposition of a specific protein, accompanied by extensive neuroinflammation. Various studies show the presence of a number of inflammation markers in the AD brain: elevated inflammatory cytokines and chemokines, and an accumulation of activated microglia in the damaged regions. NF-κB is a family of redox sensitive transcriptional factors, and it is known that NF-κB has binding sites in the promoter region of the genes involved in amyloidogenesis and inflammation. Long-term use of non-steroidal anti-inflammatory drugs prevents progression of AD and delays its onset, suggesting that there is a close correlation between NF-κB and AD pathogenesis. This study aims to (1) assess the association between NF-κB activity and AD through discussion of a variety of experimental and clinical studies on AD and (2) review treatment strategies designed to treat or prevent AD with NF-κB inhibitors.
Collapse
Affiliation(s)
- Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Korea
| |
Collapse
|
9
|
Atluri VSR, Tiwari S, Rodriguez M, Kaushik A, Yndart A, Kolishetti N, Yatham M, Nair M. Inhibition of Amyloid-Beta Production, Associated Neuroinflammation, and Histone Deacetylase 2-Mediated Epigenetic Modifications Prevent Neuropathology in Alzheimer's Disease in vitro Model. Front Aging Neurosci 2020; 11:342. [PMID: 32009938 PMCID: PMC6974446 DOI: 10.3389/fnagi.2019.00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing global threat to healthcare in the aging population. In the USA alone, it is estimated that one in nine persons over the age of 65 years is living with AD. The pathology is marked by the accumulation of amyloid-beta (Aβ) deposition in the brain, which is further enhanced by the neuroinflammatory process. Nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are the major neuroinflammatory pathways that intensify AD pathogenesis. Histone deacetylase 2 (HDAC2)-mediated epigenetic mechanisms play a major role in the genesis and neuropathology of AD. Therefore, therapeutic drugs, which can target Aβ production, NLRP3 activation, and HDAC2 levels, may play a major role in reducing Aβ levels and the prevention of associated neuropathology of AD. In this study, we demonstrate that withaferin A (WA), an extract from Withania somnifera plant, significantly inhibits the Aβ production and NF-κB associated neuroinflammatory molecules’ gene expression. Furthermore, we demonstrate that cytokine release inhibitory drug 3 (CRID3), an inhibitor of NLRP3, significantly prevents inflammasome-mediated gene expression in our in vitro AD model system. We have also observed that mithramycin A (MTM), an HDAC2 inhibitor, significantly upregulated the synaptic plasticity gene expression and downregulated HDAC2 in SH-SY5Y cells overexpressing amyloid precursor protein (SH-APP cells). Therefore, the introduction of these agents targeting Aβ production, NLRP3-mediated neuroinflammation, and HDAC2 levels will have a translational significance in the prevention of neuroinflammation and associated neurodegeneration in AD patients.
Collapse
Affiliation(s)
- Venkata Subba Rao Atluri
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Sneham Tiwari
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Melisa Rodriguez
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Ajeet Kaushik
- Division of Sciences, Art, & Mathematics, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, United States
| | - Adriana Yndart
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Yatham
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
10
|
NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res 2019; 37:491-507. [PMID: 31823227 DOI: 10.1007/s12640-019-00147-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Different animal and human studies from last two decades in the case of Parkinson's disease (PD) have concentrated on oxidative stress due to increased inflammation and cytokine-dependent neurotoxicity leading to induction of dopaminergic (DA) degeneration pathway in the nigrostriatal region. Chronic inflammation, the principle hallmark of PD, forms the basis of neurodegeneration. Aging in association with activation of glia due to neuronal injury, perhaps because of immune alterations and genetic predispositions, leads to deregulation of inflammatory pathways premising the onset of PD. A family of inducible transcription factors, nuclear factor-κB (NF-κB), is found to show expression in various cells and tissues, such as microglia, neurons, and astrocytes which play an important role in activation and regulation of inflammatory intermediates during inflammation. Both canonical and non-canonical NF-κB pathways are involved in the regulation of the stimulated cells. During the prodromal/asymptomatic stage of age-associated neurodegenerative diseases (i.e., PD and AD), chronic neuroinflammation may act silently as the driver of neuronal dysfunction. Though research has provided an insight over age-related neurodegeneration in PD, elaborative role of NF-κB in neuroinflammation is yet to be completely understood and thus requires more investigation. Polyphenols, a group of naturally occurring compound in medicinal plants, have gained attention because of their anti-oxidative and anti-neuroinflammatory properties in neurodegenerative diseases. In this aspect, this review highlights the role of NF-κB and the possible therapeutic roles of polyphenols in NF-κB-mediated neuroinflammation in PD.
Collapse
|
11
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
12
|
Waugh DT. The Contribution of Fluoride to the Pathogenesis of Eye Diseases: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E856. [PMID: 30857240 PMCID: PMC6427526 DOI: 10.3390/ijerph16050856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This study provides diverse lines of evidence demonstrating that fluoride (F) exposure contributes to degenerative eye diseases by stimulating or inhibiting biological pathways associated with the pathogenesis of cataract, age-related macular degeneration and glaucoma. As elucidated in this study, F exerts this effect by inhibiting enolase, τ-crystallin, Hsp40, Na⁺, K⁺-ATPase, Nrf2, γ -GCS, HO-1 Bcl-2, FoxO1, SOD, PON-1 and glutathione activity, and upregulating NF-κB, IL-6, AGEs, HsP27 and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative stress and impaired antioxidant activity. Based on the evidence presented in this study, it can be concluded that F exposure may be added to the list of identifiable risk factors associated with pathogenesis of degenerative eye diseases. The broader impact of these findings suggests that reducing F intake may lead to an overall reduction in the modifiable risk factors associated with degenerative eye diseases. Further studies are required to examine this association and determine differences in prevalence rates amongst fluoridated and non-fluoridated communities, taking into consideration other dietary sources of F such as tea. Finally, the findings of this study elucidate molecular pathways associated with F exposure that may suggest a possible association between F exposure and other inflammatory diseases. Further studies are also warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, P72 YF10 Co. Cork, Ireland.
| |
Collapse
|
13
|
Song Y, Hu M, Zhang J, Teng ZQ, Chen C. A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer's disease. EBioMedicine 2019; 39:409-421. [PMID: 30522932 PMCID: PMC6354659 DOI: 10.1016/j.ebiom.2018.11.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND It is widely accepted that cognitive and memory deficits in Alzheimer's disease (AD) primarily result from synaptic failure. However, the mechanisms that underlie synaptic and cognitive dysfunction remain unclear. METHODS We utilized molecular biology techniques, electrophysiological recordings, fluorescence in situ hybridization (FISH), immuno- and Golgi-staining, chromatin immunoprecipitation (CHIP); lentivirus (LV)-based microRNA overexpression and 'sponging', and behavioral tests to assess upregulated miR-30b causing synaptic and cognitive declines in APP transgenic (TG) mice. FINDINGS We provide evidence that expression of miR-30b, which targets molecules important for maintaining synaptic integrity, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2), is robustly upregulated in the brains of both AD patients and APP transgenic (TG) mice, an animal model of AD, while expression of its targets is significantly downregulated. Overexpression of miR-30b in the hippocampus of normal wild-type (WT) mice impairs synaptic and cognitive functions, mimicking those seen in TG mice. Conversely, knockdown of endogenous miR-30b in TG mice prevents synaptic and cognitive decline. We further observed that expression of miR-30b is upregulated by proinflammatory cytokines and Aβ42 through NF-κB signaling. INTERPRETATION Our results provide a previously undefined mechanism by which unregulated miR-30b causes synaptic and cognitive dysfunction in AD, suggesting that reversal of dysregulated miR-30b in the brain may prevent or slow cognitive declines in AD. FUND: This work was supported by National Institutes of Health grants R01NS076815, R01MH113535, R01AG058621, P30GM103340 Pilot Project, and by the LSUHSC School of Medicine Research Enhancement Program grant (to C.C.).
