1
|
Yin C, Li Y, Zhang C, Zang S, Wang Z, Yan X, Ma T, Li X, Li W. Sequential gene expression analysis of myelodysplastic syndrome transformation identifies HOXB3 and HOXB7 as the novel targets for mesenchymal cells in disease. BMC Cancer 2024; 24:111. [PMID: 38254070 PMCID: PMC10802074 DOI: 10.1186/s12885-024-11859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is known to arise through the pathogenic bone marrow mesenchymal stem cells (MSC) by interacting with hematopoietic stem cells (HSC). However, due to the strong heterogeneity of MDS patients, it is difficult to find common targets in studies with limited sample sizes. This study aimed to describe sequential molecular changes and identify biomarkers in MSC of MDS transformation. METHODS Multidimensional data from three publicly available microarray and TCGA datasets were analyzed. MDS-MSC was further isolated and cultured in vitro to determine the potential diagnostic and prognostic value of the identified biomarkers. RESULTS We demonstrated that normal MSCs presented greater molecular homogeneity than MDS-MSC. Biological process (embryonic skeletal system morphogenesis and angiogenesis) and pathways (p53 and MAPK) were enriched according to the differential gene expression. Furthermore, we identified HOXB3 and HOXB7 as potential causative genes gradually upregulated during the normal-MDS-AML transition. Blocking the HOXB3 and HOXB7 in MSCs could enhance the cell proliferation and differentiation, inhibit cell apoptosis and restore the function that supports hematopoietic differentiation in HSCs. CONCLUSION Our comprehensive study of gene expression profiling has identified dysregulated genes and biological processes in MSCs during MDS. HOXB3 and HOXB7 are proposed as novel surrogate targets for therapeutic and diagnostic applications in MDS.
Collapse
Affiliation(s)
- Chunlai Yin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yanqi Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shizhu Zang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Zilong Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xue Yan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Tonghui Ma
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China.
| | - Weiping Li
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China.
| |
Collapse
|
2
|
Mohammed SR, Elmasry K, El-Gamal R, El-Shahat MA, Sherif RN. Alteration of Aquaporins 1 and 4 immunohistochemical and gene expression in the cerebellum of diabetic albino rat. Tissue Cell 2023; 82:102076. [PMID: 36989704 DOI: 10.1016/j.tice.2023.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins. AQP1 and AQP4 are expressed in cerebellum amongst others. This study was designed to assess the effect of diabetes on AQP1 and AQP4 expression in cerebellum of rats. Diabetes was induced by a single intraperitoneal injection of Streptozotocin 45 mg/kg in 24 adult male Sprague Dawley rats. Six rats from control and diabetic groups were sacrificed at one, four, and eight weeks post diabetic confirmation. After eight weeks, measurement of malondialdehyde (MDA), reduced glutathione (GSH) concentrations, and cerebellar mRNA expression for AQP1 and AQP4 genes were performed. Immunohistochemical evaluation of AQP1, AQP4, and glial fibrillary acidic protein (GFAP) for cerebellar sections was performed for all groups. Diabetes caused degenerative changes in Purkinje cells with a significant increase in the cerebellar level of MDA and AQP1 immunoreactivity and a significant decrease in GSH level and AQP4 expression levels. However, the alteration in the AQP1 mRNA level was not statistically significant. GFAP immunoreactivity was increased in 8 W diabetic rats following its decrease in 1 W diabetic rats. Diabetes caused some alteration in the AQPs 1 and 4 expression in the cerebellum of diabetic rats which may contribute to diabetes-induced cerebellar complications.
Collapse
|
3
|
Yang L, Wang C, Shu J, Feng H, He Y, Chen J, Shu J. Porcine Epidemic Diarrhea Virus Induces Vero Cell Apoptosis via the p53-PUMA Signaling Pathway. Viruses 2021; 13:v13071218. [PMID: 34202551 PMCID: PMC8310168 DOI: 10.3390/v13071218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is the causative agent of swine epidemic diarrhea. In order to study the pathogenic mechanism of PEDV, PEDV was inoculated into Vero cells cultured in vitro, and the total RNA of Vero cells was extracted to construct a library for Illumina high-throughput sequencing and screening of differentially expressed genes (p < 0.05). Five differentially expressed genes for qRT-PCR verification analysis were randomly selected, and the verification results were consistent with the transcriptome sequencing results. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis was performed on the differentially expressed genes screened above. The results showed that the target gene annotations of differentially expressed genes in the African green monkey genome were mainly enriched in the TNF signaling pathway, the P53 signaling pathway, the Jak-STAT signaling pathway, the MAPK signaling pathway, and immune inflammation. In addition, it has been reported that Puma can promote apoptosis and is a key mediator of P53-dependent and non-dependent apoptosis pathways. However, there is no report that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. It was found by flow cytometry that PEDV infection induced apoptosis, and by Western Blotting detection, PEDV infection significantly increased the expression of p53, BAX, and Puma apoptosis-related proteins. Treatment Vero cells with the p53 inhibitor, PFT-α, could significantly inhibit PEDV-induced apoptosis. Studies have shown that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. These findings provide data support for further elucidating the pathogenic mechanism of PEDV and developing an effective vaccine against PEDV.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Chenyu Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jinqi Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Huapeng Feng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Yulong He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
- Shaoxing Biomedical Research Institute, Zhejiang Sci-Tech University, Shaoxing 312000, China
- Correspondence:
| |
Collapse
|
4
|
Huang YD, Li P, Tong X, He Y, Zhuo Y, Xia SW, Luo XH. Effects of bleomycin A5 on caspase-3, P53, bcl-2 expression and telomerase activity in vascular endothelial cells. Indian J Pharmacol 2015; 47:55-8. [PMID: 25821312 PMCID: PMC4375820 DOI: 10.4103/0253-7613.150337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/01/2014] [Accepted: 12/08/2014] [Indexed: 01/23/2023] Open
Abstract
Objective: The aim of this study was to investigate the molecular mechanism of bleomycin A5 in inducing the apoptosis of human umbilical vein endothelial cells (ECV304). Materials and Methods: ECV304 cells were cultured and passaged, and then were divided into control group and three treatment groups. The later three groups were treated with 15, 75, and 150 μg/ml bleomycin A5 for 24 hours, respectively. The expressions of caspase-3, p53, and bcl-2 in ECV304 cells were detected by flow cytometry, and the activity of telomerase was determined using telomere repeat amplification protocol (TRAP)-silver staining method. Results: After treatment with different concentrations of bleomycin A5, the expression of caspase-3 in ECV304 cells was increased. It was significantly decreased with the increase of bleomycin A5 concentration, but the difference between 75 μg/ml and 150 μg/ml groups was not significant. Bleomycin A5 could significantly increase the expression of p53, with concentration dependence. It had no obvious effect on bcl-2 expression. There was high expression of telomerase in control group. After treatment with different concentration of bleomycin A5, the telomerase activity was significantly decreased. Conclusion: Bleomycin A5 can increase caspase-3 and p53 levels and inhibit telomerase activity to induce ECV304 apoptosis.
Collapse
Affiliation(s)
- Yi-Deng Huang
- Department of Otorhinolaryngology, The 118 Hospital of Chinese PLA, Wenzhou, Zhejiang 325000, China
| | - Ping Li
- Department of Otorhinolaryngology, General Hospital of Chengdu Military Region of PLA, Chengdu, Sichuan 610083, China
| | - Xiao Tong
- Department of Otorhinolaryngology, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Yue He
- Department of Otorhinolaryngology, General Hospital of Chengdu Military Region of PLA, Chengdu, Sichuan 610083, China
| | - Yang Zhuo
- Department of Otorhinolaryngology, The 118 Hospital of Chinese PLA, Wenzhou, Zhejiang 325000, China
| | - Si-Wen Xia
- Department of Otorhinolaryngology, The 118 Hospital of Chinese PLA, Wenzhou, Zhejiang 325000, China
| | - Xing-Hua Luo
- Department of Otorhinolaryngology, The 118 Hospital of Chinese PLA, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
5
|
Nagayach A, Patro N, Patro I. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function. Front Cell Neurosci 2014; 8:355. [PMID: 25400546 PMCID: PMC4215794 DOI: 10.3389/fncel.2014.00355] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023] Open
Abstract
Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji UniversityGwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji UniversityGwalior, India
| | - Ishan Patro
- School of Studies in Neuroscience, Jiwaji UniversityGwalior, India
- School of Studies in Zoology, Jiwaji UniversityGwalior, India
| |
Collapse
|
6
|
Dar I, Yosha G, Elfassy R, Galron R, Wang ZQ, Shiloh Y, Barzilai A. Investigation of the functional link between ATM and NBS1 in the DNA damage response in the mouse cerebellum. J Biol Chem 2011; 286:15361-76. [PMID: 21300797 DOI: 10.1074/jbc.m110.204172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are related genomic instability syndromes characterized by neurological deficits. The NBS1 protein that is defective in NBS is a component of the Mre11/RAD50/NBS1 (MRN) complex, which plays a major role in the early phase of the complex cellular response to double strand breaks (DSBs) in the DNA. Among others, Mre11/RAD50/NBS1 is required for timely activation of the protein kinase ATM (A-T, mutated), which is missing or inactivated in patients with A-T. Understanding the molecular pathology of A-T, primarily its cardinal symptom, cerebellar degeneration, requires investigation of the DSB response in cerebellar neurons, particularly Purkinje cells, which are the first to be lost in A-T patients. Cerebellar cultures derived from mice with different mutations in DNA damage response genes is a useful experimental system to study malfunctioning of the damage response in the nervous system. To clarify the interrelations between murine Nbs1 and Atm, we generated a mouse strain with specific disruption of the Nbs1 gene in the central nervous system on the background of general Atm deficiency (Nbs1-CNS-Δ//Atm(-/-)). This genotype exacerbated several features of both conditions and led to a markedly reduced life span, dramatic decline in the number of cerebellar granule neurons with considerable cerebellar disorganization, abolishment of the white matter, severe reduction in glial cell proliferation, and delayed DSB repair in cerebellar tissue. Combined loss of Nbs1 and Atm in the CNS significantly abrogated the DSB response compared with the single mutation genotypes. Importantly, the data indicate that Atm has cellular roles not regulated by Nbs1 in the murine cerebellum.