Collapse
Affiliation(s)
- Yunping Song
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mei Hu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jian Zhang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhao-Qian Teng
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chu Chen
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
14
|
Yun J, Yeo IJ, Hwang CJ, Choi DY, Im HS, Kim JY, Choi WR, Jung MH, Han SB, Hong JT. Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice. Brain Behav Immun 2018; 73:282-293. [PMID: 29782911 DOI: 10.1016/j.bbi.2018.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022] Open
Abstract
Estrogen is well known to have a preventative effect in Alzheimer's disease (AD) pathology. Several studies have demonstrated that nuclear factor kappa-B (NF-ĸB) can contribute to the effects of estrogen on the development of AD. We investigated whether NF-ĸB affects amyloid-beta (Aβ)-induced memory impairment in an estrogen-lacking condition. In the present study, nine-week-old Institute cancer research (ICR) mice were ovariectomized to block estrogen stimulation. Ten weeks after the ovariectomization, mice were administered with Aβ (300 pmol) via intracerebroventricular (ICV) infusion for 2 weeks. Memory impairment, neuroinflammatory protein expression, and amyloidogenic pathways were then measured. Ovariectomized mice demonstrated severe memory impairment, Aβ accumulation, neprilysin downregulation, and activation of NF-ĸB signaling compared to sham-control mice. In vitro experiments demonstrated that β-estradiol (10 μM) inhibited Aβ (1 μM)-induced neuroinflammation in microglial BV-2 cells and prevented Aβ-induced cell death in primary cultured neuronal cells. As in in vivo experiments, NF-ĸB activation was significantly upregulated in in vitro experiments. Furthermore β-estradiol treatment inhibited NF-ĸB activation in both of microglial BV-2 cells and cultured neuronal cells. These findings suggest that estrogen may protect against memory impairment through the regulation of Aβ accumulation and neurogenic inflammation by inhibiting NF-κB activity.
Collapse
Affiliation(s)
- Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea; College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Hyung-Sik Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ji Youg Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Won Rak Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Myung Hee Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
15
|
Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, Han SB, Yun J, Hong JT. Piperlongumine Improves Lipopolysaccharide-Induced Amyloidogenesis by Suppressing NF-KappaB Pathway. Neuromolecular Med 2018; 20:312-327. [PMID: 29802525 PMCID: PMC6097046 DOI: 10.1007/s12017-018-8495-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Amyloidogenesis is known to cause Alzheimer's disease. Our previous studies have found that lipopolysaccharide (LPS) causes neuroinflammation and amyloidogenesis through activation of nuclear factor kappaB (NF-κB). Piperlongumine (PL) is an alkaloid amide found naturally in long pepper (Piper longum) isolates; it was reported to have inhibitory effects on NF-κB activity. We therefore investigated whether PL exhibits anti-inflammatory and anti-amyloidogenic effects by inhibiting NF-κB. A murine model of LPS-induced memory impairment was made via the intraperitoneal (i.p.) injection of LPS (0.25 mg/kg/day, i.p.). We then injected PL (1.5 or 3.0 mg/kg/day, i.p.) for 7 days in three groups of mice to observe effects on memory. We also conducted an in vitro study with astrocytes and microglial BV-2 cells, which were treated with LPS (1 µg/mL) or PL (0.5 or 1.0 or 2.5 µM). Results from our behavioral tests showed that PL inhibited LPS-induced memory. PL also prevented LPS-induced beta-amyloid (Aβ) accumulation and inhibited the activities of β- and γ-secretases. The expression of inflammatory proteins also was decreased in PL-treated mice, cultured BV-2, and primary astrocyte cells. These effects were associated with the inhibition of NF-κB activity. A docking model analysis and pull-down assay showed that PL binds to p50. Taken together, our findings suggest that PL diminishes LPS-induced amyloidogenesis and neuroinflammation by inhibiting NF-κB signaling; PL therefore demonstrates potential for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, 800W University Pkwy, Orem, UT, 84058, USA
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hoi Yeong Kim
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-eup, Jeungpyeong-gun, Chungbuk, 27909, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- Department of Neuroimmunology, College of Pharmacy, Wonkwang University, 460 Iksan-daero, Iksan-si, Jeonbuk, 54538, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
16
|
Ferrous and ferric differentially deteriorate proliferation and differentiation of osteoblast-like UMR-106 cells. Biometals 2018; 31:873-889. [DOI: 10.1007/s10534-018-0130-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
|
17
|
Alexandrov PN, Pogue AI, Lukiw WJ. Synergism in aluminum and mercury neurotoxicity. INTEGRATIVE FOOD, NUTRITION AND METABOLISM 2018; 5:10.15761/IFNM.1000214. [PMID: 29938114 PMCID: PMC6013271 DOI: 10.15761/ifnm.1000214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aluminum and mercury are common neurotoxic contaminants in our environment - from the air we breathe to the water that we drink to the foods that we eat. It is remarkable that to date neither of these two well-established environmental neurotoxins (i.e. those having a general toxicity towards brain cells) and genotoxins (those agents which exhibit directed toxicity toward the genetic apparatus) have been critically studied, nor have their neurotoxicities been evaluated in human neurobiology or in cells of the human central nervous system (CNS). In this paper we report the effects of added aluminum [sulfate; Al₂(SO₄)₃] and/or mercury [sulfate; HgSO4] to human neuronal-glial (HNG) cells in primary co-culture using the evolution of the pro-inflammatory transcription factor NF-kB (p50/p65) complex as a critical indicator for the onset of inflammatory neurodegeneration and pathogenic inflammatory signaling. As indexed by significant induction of the NF-kB (p50/p65) complex the results indicate: (i) a notable increase in pro-inflammatory signaling imparted by each of these two environmental neurotoxins toward HNG cells in the ambient 20-200 nM range; and (ii) a significant synergism in the neurotoxicity when aluminum (sulfate) and mercury (sulfate) were added together. This is the first report on the neurotoxic effects of aluminum sulfate and/or mercury sulfate on the initiation of inflammatory signaling in human brain cells in primary culture. The effects aluminum+mercury together on other neurologically important signaling molecules or the effects of other combinations of common environmental metallic neurotoxins to human neurobiology currently remain not well understood but certainly warrant additional investigation and further study in laboratory animals, in human primary tissue cultures of CNS cells, and in other neurobiologically realistic experimental test systems.