Collapse
Affiliation(s)
- Inbal Dar
- Department of Neurobiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Ranganathan S, Bowser R. p53 and Cell Cycle Proteins Participate in Spinal Motor Neuron Cell Death in ALS. ACTA ACUST UNITED AC 2010; 4:11-22. [PMID: 21572928 DOI: 10.2174/1874375701004010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis has been implicated in many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We previously demonstrated a role for G1 to S phase cell cycle regulators in ALS with increased levels of hyperphosphorylated retinoblastoma (ppRb) and E2F-1 in ALS spinal cord motor neurons. In this study we examined the levels of the cell cycle checkpoint tumor suppressor protein p53 with concurrent changes in cell death markers during ALS. Expression and subcellular distribution of p53, retinoblastoma, Bax, Fas, and caspases were explored by immunoblot, immunohistochemistry and double-label confocal microscopy in the spinal cord and motor cortex of ALS and control subjects. We identified elevated levels of p53 in ALS spinal cord motor neurons but not neurons in the motor cortex. In addition, there was an increase in Bax, Fas, caspases-8 and -3 proteins in ALS spinal motor neurons. While caspase-3 and TUNEL labeled neurons were positive for ppRb, E2F-1 and p53 in spinal motor neurons, and Fas co-localized with caspase-8 in spinal motor neurons, we failed to observe these results in large neurons in the motor cortex of ALS subjects. We have linked p53 and activation of G1 to S phase cell cycle regulators to an apoptotic mode of cell death ALS spinal cord motor neurons.
Collapse
|
8
|
Abstract
Although p53 is a major cancer preventive factor, under certain extreme stress conditions it may induce severe pathologies. Analyses of animal models indicate that p53 is largely responsible for the toxicity of ionizing radiation or DNA damaging drugs contributing to hematopoietic component of acute radiation syndrome and largely determining severe adverse effects of cancer treatment. p53-mediated damage is strictly tissue specific and occurs in tissues prone to p53-dependent apoptosis (e.g., hematopoietic system and hair follicles); on the contrary, p53 can serve as a survival factor in tissues that respond to p53 activation by cell cycle arrest (e.g., endothelium of small intestine). There are multiple experimental indications that p53 contributes to pathogenicity of acute ischemic diseases. Temporary reversible suppression of p53 by small molecules can be an effective and safe approach to reduce severity of p53-associated pathologies.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | |
Collapse
|
9
|
Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by β-amyloid 31-35. Br J Nutr 2009; 102:655-62. [DOI: 10.1017/s0007114509243042] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genistein and folic acid have been reported respectively to protect against the development of cognitive dysfunction; however, the underlying mechanism(s) for this protection remain unknown. In this report, the mechanism(s) contributing to the neuroprotective effects of genistein and folic acid were explored using rat cortical neuron cultures. We found that genistein and folic acid, both separately and collaboratively, increased cell viability and mitochondrial membrane potential in β-amyloid (Aβ) 31-35-treated neurons. Furthermore, reduced percentage of comet cells and shortened tail length were observed in the neurons treated with genistein or folic acid. A more significant reduction in tail length of the comet neurons was observed in the co-administered neurons. RT-PCR analysis of the cultured cortical neurons showed down-regulated expression of p53, bax and caspase-3, but up-regulated expression of bcl-2 in the three neuroprotective treatment groups compared with neurons from the Aβ31-35 solo-treated group. In a nuclear dyeing experiment using Hoechst 33342, we found that both genistein and folic acid prevent neuronal apoptosis. Collectively, these findings suggest that the mechanism underlying the neuroprotection of genistein and folic acid singly or in combination observed in cultured cortical neuron studies might be related to their anti-apoptotic properties.
Collapse
|
10
|
Xiang Z, Reeves SA. Simvastatin induces cell death in a mouse cerebellar slice culture (CSC) model of developmental myelination. Exp Neurol 2008; 215:41-7. [PMID: 18929563 DOI: 10.1016/j.expneurol.2008.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/30/2008] [Accepted: 09/08/2008] [Indexed: 01/26/2023]
Abstract
Statins (inhibitors of HMG-CoA reductase) have shown promise in treating multiple sclerosis (MS). However, their effect on oligodendrocyte remyelination of demyelinated axons has not been clarified. Since developmental myelination shares many features with the remyelination process, we investigated the effect of lipophilic simvastatin on developmental myelination in organotypic cerebellar slice cultures (CSC). In this study, we first characterized developmental myelination in CSC from postnatal day (P)5 and P10 mice that express enhanced green fluorescence protein (eGFP) in oligodendrocyte-lineage cells. We then examined the effect of simvastatin on three developmental myelination stages: early myelination (P5 CSC, 2DIV), late myelination (P10 CSC, 2DIV) and full myelination (P10 CSC, 10DIV). We found that treatment with simvastatin (0.1 microM) for 6 days decreased the survival of Purkinje cells and oligodendrocytes drastically during the early myelination stage, while moderately during the late and full myelination stages. Oligodendrocytes are more resistant than Purkinje cells. The toxic effect of simvastatin could be rescued by the product of HMG-CoA reductase mevalonate but not low-density lipoprotein (LDL). Additionally, this toxic effect is independent of isoprenylation since farnesyl pyrophosphate (Fpp) but not geranylgeranyl pyrophosphate (GGpp) provided partial rescue. Our findings therefore suggest that inhibition of cholesterol synthesis is detrimental to neuronal tissue.