Collapse
Affiliation(s)
| | | | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow 113152, Russia
- Alchem Biotek Research, Toronto ON M5S 1A8, Canada
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
| |
Collapse
|
18
|
Cho MJ, Kim JH, Park CH, Lee AY, Shin YS, Lee JH, Park CG, Cho EJ. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice. Nutr Res Pract 2018; 12:191-198. [PMID: 29854324 PMCID: PMC5974064 DOI: 10.4162/nrp.2018.12.3.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/08/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Neuroinflammation plays critical role in neurodegenerative disorders, such as Alzheimer's disease (AD). We investigated the effect of three licorice varieties, Glycyrhiza uralensis, G. glabra, and Shinwongam (SW) on a mouse model of inflammation-induced memory and cognitive deficit. MATERIALS/METHODS C57BL/6 mice were injected with lipopolysaccharide (LPS; 2.5 mg/kg, intraperitoneally) and orally administrated G. uralensis, G. glabra, and SW extract (150 mg/kg/day). SW, a new species of licorice in Korea, was combined with G. uralensis and G. glabra. Behavioral tests, including the T-maze, novel object recognition and Morris water maze, were carried out to assess learning and memory. In addition, the expressions of inflammation-related proteins in brain tissue were measured by western blotting. RESULTS There was a significant decrease in spatial and objective recognition memory in LPS-induced cognitive impairment group, as measured by the T-maze and novel object recognition test; however, the administration of licorice ameliorated these deficits. In addition, licorice-treated groups exhibited improved learning and memory ability in the Morris water maze. Furthermore, LPS-injected mice had up-regulated pro-inflammatory proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2, interleukin-6, via activation of toll like receptor 4 (TLR4) and nuclear factor-kappa B (NFκB) pathways in the brain. However, these were attenuated by following administration of the three licorice varieties. Interestingly, the SW-administered group showed greater inhibition of iNOS and TLR4 when compared with the other licorice varieties. Furthermore, there was a significant increase in the expression of brain-derived neurotrophic factor (BDNF) in the brain of LPS-induced cognitively impaired mice that were administered licorice, with the greatest effect following SW treatment. CONCLUSIONS The three licorice varieties ameliorated the inflammation-induced cognitive dysfunction by down-regulating inflammatory proteins and up-regulating BDNF. These results suggest that licorice, in particular SW, could be potential therapeutic agents against cognitive impairment.
Collapse
Affiliation(s)
- Min Ji Cho
- Department of Food Science and Nutrition, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Chan Hum Park
- Department of Herbal Crop Research, NIHHS, RDA, Chungbuk 27709, Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Yu Su Shin
- Department of Herbal Crop Research, NIHHS, RDA, Chungbuk 27709, Korea
| | - Jeong Hoon Lee
- Department of Herbal Crop Research, NIHHS, RDA, Chungbuk 27709, Korea
| | - Chun Geun Park
- Department of Herbal Crop Research, NIHHS, RDA, Chungbuk 27709, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
19
|
Rahman S, Jan AT, Ayyagari A, Kim J, Kim J, Minakshi R. Entanglement of UPR ER in Aging Driven Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:341. [PMID: 29114219 PMCID: PMC5660724 DOI: 10.3389/fnagi.2017.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is an indispensable cellular organelle that remains highly active in neuronal cells. The ER bears the load of maintaining protein homeostasis in the cellular network by managing the folding of incoming nascent peptides; however, the stress imposed by physiological/environmental factors can cause ER dysfunctions that lead to the activation of ER unfolded protein response (UPRER). Aging leads to deterioration of several cellular pathways and therefore weakening of the UPRER. The decline in functioning of the UPRER during aging results in accumulation of misfolded proteins that becomes intracellular inclusions in neuronal cells, resulting in toxicity manifested as neurodegenerative diseases. With ascension in cases of neurodegenerative diseases, understanding the enigma behind aging driven UPRER dysfunction may lead to possible treatments.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Archana Ayyagari
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jiwoo Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| |
Collapse
|
20
|
Theus MH, Brickler T, Meza AL, Coutermarsh-Ott S, Hazy A, Gris D, Allen IC. Loss of NLRX1 Exacerbates Neural Tissue Damage and NF-κB Signaling following Brain Injury. THE JOURNAL OF IMMUNOLOGY 2017; 199:3547-3558. [PMID: 28993512 DOI: 10.4049/jimmunol.1700251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Traumatic and nontraumatic brain injury results from severe disruptions in the cellular microenvironment leading to massive loss of neuronal populations and increased neuroinflammation. The progressive cascade of secondary events, including ischemia, inflammation, excitotoxicity, and free-radical release, contribute to neural tissue damage. NLRX1 is a member of the NLR family of pattern recognition receptors and is a potent negative regulator of several pathways that significantly modulate many of these events. Thus, we hypothesized that NLRX1 limits immune system signaling in the brain following trauma. To evaluate this hypothesis, we used Nlrx1-/- mice in a controlled cortical impact (CCI) injury murine model of traumatic brain injury (TBI). In this article, we show that Nlrx1-/- mice exhibited significantly larger brain lesions and increased motor deficits following CCI injury. Mechanistically, our data indicate that the NF-κB signaling cascade is significantly upregulated in Nlrx1-/- animals. This upregulation is associated with increased microglia and macrophage populations in the cortical lesion. Using a mouse neuroblastoma cell line (N2A), we also found that NLRX1 significantly reduced apoptosis under hypoxic conditions. In human patients, we identify 15 NLRs that are significantly dysregulated, including significant downregulation of NLRX1 in brain injury following aneurysm. We further demonstrate a concurrent increase in NF-κB signaling that is correlated with aneurysm severity in these human subjects. Together, our data extend the function of NLRX1 beyond its currently characterized role in host-pathogen defense and identify this highly novel NLR as a significant modulator of brain injury progression.