Collapse
Affiliation(s)
- Zhongmin Xiang
- CNS Signaling Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
11
|
JNK and p38 were involved in hypoxia and reoxygenation-induced apoptosis of cultured rat cerebellar granule neurons. ACTA ACUST UNITED AC 2008; 61:137-43. [PMID: 18703324 DOI: 10.1016/j.etp.2008.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 05/04/2008] [Accepted: 06/10/2008] [Indexed: 11/20/2022]
Abstract
As a model of the reperfusion injury found in stroke, we treated cerebellar granule neurons (CGNs) with hypoxia followed by reoxygenation. Hypoxia for 3h followed by 24h reoxygenation (H/R) induced a typical apoptosis of CGNs. CGNs exposed to H/R responded by activating JNK, increasing the expression of p38 and ultimately caused CGNs dying. Furthermore, apoptosis of CGNs induced by H/R was inhibited by pre-treatment with SB203580 or SP600125, and the inhibitory effect of SB203580 was greater than that of SP600125. Additionally, we also found that H/R temporally activated Akt and inactivated glycogen synthesis kinase-3beta (GSK-3beta), two proteins the functions of which were important in cell survival and energy metabolism. These findings demonstrated that H/R-induced apoptosis in CGNs by enhancing JNK and p38 activity, which contributed at least in part to H/R-induced apoptosis of CGNs.
Collapse
|
12
|
Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00220.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Nguyen HN, Lee MS, Hwang DY, Kim YK, Yoon DY, Lee JW, Yun YP, Lee MK, Oh KW, Hong JT. Mutant presenilin 2 increased oxidative stress and p53 expression in neuronal cells. Biochem Biophys Res Commun 2007; 357:174-80. [PMID: 17418105 DOI: 10.1016/j.bbrc.2007.03.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
The learning and memory impairment of presenilin 2 transgenic mice was mentioned previously. In this study, exposing the presenilin 2 transfected PC12 cells to the 50 microM Abeta(25-35), 30 mM l-glutamate and 50 microM H(2)O(2) resulted in significant increase 8-oxodG and p53 levels of the cells expressing the mutant gene. The increase was also found in the mutant presenilin 2 transgenic mice brains age-dependently in comparison to that in the wild-type presenilin 2-transgenic mice and non-transgenic ones. These findings indicated that mutant presenilin 2 clearly increases oxidative stress and p53 expression, which could be implicated in promoting mutant presenilin 2-induced neurodegeneration in Alzheimer's disease, and the influence of mutant presenilin 2 in Alzheimer's disease may be brain regional and age related effects.
Collapse
Affiliation(s)
- Hong Nga Nguyen
- College of Pharmacy, CBITRC, Chungbuk National University, 12, Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Uberti D, Ferrari-Toninelli G, Bonini SA, Sarnico I, Benarese M, Pizzi M, Benussi L, Ghidoni R, Binetti G, Spano P, Facchetti F, Memo M. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity. Neuropsychopharmacology 2007; 32:872-80. [PMID: 16936710 DOI: 10.1038/sj.npp.1301185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia Medical School, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Laposa RR, Huang EJ, Cleaver JE. Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc Natl Acad Sci U S A 2007; 104:1389-94. [PMID: 17229834 PMCID: PMC1783131 DOI: 10.1073/pnas.0610619104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a rare recessive childhood-onset neurodegenerative disease, characterized by a deficiency in the DNA repair pathway of transcription-coupled nucleotide excision repair. Mice with a targeted deletion of the CSB gene (Csb-/-) exhibit a much milder ataxic phenotype than human patients. Csb-/- mice that are also deficient in global genomic repair [Csb-/-/xeroderma pigmentosum C (Xpc)-/-] are more profoundly affected, exhibiting whole-body wasting, ataxia, and neural loss by postnatal day 21. Cerebellar granule cells demonstrated high TUNEL staining indicative of apoptosis. Purkinje cells, identified by the marker calbindin, were severely depleted and, although not TUNEL-positive, displayed strong immunoreactivity for p53, indicating cellular stress. A subset of animals heterozygous for Csb and Xpc deficiencies was more mildly affected, demonstrating ataxia and Purkinje cell loss at 3 months of age. Mouse, Csb-/-, and Xpc-/- embryonic fibroblasts each exhibited increased sensitivity to UV light, which generates bulky DNA damage that is a substrate for excision repair. Whereas Csb-/-/Xpc-/- fibroblasts were more UV-sensitive than either single knockout, double-heterozygote fibroblasts had normal UV sensitivity. Csb-/- mice crossed with a strain defective in base excision repair (Ogg1) demonstrated no enhanced neurodegenerative phenotype. Complete deficiency in nucleotide excision repair therefore renders the brain profoundly sensitive to neurodegeneration in specific cell types of the cerebellum, possibly because of unrepaired endogenous DNA damage that is a substrate for nucleotide but not base excision repair.