Collapse
Affiliation(s)
- Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061;
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Armand L Meza
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061.,Department of Neuroscience, Virginia Tech, Blacksburg, VA 24061; and
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Amanda Hazy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Denis Gris
- Programme d'Immunologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061;
| |
Collapse
|
21
|
Li ZY, Chung YH, Shin EJ, Dang DK, Jeong JH, Ko SK, Nah SY, Baik TG, Jhoo JH, Ong WY, Nabeshima T, Kim HC. YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. J Neuroinflammation 2017; 14:94. [PMID: 28449688 PMCID: PMC5408406 DOI: 10.1186/s12974-017-0866-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/18/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ginkgo biloba has been reported to possess free radical-scavenging antioxidant activity and anti-inflammatory properties. In our pilot study, YY-1224, a terpene trilactone-strengthened extract of G. biloba, showed anti-inflammatory, neurotrophic, and antioxidant effects. RESULTS We investigated the pharmacological potential of YY-1224 in β-amyloid (Aβ) (1-42)-induced memory impairment using cyclooxygenase-2 (COX-2) knockout (-/-) and APPswe/PS1dE9 transgenic (APP/PS1 Tg) mice. Repeated treatment with YY-1224 significantly attenuated Aβ (1-42)-induced memory impairment in COX-2 (+/+) mice, but not in COX-2 (-/-) mice. YY-1224 significantly attenuated Aβ (1-42)-induced upregulation of platelet-activating factor (PAF) receptor gene expression, reactive oxygen species, and pro-inflammatory factors. In addition, YY-1224 significantly inhibited Aβ (1-42)-induced downregulation of PAF-acetylhydrolase-1 (PAF-AH-1) and peroxisome proliferator-activated receptor γ (PPARγ) gene expression. These changes were more pronounced in COX-2 (+/+) mice than in COX-2 (-/-) mice. YY-1224 significantly attenuated learning impairment, Aβ deposition, and pro-inflammatory microglial activation in APP/PS1 Tg mice, whereas it significantly enhanced PAF-AH and PPARγ expression. A preferential COX-2 inhibitor, meloxicam, did not affect the pharmacological activity by YY-1224, suggesting that the COX-2 gene is a critical mediator of the neuroprotective effects of YY-1224. The protective activity of YY-1224 appeared to be more efficacious than a standard G. biloba extract (Gb) against Aβ insult. CONCLUSIONS Our results suggest that the protective effects of YY-1224 against Aβ toxicity may be associated with its PAF antagonistic- and PPARγ agonistic-potential as well as inhibition of the Aβ-mediated pro-inflammatory switch of microglia phenotypes through suppression of COX-2 expression.
Collapse
Affiliation(s)
- Zheng-Yi Li
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon, 27136 Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Republic of Korea
| | - Tae Gon Baik
- R&D Center, Yuyu Pharma, Seoul, 04598 Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Medical School, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260 Singapore
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503 Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| |
Collapse
|
22
|
Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, Huang RN, Chiang MC. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 2017; 352:75-83. [PMID: 28159472 DOI: 10.1016/j.yexcr.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022]
Abstract
A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1β, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated hNSCs. These findings extend our understanding of the central role of AMPK in AGE induced inflammatory responses, which increase the risk of neurodegeneration in diabetic patients.
Collapse
Affiliation(s)
- Ming-Min Chung
- Department of Internal Medicine, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Christopher J Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Kuan-Hung Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Dee Pei
- Department of Internal Medicine, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Chien-Hung Lin
- Department of Pediatrics, Taipei City Hospital Zhongxing Branch, Taipei 103, Taiwan
| | - Yi-Nuo Shih
- Department of Occupational Therapy, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Chia-Hui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
23
|
Yang L, Liu CC, Zheng H, Kanekiyo T, Atagi Y, Jia L, Wang D, N'songo A, Can D, Xu H, Chen XF, Bu G. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J Neuroinflammation 2016; 13:304. [PMID: 27931217 PMCID: PMC5146875 DOI: 10.1186/s12974-016-0772-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023] Open
Abstract
Background Neuroinflammation is characterized by microglial activation and the increased levels of cytokines and chemokines in the central nervous system (CNS). Recent evidence has implicated both beneficial and toxic roles of microglia when over-activated upon nerve injury or in neurodegenerative diseases, including Alzheimer’s disease (AD). The low-density lipoprotein receptor-related protein 1 (LRP1) is a major receptor for apolipoprotein E (apoE) and amyloid-β (Aβ), which play critical roles in AD pathogenesis. LRP1 regulates inflammatory responses in peripheral tissues by modulating the release of inflammatory cytokines and phagocytosis. However, the roles of LRP1 in brain innate immunity and neuroinflammation remain unclear. Methods In this study, we determined whether LRP1 modulates microglial activation by knocking down Lrp1 in mouse primary microglia. LRP1-related functions in microglia were also assessed in the presence of LRP1 antagonist, the receptor-associated protein (RAP). The effects on the production of inflammatory cytokines were measured by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Potential involvement of specific signaling pathways in LRP1-regulated functions including mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) were assessed using specific inhibitors. Results We found that knocking down of Lrp1 in mouse primary microglia led to the activation of both c-Jun N-terminal kinase (JNK) and NF-κB pathways with corresponding enhanced sensitivity to lipopolysaccharide (LPS) in the production of pro-inflammatory cytokines. Similar effects were observed when microglia were treated with LRP1 antagonist RAP. In addition, treatment with pro-inflammatory stimuli suppressed Lrp1 expression in microglia. Interestingly, NF-κB inhibitor not only suppressed the production of cytokines induced by the knockdown of Lrp1 but also restored the down-regulated expression of Lrp1 by LPS. Conclusions Our study uncovers that LRP1 suppresses microglial activation by modulating JNK and NF-κB signaling pathways. Given that dysregulation of LRP1 has been associated with AD pathogenesis, our work reveals a critical regulatory mechanism of microglial activation by LRP1 that could be associated with other AD-related pathways thus further nominating LRP1 as a potential disease-modifying target for the treatment of AD.
Collapse
Affiliation(s)
- Longyu Yang
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Honghua Zheng
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Lin Jia
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Daxin Wang
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Aurelie N'songo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Dan Can
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Huaxi Xu
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Xiao-Fen Chen
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China. .,Shenzhen Research Institute of Xiamen University, Shenzhen, 518063, China.
| | - Guojun Bu
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China. .,Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA.
| |
Collapse
|
24
|
Hewett SJ, Shi J, Gong Y, Dhandapani K, Pilbeam C, Hewett JA. Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons: OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1). J Biol Chem 2016; 291:27279-27288. [PMID: 27875294 DOI: 10.1074/jbc.m116.737353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-d-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-d-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms.
Collapse
Affiliation(s)
- Sandra J Hewett
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210,
| | - Jingxue Shi
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210
| | - Yifan Gong
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210
| | - Krishnan Dhandapani
- the Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, and
| | - Carol Pilbeam
- the Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James A Hewett
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210,
| |
Collapse
|
25
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
26
|
Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer's Disease. Front Microbiol 2016; 7:1544. [PMID: 27725817 PMCID: PMC5035737 DOI: 10.3389/fmicb.2016.01544] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022] Open
Abstract
The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer's disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This 'Perspectives communication' will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain.
Collapse
Affiliation(s)
- Walter J Lukiw
- Bollinger Professor of Alzheimer's disease (AD), Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
27
|
Meta-analysis of cyclooxygenase-2 (COX-2) 765G>C polymorphism and Alzheimer’s disease. J Clin Neurosci 2016; 31:4-9. [DOI: 10.1016/j.jocn.2015.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023]
|
28
|
Zhao Y, Alexandrov PN, Lukiw WJ. Anti-microRNAs as Novel Therapeutic Agents in the Clinical Management of Alzheimer's Disease. Front Neurosci 2016; 10:59. [PMID: 26941600 PMCID: PMC4766517 DOI: 10.3389/fnins.2016.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Overview- One hundred and ten years since its first description Alzheimer's disease (AD) still retains its prominent status: (i) as the industrialized world's number one cause of age-related intellectual impairment and cognitive decline; (ii) as this country's most rapidly expanding socioeconomic and healthcare concern; and (iii) as an insidious, progressive and lethal neurological disorder of the human central nervous system (CNS) for which there is currently no adequate treatment or cure (Alzheimer, 1991; Alzheimer et al., 1991, 1995) [https://www.alz.org/facts/downloads/facts_figures_2015.pdf (2015)]. The concept of small non-coding RNAs (ncRNAs) as being involved in the etiopathogenesis of AD and age-related human neurodegenerative disease was first proposed about 25 years ago, however it was not until 2007 that specific microRNA (miRNA) abundance, speciation and localization to the hippocampal CA1 region (an anatomical area of the human CNS specifically targeted by the AD process) was shown to strongly associate with AD-type change when compared to age-matched controls (Lukiw et al., 1992; Lukiw, 2007; Schipper et al., 2007; Cogswell et al., 2008; Guerreiro et al., 2012). Currently about 400 reports address the potential link between disruptions in miRNA signaling and the development of various features associated with AD neuropathology (http://www.ncbi.nlm.nih.gov/pubmed/?term=micro+RNA+alzheimer's+disease). In this “Perspectives” paper we will highlight some of the most recent literature on anti-miRNA (AM; antagomir) therapeutic strategies and some very recent technological advances in the analysis and characterization of defective miRNA signaling pathways in AD compared to neurologically normal age-matched controls.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Science CenterNew Orleans, LA, USA
| | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department Neurology, LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA
| |
Collapse
|
29
|
Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci 2015; 8:77. [PMID: 26733801 PMCID: PMC4683208 DOI: 10.3389/fnmol.2015.00077] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
The NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) transcription factor family is a pleiotropic regulator of many cellular signaling pathways, providing a mechanism for the cells in response to a wide variety of stimuli linking to inflammation. The stimulated cells will be regulated by not only the canonical but also non-canonical NF-κB pathways. To initiate both of these pathways, IκB-degradation triggers NF-κB release and the nuclear translocated-heterodimer (or homodimer) can associate with the κB sites of promoter to regulate the gene transcriptions. NF-κB ubiquitously expresses in neurons and the constitutive NF-κB activation is associated with processing of neuronal information. NF-κB can regulate the transcription of genes such as chemokines, cytokines, proinflammatory enzymes, adhesion molecules, proinflammatory transcription factors, and other factors to modulate the neuronal survival. In neuronal insult, NF-κB constitutively active in neuron cell bodies can protect neurons against different injuries and regulate the neuronal inflammatory reactions. Besides neurons, NF-κB transcription factors are abundant in glial cells and cerebral blood vessels and the diverse functions of NF-κB also regulate the inflammatory reaction around the neuronal environment. NF-κB transcription factors are abundant in the brain and exhibit diverse functions. Several central nerve system (CNS) diseases are linked to NF-κB activated by inflammatory mediators. The RelA and c-Rel expression produce opposite effects on neuronal survival. Importantly, c-Rel expression in CNS plays a critical role in anti-apoptosis and reduces the age-related behaviors. Moreover, the different subunits of NF-κB dimer formation can modulate the neuroninflammation, neuronal protection, or neurotoxicity. The diverse functions of NF-κB depend on the subunits of the NF-κB dimer-formation which enable us to develop a therapeutic approach to neuroinflammation based on a new concept of inflammation as a strategic tool in neuronal cells. However, the detail role of NF-κB in neuroinflammation, remains to be clarified. In the present article, we provide an updated review of the current state of our knowledge about relationship between NF-κB and neuroinflammation.
Collapse
Affiliation(s)
- Ruey-Horng Shih
- Institute of Neuroscience, National Chengchi University Taipei, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| |
Collapse
|
30
|
MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer's Disease (AD)-Novel and Unique Pathological Features. Int J Mol Sci 2015; 16:30105-16. [PMID: 26694372 PMCID: PMC4691165 DOI: 10.3390/ijms161226223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Of the approximately ~2.65 × 103 mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.
Collapse
|
31
|
Devier DJ, Lovera JF, Lukiw WJ. Increase in NF-κB-sensitive miRNA-146a and miRNA-155 in multiple sclerosis (MS) and pro-inflammatory neurodegeneration. Front Mol Neurosci 2015; 8:5. [PMID: 25784854 PMCID: PMC4345893 DOI: 10.3389/fnmol.2015.00005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deidre J Devier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Jesus F Lovera
- Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Walter J Lukiw
- Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
32
|
Park SY, Kim MJ, Kim YJ, Lee YH, Bae D, Kim S, Na Y, Yoon HG. Selective PCAF inhibitor ameliorates cognitive and behavioral deficits by suppressing NF-κB-mediated neuroinflammation induced by Aβ in a model of Alzheimer's disease. Int J Mol Med 2015; 35:1109-18. [PMID: 25672970 DOI: 10.3892/ijmm.2015.2099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Several recent studies have reported an association between neurodegeneration and histone modifications, such as acetylation, deacetylation and methylation. In addition, questions have been raised regarding a potential functional role for the histone acetylation enzymes in β-amyloid (Aβ)-mediated neurotoxicity, particularly the p300/CBP-associated factor (PCAF) enzyme. We recently reported the potential utility of a PCAF inhibitor in the suppression of Aβ-induced neuronal cell death, although the in vivo effectiveness of the PCAF inhibitor remained unclear. In this study, we modified the PCAF inhibitor by chemical derivatization and selected compound C-30-27 as the most potent PCAF inhibitor. We demonstrated that C-30-27 selectively inhibited acetylation-dependent nuclear factor-κB (NF-κB) at Lys-122 and suppressed the NF-κB-mediated inflammatory response induced by lipopolysaccharide (LPS) or Aβ in both BV2 and Neuro-2A (N2A) cells. Finally, we demonstrated that C-30-27 improved cognitive deficits, as well as the capacity for locomotion and the damaged cholinergic system in the Aβ-treated rats. In conclusion, our results demonstrate that this selective PCAF inhibitor has the potential to reduce the neuroinflammatory response induced by Aβ.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Jeong Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Yoo-Hyun Lee