Collapse
Affiliation(s)
- R. R. Laposa
- Departments of *Dermatology and Cancer Center and
| | - E. J. Huang
- Pathology, University of California, San Francisco, CA 94143-0808
| | | |
Collapse
|
16
|
Dar I, Biton S, Shiloh Y, Barzilai A. Analysis of the ataxia telangiectasia mutated-mediated DNA damage response in murine cerebellar neurons. J Neurosci 2006; 26:7767-74. [PMID: 16855104 PMCID: PMC6674276 DOI: 10.1523/jneurosci.2055-06.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response is a network of signaling pathways that affects many aspects of cellular metabolism after the induction of DNA damage. The primary transducer of the cellular response to the double-strand break, a highly cytotoxic DNA lesion, is the nuclear protein kinase ataxia telangiectasia (A-T) mutated (ATM), which phosphorylates numerous effectors that play key roles in the damage response pathways. Loss or inactivation of ATM leads to A-T, an autosomal recessive disorder characterized by neuronal degeneration, particularly the loss of cerebellar granule and Purkinje cells, immunodeficiency, genomic instability, radiosensitivity, and cancer predisposition. The reason for the cerebellar degeneration in A-T is not clear. It has been ascribed by several investigators to cytoplasmic functions of ATM that may not be relevant to the DNA damage response. We set out to examine the subcellular localization of ATM and characterize the ATM-mediated damage response in mouse cerebellar neurons. We found that ATM is essentially nuclear in these cells and that various readouts of the ATM-mediated damage response are similar to those seen in commonly used cell lines. These include the autophosphorylation of ATM, which marks its activation, and phosphorylation of several of its downstream substrates. Importantly, all of these responses are detected in the nuclei of granule and Purkinje cells, suggesting that nuclear ATM functions in these cells similar to other cell types. These results support the notion that the cerebellar degeneration in A-T patients results from defective DNA damage response.
Collapse
|
17
|
Lechuga-Sancho AM, Arroba AI, Frago LM, Pañeda C, García-Cáceres C, Delgado Rubín de Célix A, Argente J, Chowen JA. Activation of the intrinsic cell death pathway, increased apoptosis and modulation of astrocytes in the cerebellum of diabetic rats. Neurobiol Dis 2006; 23:290-9. [PMID: 16753303 DOI: 10.1016/j.nbd.2006.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/01/2006] [Accepted: 03/12/2006] [Indexed: 12/31/2022] Open
Abstract
Poorly controlled diabetes mellitus results in structural and functional changes in many brain regions. We demonstrate that in streptozotocin-induced diabetic rats cell death is increased and proliferation decreased in the cerebellum, indicating overall cell loss. Levels of both the proform and cleaved forms of caspases 3, 6 and 9 are increased, with no change in caspases 7, 8 or 12. Colocalization of glial fibrillary acidic protein (GFAP) and cleaved caspase 3 and GFAP in TUNEL-positive cells increased in diabetic rats. Changes in GFAP levels paralleled modifications in proliferating cell nuclear antigen (PCNA), increasing at 1 week of diabetes and decreasing thereafter, and proliferating GFAP-positive cells were decreased in the cerebellum of diabetic rats. These results suggest that astrocytes are dramatically affected in the cerebellum, including an increase in cell death and a decrease in proliferation, and this could play a role in the structural and functional changes in this brain area in diabetes.
Collapse
|
18
|
Wyttenbach A, Tolkovsky AM. The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. J Neurochem 2006; 96:1213-26. [PMID: 16478523 DOI: 10.1111/j.1471-4159.2005.03676.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage activates apoptosis in several neuronal populations and is an important component of neuropathological conditions. While it is well established that neuronal apoptosis, induced by DNA damage, is dependent on the key cell death regulators p53 and Bax, it is unknown which proteins link the p53 signal to Bax. Using rat sympathetic neurons as an in vitro model of neuronal apoptosis, we show that cytosine arabinoside is a DNA damaging drug that induces the expression of the BH3-only pro-apoptotic genes Noxa, Puma and Bim. Increased expression occurred after p53 activation, measured by its phosphorylation at serine 15, but prior to the conformational change of Bax at the mitochondria, cytochrome c (cyt c) release and apoptosis. Hence Noxa, Puma and Bim could potentially link p53 to Bax. We directly tested this hypothesis by the use of nullizygous mice. We show that Puma, but not Bim or Noxa, is a crucial mediator of DNA damage-induced neuronal apoptosis. Despite the powerful pro-apoptotic effects of overexpressed Puma in Bax-expressing neurons, Bax nullizygous neurons were resistant to Puma-induced death. Therefore, Puma provides the critical link between p53 and Bax, and is both necessary and sufficient to mediate DNA damage-induced apoptosis of sympathetic neurons.