- Department of Food and Nutrition, The University of Suwon, Kyunggi-do, Republic of Korea
| | - Donghyuk Bae
- Jeollanamdo Institute of Natural Resources Research, Jeonnam, Republic of Korea
| | - Sunoh Kim
- Jeollanamdo Institute of Natural Resources Research, Jeonnam, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, Republic of Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Hill JM, Dua P, Clement C, Lukiw WJ. An evaluation of progressive amyloidogenic and pro-inflammatory change in the primary visual cortex and retina in Alzheimer's disease (AD). Front Neurosci 2014; 8:347. [PMID: 25429256 PMCID: PMC4228830 DOI: 10.3389/fnins.2014.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/11/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- James M Hill
- Louisiana State University Neuroscience Center and Departments of Ophthalmology and Pharmacology, Louisiana State University Health Science Center New Orleans, LA, USA
| | - Prerna Dua
- Department of Health Information Management, Louisiana State University Ruston, LA, USA
| | - Christian Clement
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans New Orleans, LA, USA
| | - Walter J Lukiw
- Louisiana State University Neuroscience Center and Departments of Ophthalmology and Pharmacology, Louisiana State University Health Science Center New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Science Center New Orleans, LA, USA
| |
Collapse
|
34
|
Zhao Y, Bhattacharjee S, Jones BM, Hill J, Dua P, Lukiw WJ. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer's disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 2014; 50:97-106. [PMID: 24293102 PMCID: PMC4038663 DOI: 10.1007/s12035-013-8595-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Inducible microRNAs (miRNAs) perform critical regulatory roles in central nervous system (CNS) development, aging, health, and disease. Using miRNA arrays, RNA sequencing, enhanced Northern dot blot hybridization technologies, Western immunoblot, and bioinformatics analysis, we have studied miRNA abundance and complexity in Alzheimer's disease (AD) brain tissues compared to age-matched controls. In both short post-mortem AD and in stressed primary human neuronal-glial (HNG) cells, we observe a consistent up-regulation of several brain-enriched miRNAs that are under transcriptional control by the pro-inflammatory transcription factor NF-kB. These include miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155. Of the inducible miRNAs in this subfamily, miRNA-125b is among the most abundant and significantly induced miRNA species in human brain cells and tissues. Bioinformatics analysis indicated that an up-regulated miRNA-125b could potentially target the 3'untranslated region (3'-UTR) of the messenger RNA (mRNA) encoding (a) a 15-lipoxygenase (15-LOX; ALOX15; chr 17p13.3), utilized in the conversion of docosahexaneoic acid into neuroprotectin D1 (NPD1), and (b) the vitamin D3 receptor (VDR; VD3R; chr12q13.11) of the nuclear hormone receptor superfamily. 15-LOX and VDR are key neuromolecular factors essential in lipid-mediated signaling, neurotrophic support, defense against reactive oxygen and nitrogen species (reactive oxygen and nitrogen species), and neuroprotection in the CNS. Pathogenic effects appear to be mediated via specific interaction of miRNA-125b with the 3'-UTR region of the 15-LOX and VDR messenger RNAs (mRNAs). In AD hippocampal CA1 and in stressed HNG cells, 15-LOX and VDR down-regulation and a deficiency in neurotrophic support may therefore be explained by the actions of a single inducible, pro-inflammatory miRNA-125b. We will review the recent data on the pathogenic actions of this up-regulated miRNA-125b in AD and discuss potential therapeutic approaches using either anti-NF-kB or anti-miRNA-125b strategies. These may be of clinical relevance in the restoration of 15-LOX and VDR expression back to control levels and the re-establishment of homeostatic neurotrophic signaling in the CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Brandon M. Jones
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Jim Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| | - Prerna Dua
- Department of Health Information Management, Louisiana State University, Ruston, LA 71272 USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| |
Collapse
|
35
|
Dilshara MG, Lee KT, Choi YH, Moon DO, Lee HJ, Yun SG, Kim GY. Potential chemoprevention of LPS-stimulated nitric oxide and prostaglandin E₂ production by α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl-3-indolecarbonate in BV2 microglial cells through suppression of the ROS/PI3K/Akt/NF-κB pathway. Neurochem Int 2014; 67:39-45. [PMID: 24486459 DOI: 10.1016/j.neuint.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 11/19/2022]
Abstract
α-l-Rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-3-indolecarbonate (RG3I) is a chemical constituent isolated from the commonly used Asian traditional medicinal plant, Clematis mandshurica; however, no studies have been reported on its anti-inflammatory properties. In the present study, we found that RG3I attenuates the lipopolysaccharide (LPS)-induced DNA-binding activity of nuclear factor-κB (NF-κB) via the dephosphorylation of PI3K/Akt in BV2 microglial cells, leading to a suppression of nitric oxide (NO) and prostaglandin E2 (PGE2) production, along with that of their regulatory genes, inducible NO synthase (iNOS) and cyclooxygenase-2 (Cox-2). Further, the PI3K/Akt inhibitor, LY294002 diminished the expression of LPS-stimulated iNOS and COX-2 genes by suppressing NF-κB activity. Moreover, RG3I significantly inhibited LPS-induced reactive oxygen species (ROS) generation similar to the ROS inhibitors, N-acetylcysteine (NAC) and glutathione (GSH). Notably, NAC and GSH abolished the LPS-induced expression of iNOS and Cox-2 in BV2 microglial cells by inhibiting NF-κB activity. Taken together, our data indicate that RG3I suppresses the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting the PI3K/Akt- and ROS-dependent NF-κB signaling pathway, suggesting that RG3I may be a good candidate to regulate LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Matharage Gayani Dilshara
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea
| | - Kyoung-Tae Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Republic of Korea
| | - Hak-Ju Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Republic of Korea
| | - Sung Gyu Yun
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea.