Collapse
Affiliation(s)
- Andreas Wyttenbach
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | |
Collapse
|
19
|
Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005; 331:726-36. [PMID: 15865929 DOI: 10.1016/j.bbrc.2005.03.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 10/25/2022]
Abstract
p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-alpha that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
20
|
Carulli D, Buffo A, Strata P. Reparative mechanisms in the cerebellar cortex. Prog Neurobiol 2004; 72:373-98. [PMID: 15177783 DOI: 10.1016/j.pneurobio.2004.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/17/2004] [Indexed: 11/28/2022]
Abstract
In the adult brain, different neuronal populations display different degrees of plasticity. Here, we describe the highly different plastic properties of inferior olivary neurones and Purkinje cells. Olivary neurones show a basal expression of growth-associated proteins, such as GAP-43 and Krox24/EGR-1, and remarkable remodelling capabilities of their terminal arbour. They also regenerate their transected neurites into growth-permissive territories and may reinnervate the lost target. Sprouting and regrowing olivary axons are able to follow specific positional information cues to establish new connections according to the original projection map. In addition, they set a strong cell body reaction to injury, which in specific olivary subsets is regulated by inhibitory target-derived cues. In contrast, Purkinje cells do not have a constitutive level of growth-associated genes, and show little cell body reaction, no axonal regeneration after axotomy, and weak sprouting capabilities. Block of myelin-derived signals allows terminal arbour remodelling, but not regeneration, while selective over-expression of GAP-43 induces axonal sprouting along the axonal surface and at the level of the lesion. We suggest that the high constitutive intrinsic plasticity of the inferior olive neurones allows their terminal arbour to sustain the activity-dependent ongoing competition with the parallel fibres in order to maintain the post-synaptic territory, and possibly underlies mechanisms of learning and memory. Such a plasticity is used also as a reparative mechanism following axotomy. In contrast, in Purkinje cells, poor intrinsic regenerative capabilities and myelin-derived signals stabilise the mature connectivity and prevent axonal regeneration after lesion.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Rita Levi Montalcini Center for Brain Repair, University of Turin, C.so Raffaello 30, 10125 Turin, Italy
| | | | | |
Collapse
|
21
|
Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP. p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromolecular Med 2003; 3:159-72. [PMID: 12835511 DOI: 10.1385/nmm:3:3:159] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 03/06/2003] [Indexed: 11/11/2022]
Abstract
A form of programmed cell-death called apoptosis occurs in neurons during development of the nervous system, and may also occur in a variety of neuropathological conditions. Here we present evidence obtained in studies of adult mice and neuronal cell cultures showing that p53 protein is present in synapses where its level and amount of phosphorylation are increased following exposure of the cells to the DNA-damaging agent etoposide. We also show that levels of active p53 increase in isolated cortical synaptosomes exposed to oxidative and excitotoxic insults. Increased levels of p53 also precede loss of synapsin I immunoreactive terminals in cultured hippocampal neurons exposed to etoposide. Synaptosomes from p53-deficient mice exhibit increased resistance to oxidative and excitotoxic insults as indicated by stabilization of mitochondrial membrane potential and decreased production of reactive oxygen species. Finally, we show that a synthetic inhibitor of p53 (PFT-alpha) protects synaptosomes from wild-type mice against oxidative and excitotoxic injuries, and preserves presynaptic terminals in cultured hippocampal neurons exposed to etoposide. Collectively, these findings provide the first evidence for a local transcription-independent action of p53 in synapses, and suggest that such a local action of p53 may contribute to the dysfunction and degeneration of synapses that occurs in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Charles P Gilman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
22
|
Takashima H, Boerkoel CF, John J, Saifi GM, Salih MAM, Armstrong D, Mao Y, Quiocho FA, Roa BB, Nakagawa M, Stockton DW, Lupski JR. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002; 32:267-72. [PMID: 12244316 DOI: 10.1038/ng987] [Citation(s) in RCA: 384] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Accepted: 07/03/2002] [Indexed: 01/05/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs covalently bound topoisomerase I-DNA complexes and is essential for preventing the formation of double-strand breaks that result when stalled topoisomerase I complexes interfere with DNA replication in yeast. Here we show that a deficiency of this DNA repair pathway in humans does not predispose to neoplasia or dysfunctions in rapidly replicating tissues, but instead causes spinocerebellar ataxia with axonal neuropathy (SCAN1) by affecting large, terminally differentiated, non-dividing neuronal cells. Using genome-wide linkage mapping and a positional candidate approach in a Saudi Arabian family affected with autosomal recessive SCAN1, we identified a homozygous mutation in TDP1 (A1478G) that results in the substitution of histidine 493 with an arginine residue. The His493 residue is conserved in TDP1 across species and is located in the active site of the enzyme. Protein modeling predicts that mutation of this amino acid to arginine will disrupt the symmetric structure of the active site. We propose that loss-of-function mutations in TDP1 may cause SCAN1 either by interfering with DNA transcription or by inducing apoptosis in postmitotic neurons.