| |
Collapse
|
36
|
Pogue AI, Clement C, Hill JM, Lukiw WJ. Evolution of microRNA (miRNA) Structure and Function in Plants and Animals: Relevance to Aging and Disease. ACTA ACUST UNITED AC 2014; 2. [PMID: 26146648 PMCID: PMC4489142 DOI: 10.4172/2329-8847.1000119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - James M Hill
- Departments of Ophthalmology, LSU Neuroscience Center, USA ; Departments of Microbiology, LSU Neuroscience Center, USA ; Departments of Pharmacology, LSU Neuroscience Center, USA ; Departments of Neurology, LSU Neuroscience Center, USA
| | - Walter J Lukiw
- Alchem Biotek, Toronto ON, M5S 1A8, Canada ; Departments of Ophthalmology, LSU Neuroscience Center, USA ; Departments of Neurology, LSU Neuroscience Center, USA
| |
Collapse
|
37
|
Marwarha G, Raza S, Prasanthi JRP, Ghribi O. Gadd153 and NF-κB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and β-amyloid production in human neuroblastoma SH-SY5Y cells. PLoS One 2013; 8:e70773. [PMID: 23951005 PMCID: PMC3739769 DOI: 10.1371/journal.pone.0070773] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
β-amyloid (Aβ) peptide, accumulation of which is a culprit for Alzheimer's disease (AD), is derived from the initial cleavage of amyloid precursor protein by the aspartyl protease BACE1. Identification of cellular mechanisms that regulate BACE1 production is of high relevance to the search for potential disease-modifying therapies that inhibit BACE1 to reduce Aβ accumulation and AD progression. In the present study, we show that the cholesterol oxidation product 27-hydroxycholesterol (27-OHC) increases BACE1 and Aβ levels in human neuroblastoma SH-SY5Y cells. This increase in BACE1 involves a crosstalk between the two transcription factors NF-κB and the endoplasmic reticulum stress marker, the growth arrest and DNA damage induced gene-153 (gadd153, also called CHOP). We specifically show that 27-OHC induces a substantial increase in NF-κB binding to the BACE1 promoter and subsequent increase in BACE1 transcription and Aβ production. The NF-κB inhibitor, sc514, significantly attenuated the 27-OHC-induced increase in NF-κB-mediated BACE1 expression and Aβ genesis. We further show that the 27-OHC-induced NF-κB activation and increased NF-κB-mediated BACE1 expression is contingent on the increased activation of gadd153. Silencing gadd153 expression with siRNA alleviated the 27-OHC-induced increase in NF-κB activation, NF-κB binding to the BACE1 promoter, and subsequent increase in BACE1 transcription and Aβ production. We also show that increased levels of BACE1 in the triple transgenic mouse model for AD is preceded by gadd153 and NF-κB activation. In summary, our study demonstrates that gadd153 and NF-κB work in concert to regulate BACE1 expression. Agents that inhibit gadd153 activation and subsequent interaction with NF-κB might be promising targets to reduce BACE1 and Aβ overproduction and may ultimately serve as disease-modifying treatments for AD.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Shaneabbas Raza
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jaya R. P. Prasanthi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Othman Ghribi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
38
|
Jung K, Ha E, Uhm Y, Park H, Kim MJ, Kim H, Baik H, Hong M, Yang J, Yim SV. Suppressive effect by Hizikia fusiforme on the production of tumor necrosis factor in BV2 murine microglial cells. Neurol Res 2013; 29 Suppl 1:S88-92. [PMID: 17359647 DOI: 10.1179/016164107x172383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Hizikia fusiforme has been commonly used as food in Korea. Antioxidant effect of Hizikia fusiforme, however, was recently reported. Thus, herein, we investigated the effect of Hizikia fusiforme on the production and expression of tumor necrosis factor (TNF), a major proinflammatory mediator, in lipopolysaccharide (LPS)-activated BV2 microglial cells. METHODS Cells were pre-treated with 5 or 50 mug/ml Hizikia fusiforme and treated with 1 mug/ml LPS. The production of TNF was measured by enzyme-linked immunosorbent assay (ELISA). The effect of Hizikia fusiforme on the expression of TNF was also performed by immunoblot analysis and reverse transcription-polymerase chain reaction (RT-PCR). Activation of nuclear factor kappab (NFkappab) was determined by electrophoretic mobility shift assay (EMSA). RESULTS We observed that Hizikia fusiforme decreased the production of TNF. The inhibitory effect of the Hizikia fusiforme on the expression of TNF was confirmed by immunoblot and RT-PCR analyses. In addition, EMSA experiment revealed that Hizikia fusiforme blocked the LPS-induced activation of NFkappab. CONCLUSION The present study suggests that Hizikia fusiforme may suppress LPS-stimulated TNF production via inhibition of NFkappab in murine microglial cells.
Collapse
Affiliation(s)
- Kyunghee Jung
- Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lukiw WJ. Antagonism of NF-κB-up-regulated micro RNAs (miRNAs) in sporadic Alzheimer's disease (AD)-anti-NF-κB vs. anti-miRNA strategies. Front Genet 2013; 4:77. [PMID: 23641256 PMCID: PMC3640190 DOI: 10.3389/fgene.2013.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Walter J Lukiw
- Department of Neuroscience and Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
40
|
Chan KH, Lam KSL, Cheng OY, Kwan JSC, Ho PWL, Cheng KKY, Chung SK, Ho JWM, Guo VY, Xu A. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS One 2012; 7:e52354. [PMID: 23300647 PMCID: PMC3531475 DOI: 10.1371/journal.pone.0052354] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Beta-amyloid (Aβ ) neurotoxicity is important in Alzheimer’s disease (AD) pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T2DM) which is characterized by insulin resistance. Interestingly, T2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance). We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties) against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y) transfected with the Swedish amyloid precursor protein (Sw-APP) mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH) released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK) activation and enhanced nuclear factor-kappa B (NF-κB) activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1) AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif) and possibly 2) suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.
Collapse
Affiliation(s)
- Koon-Ho Chan
- University Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Abundant neurochemical, neuropathological, and genetic evidence suggests that a critical number of proinflammatory and innate immune system-associated factors are involved in the underlying pathological pathways that drive the sporadic Alzheimer's disease (AD) process. Most recently, a series of epigenetic factors - including a select family of inducible, proinflammatory, NF-κB-regulated small noncoding RNAs called miRNAs - have been shown to be significantly elevated in abundance in AD brain. These upregulated miRNAs appear to be instrumental in reshaping the human brain transcriptome. This reorganization of mRNA speciation and complexity in turn drives proinflammatory and pathogenic gene expression programs. The ensuing, progressively altered immune and inflammatory signaling patterns in AD brain support immunopathogenetic events and proinflammatory features of the AD phenotype. This report will briefly review what is known concerning NF-κB-inducible miRNAs that are significantly upregulated in AD-targeted anatomical regions of degenerating human brain cells and tissues. Quenching of NF-κB-sensitive inflammatory miRNA signaling using NF-κB-inhibitors such as the polyphenolic resveratrol analog trans-3,5,4'-trihydroxystilbene (CAY10512) may have some therapeutic value in reducing inflammatory neurodegeneration. Antagonism of NF-κB-inducing, and hence proinflammatory, epigenetic and environmental factors, such as the neurotrophic herpes simplex virus-1 and exposure to the potent neurotoxin aluminum, are briefly discussed. Early reports further indicate that miRNA neutralization employing anti-miRNA (antagomir) strategies may hold future promise in the clinical management of this insidious neurological disorder and expanding healthcare concern.
Collapse
Affiliation(s)
- Walter J Lukiw
- Professor of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci 2012; 13:9615-9626. [PMID: 22949820 PMCID: PMC3431818 DOI: 10.3390/ijms13089615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022] Open
Abstract
Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer’s disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA; C25H14Cl2O9; MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H2DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction.