Collapse
Affiliation(s)
- Hiroshi Takashima
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Carulli D, Buffo A, Botta C, Altruda F, Strata P. Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun. Eur J Neurosci 2002; 16:105-18. [PMID: 12153535 DOI: 10.1046/j.1460-9568.2002.02077.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favourable environment, and are resistant to death. They have no constitutive presence of common growth-associated proteins, such as GAP-43 and c-Jun. Previous experiments show that injured transgenic PCs overexpressing GAP-43 exhibit a profuse sprouting along the axon and at its severed end. Nevertheless, the lesioned axons are unable to regenerate either spontaneously or into growth-permissive environments. In addition, a considerable number of GAP-43 transgenic PCs degenerate after injury. c-Jun is an inducible transcription factor expressed in axotomized central neurons and regenerating peripheral neurons. It also contributes to programmed cell death during development. To test whether c-Jun could modify the response of PCs to axotomy or enhance the growth/death phenomena of GAP-43 Purkinje neurons, we generated transgenic mice overexpressing c-Jun in PCs. However, c-Jun upregulation did not affect the adult intact phenotype of these neurons and their regenerative and survival capabilities after axotomy. Also in the cross-bred GAP-43/c-Jun mice, c-Jun did not modify the response of GAP-43 PCs to axotomy. By contrast, in organotypic cultures of cerebellum taken from 9-day-old-pups, the survival capabilities of PCs overexpressing c-Jun decreased, in association with a consistent c-Jun phosphorylation. On the whole our data show that c-Jun alone is unable to trigger regenerative or degenerative phenomena in PCs and suggest that the cellular action of this early gene in developing and mature neurons strongly depends on interplaying intracellular signals.
Collapse
Affiliation(s)
- Daniela Carulli
- Rita Levi-Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, C. Raffaello 30, 10125 Turin, Italy.
| | | | | | | | | |
Collapse
|
24
|
Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. CEREBELLUM (LONDON, ENGLAND) 2002; 1:41-55. [PMID: 12879973 DOI: 10.1080/147342202753203087] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Granule cells of the cerebellum constitute the largest homogeneous neuronal population of mammalian brain. Due to their postnatal generation and the feasibility of well characterized primary in vitro cultures, cerebellar granule cells are a model of election for the study of cellular and molecular correlates of mechanisms of survival/apoptosis and neurodegeneration/neuroprotection. The present review mainly deals with recent data on mechanisms and factors promoting survival or apoptotic elimination of cerebellar granule neurons, with a particular focus on the molecular correlates at the level of gene expression and induction of cellular signal pathways. The in vivo development is first analysed with particular reference to the role played by several neurotrophic factors and by the NMDA subtype of glutamate receptor. Then, mechanisms of survival/apoptosis are examined in the model of primary in vitro cultures, where the role of neurotrophins acting on cerebellar granule cells is followed by the large deal of data coming from the paradigm of potassium/serum withdrawal. The role of some key genes of the Bcl family, of some kinase systems and of transcriptional factors is primarily highlighted. Furthermore, the involvement of mitochondria, free radicals and proteases of the caspase family is considered. Finally, the use of cerebellar granule neurons in primary culture to experimentally address the issue of neurodegeneration and pharmacological neuroprotection is considered, with some comments on models at the borderline between necrosis and apoptosis, such as the excitotoxic neuronal damage. The overlapping of cellular signal pathways activated in granule neurons by apparently unrelated stimuli, such as neurotrophins and neurotransmitters/neuromodulators is stressed to put into light the special 'trophic' role played by activity in neurons. Finally, the advantage of designing and performing conceptually equivalent experiments on cerebellar granule neurons during development in vivo and in vitro, is stressed. On the basis of the reviewed material, it is concluded that cerebellar granule neurons have acquired a special position in modern neuroscience as one of the most reliable models for the study of neural development, function and pathology.
Collapse
|
25
|
Barber AJ, Nakamura M, Wolpert EB, Reiter CE, Seigel GM, Antonetti DA, Gardner TW. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 2001; 276:32814-21. [PMID: 11443130 DOI: 10.1074/jbc.m104738200] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of insulin to protect neurons from apoptosis was examined in differentiated R28 cells, a neural cell line derived from the neonatal rat retina. Apoptosis was induced by serum deprivation, and the number of pyknotic cells was counted. p53 and Akt were examined by immunoblotting after serum deprivation and insulin treatment, and caspase-3 activation was examined by immunocytochemistry. Serum deprivation for 24 h caused approximately 20% of R28 cells to undergo apoptosis, detected by both pyknosis and activation of caspase-3. 10 nm insulin maximally reduced the amount of apoptosis with a similar potency as 1.3 nm (10 ng/ml) insulin-like growth factor 1, which acted as a positive control. Insulin induced serine phosphorylation of Akt, through the phosphatidylinositol (PI) 3-kinase pathway. Inhibition of PI 3-kinase with wortmannin or LY294002 blocked the ability of insulin to rescue the cells from apoptosis. SN50, a peptide inhibitor of NF-kappaB nuclear translocation, blocked the rescue effect of insulin, but neither insulin or serum deprivation induced phosphorylation of IkappaB. These results suggest that insulin is a survival factor for retinal neurons by activating the PI 3-kinase/Akt pathway and by reducing caspase-3 activation. The rescue effect of insulin does not appear to be mediated by NF-kappaB or p53. These data suggest that insulin provides trophic support for retinal neurons through a PI 3-kinase/Akt-dependent pathway.