Collapse
|
43
|
Lukiw WJ, Alexandrov PN. Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer's disease (AD) brain. Mol Neurobiol 2012; 46:11-9. [PMID: 22302353 PMCID: PMC3703615 DOI: 10.1007/s12035-012-8234-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/06/2012] [Indexed: 01/17/2023]
Abstract
Human brain cells rely on a specific subset of microRNAs (miRNAs or miRs) to shape their gene expression patterns, and this is mediated through microRNA effects on messenger RNA (mRNA) speciation and complexity. In recent studies (a) in short post-mortem interval Alzheimer's disease (AD) brain tissues versus age-matched controls, and (b) in pro-inflammatory cytokine- and Aβ42 peptide-stressed human neuronal-glial (HNG) cells in primary culture, we have identified several brain-abundant miRNA species found to be significantly up-regulated, including miR-125b and miR-146a. Both of these nuclear factor kappa B (NF-κB)-activated, 22 nucleotide small non-coding RNAs (sncRNAs) target the mRNA of the key, innate-immune- and inflammation-related regulatory protein, complement factor-H (CFH; chr 1q32), resulting in significant decreases in CFH expression (p < 0.01, ANOVA). Our results further indicate that HNG cells respond to IL-1β + Aβ42-peptide-induced stress by significant NF-κB-modulated up-regulation of miRNA-125b- and miRNA-146a. The complex interactive signaling of NF-κB, miR-125b, miR-146a, and perhaps other miRNAs, further illustrate interplay between inducible transcription factors and multiple pro-inflammatory sncRNAs that regulate CFH expression. The novel concept of miRNA actions involving mRNA target convergence and divergence are proposed and discussed. The combinatorial use of NF-кB inhibitors with anti-miRNAs (AMs; antagomirs) may have potential against CFH-driven pathogenic signaling in neurodegenerative disease, and may redirect our therapeutic perspectives to novel treatment strategies that have not yet been considered.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 7011-2272, USA.
| | | |
Collapse
|
44
|
Carrero I, Gonzalo M, Martin B, Sanz-Anquela J, Arévalo-Serrano J, Gonzalo-Ruiz A. Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp Neurol 2012; 236:215-27. [DOI: 10.1016/j.expneurol.2012.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/22/2012] [Accepted: 05/05/2012] [Indexed: 11/25/2022]
|
45
|
Abstract
When compared with single gene functional analysis, gene set analysis (GSA) can extract more information from gene expression profiles. Currently, several gene set methods have been proposed, but most of the methods cannot detect gene sets with a large number of minor-effect genes. Here, we propose a novel distance-based gene set analysis method. The distance between two groups of genes with different phenotypes based on gene expression should be larger if a certain gene set is significantly associated with the given phenotype. We calculated the distance between two groups with different phenotypes, estimated the significant P-values using two permutation methods and performed multiple hypothesis testing adjustments. This method was performed on one simulated data set and three real data sets. After a comparison and literature verification, we determined that the gene resampling-based permutation method is more suitable for GSA, and the centroid statistical and average linkage statistical distance methods are efficient, especially in detecting gene sets containing more minor-effect genes. We believe that this distance-based method will assist us in finding functional gene sets that are significantly related to a complex trait. Additionally, we have prepared a simple and publically available Perl and R package (http://bioinfo.hrbmu.edu.cn/dbgsa or http://cran.r-project.org/web/packages/DBGSA/).
Collapse
|
46
|
Abstract
Clusterin, also known as apolipoprotein J, is a ubiquitous multifunctional glycoprotein. Following its identification in 1983, clusterin was found to be clearly increased in Alzheimer's disease (AD). Later research demonstrated that clusterin could bind amyloid-beta (Abeta) peptides and prevent fibril formation, a hallmark of AD pathology. In addition to preventing excessive inflammation, intracellular clusterin was found to reduce apoptosis and oxidative stress. Although early studies were inconclusive, two recent large-scale genome-wide association studies (GWAS) independently identified variants within the clusterin gene as risk factors for developing AD. This review focuses on the characteristics of clusterin and possible mechanisms of its relationship to AD.
Collapse
Affiliation(s)
- Zhong-Chen Wu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
47
|
Lentiviral infection of rhesus macaques causes long-term injury to cortical and hippocampal projections of prostaglandin-expressing cholinergic basal forebrain neurons. J Neuropathol Exp Neurol 2012; 71:15-27. [PMID: 22157616 DOI: 10.1097/nen.0b013e31823cfac5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Collapse
|
48
|
Pasluosta CF, Dua P, Lukiw WJ. Nearest hyperplane distance neighbor clustering algorithm applied to gene co-expression analysis in Alzheimer's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:5559-62. [PMID: 22255598 DOI: 10.1109/iembs.2011.6091344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microarray analysis can contribute considerably to the understanding of biologically significant cellular mechanisms that yield novel information regarding co-regulated sets of gene patterns. Clustering is one of the most popular tools for analyzing DNA microarray data. In this paper, we present an unsupervised clustering algorithm based on the K-local hyperplane distance nearest-neighbor classifier (HKNN). We adapted the well-known nearest neighbor clustering algorithm for use with hyperplane distance. The result is a simple and computationally inexpensive unsupervised clustering algorithm that can be applied to high-dimensional data. It has been reported that the NFkB1 gene is progressively over-expressed in moderate-to-severe Alzheimer's disease (AD) cases, and that the NF-kB complex plays a key role in neuroinflammatory responses in AD pathogenesis. In this study, we apply the proposed clustering algorithm to identify co-expression patterns with the NFkB1 in gene expression data from hippocampal tissue samples. Finally, we validate our experiments with biomedical literature search.
Collapse
Affiliation(s)
- Cristian F Pasluosta
- Department of Health Informatics and Information Management, Louisiana Tech university, Ruston, LA 71270, USA.
| | | | | |
Collapse
|
49
|
Lukiw WJ. NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells. Exp Neurol 2011; 235:484-90. [PMID: 22138609 DOI: 10.1016/j.expneurol.2011.11.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/08/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs), small and labile ~22 nucleotide-sized fragments of single stranded RNA, are important regulators of messenger (mRNA) complexity and in shaping the transcriptome of a cell. In this communication, we utilized amyloid beta 42 (Aβ42) peptides and interleukin-1beta (IL-1β) as a combinatorial, physiologically-relevant stress to induce miRNAs in human primary neural (HNG) cells (a co-culture of neurons and astroglia). Specific miRNA up-regulation was monitored using miRNA arrays, Northern micro-dot blots and RT-PCR. Selective NF-кB translocation and DNA binding inhibitors, including the chelator and anti-oxidant pyrollidine dithiocarbamate (PDTC) and the polyphenolic resveratrol analog CAY10512 (trans-3,5,4'-trihydroxystilbene), indicated the NF-кB sensitivity of several brain miRNAs, including miRNA-9, miRNA-125b and miRNA-146a. The inducible miRNA-125b and miRNA-146a, and their verified mRNA targets, including 15-lipoxygenase (15-LOX), synapsin-2 (SYN-2), complement factor H (CFH) and tetraspanin-12 (TSPAN12), suggests complex and highly interactive roles for NF-кB, miRNA-125b and miRNA-146a. These data further indicate that just two NF-кB-mediated miRNAs have tremendous potential to contribute to the regulation of neurotrophic support, synaptogenesis, neuroinflammation, innate immune signaling and amyloidogenesis in stressed primary neural cells of the human brain.
Collapse
|
50
|
Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ, Lee J, Jun WJ, Yoon HG. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 2011; 55:1798-808. [DOI: 10.1002/mnfr.201100262] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/16/2011] [Accepted: 09/02/2011] [Indexed: 11/09/2022]
|