Collapse
Affiliation(s)
- A J Barber
- Department of Ophthalmology, Penn State Retina Research Group, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Inamura N, Enokido Y, Hatanaka H. Involvement of c-Jun N-terminal kinase and caspase 3-like protease in DNA damage-induced, p53-mediated apoptosis of cultured mouse cerebellar granule neurons. Brain Res 2001; 904:270-8. [PMID: 11406125 DOI: 10.1016/s0006-8993(01)02472-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the previous studies, we have demonstrated that the tumor suppressor gene p53 is required for DNA strand break-induced neuronal apoptosis in organotypic slice cultures of cerebellum as well as in dissociated cerebellar neuron cultures. In this study, we further investigated the role of p53 in neuronal apoptosis, by examining whether caspases and c-Jun N-terminal kinase (JNK) are involved in the DNA strand break-induced apoptosis. The protein level of phospho-JNK increased in p53 wild-type mouse cerebellar granule neurons after exposure to bleomycin. On the other hand, the response was not observed in cerebellar granule neurons of p53-deficient mice. Caspase-3-like protease was activated and poly(ADP-ribose) polymerase (PARP) was cleaved in the bleomycin-induced apoptosis. Caspase-3-like protease inhibitor decreased the number of TUNEL-positive but not p53- or c-Jun-positive neurons in bleomycin-induced death. These results suggest that JNK and caspase-3-like protease are involved in the signaling cascade of DNA strand break-induced, p53-dependent apoptosis.
Collapse
Affiliation(s)
- N Inamura
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | |
Collapse
|
27
|
Yamagishi S, Yamada M, Ishikawa Y, Matsumoto T, Ikeuchi T, Hatanaka H. p38 mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 2001; 276:5129-33. [PMID: 11083864 DOI: 10.1074/jbc.m007258200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cultured rat cerebellar granule neurons are widely used as a model system for studying neuronal apoptosis. After maturation by culturing in medium containing 26 mm potassium (high K(+)), changing to medium containing 5 mm potassium (low K(+); LK) rapidly induces neuronal apoptosis. Then over 50% of granule cells die within 24 h. However, the molecular mechanisms by which the LK-induced apoptosis occurs in cultured cerebellar granule cells remain unclear. In the present study, we found that p38 MAP kinase (p38) was an important factor for LK-induced apoptosis. Three hours after changing to LK medium, p38 was markedly activated. In addition, SB203580, a specific inhibitor of p38, strongly inhibited the phosphorylation and expression of c-Jun in LK-induced apoptosis of cultured cerebellar granule cells. In vitro kinase assay using glutathione S-transferase-c-Jun as a substrate showed that p38 directly phosphorylated c-Jun. Furthermore, in the presence of SB203580, about 80% of neurons survived. These results indicate that p38 regulates LK-induced apoptosis of cerebellar granule neurons.
Collapse
Affiliation(s)
- S Yamagishi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Chung YH, Shin C, Kim MJ, Lee B, Park KH, Cha CI. Immunocytochemical study on the distribution of p53 in the hippocampus and cerebellum of the aged rat. Brain Res 2000; 885:137-41. [PMID: 11121541 DOI: 10.1016/s0006-8993(00)02979-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A role for p53-mediated modulation of neuronal viability has been suggested by the finding that p53 expression is increased in damaged neurons in models of ischemia and epilepsy. P53 gene upregulation precedes apoptosis in many cell types, and a potential role for this molecule in apoptosis of neurons has already been demonstrated in Alzheimer's disease. Recent studies suggest that p53-associated apoptosis may be a common mechanism of cell loss in several important neurodegenerative diseases. In the present study, we examined changes in p53-immunoreactive (IR) neurons in the brains of aged rats for the first time employing immunocytochemical and in situ hybridization methods. P53-IR neurons were found in the CA1 region of hippocampus, septal region and cerebellum in the aged rats, but there was no p53-IR cell in the brains of adult rats. In the hippocampus of the aged rat, p53-IR cells predominated in the stratum oriens and pyramidal layers, while the molecular layer contained relatively few p53-IR cells. The most prominent population of immunoreactive labeling in cerebellar cortex was localised within the cell bodies of Purkinje cells and dendrites in molecular layers. Upregulation of p53 in the Purkinje cells observed in this study suggests that significant loss of Purkinje cells with aging may be regulated with several apoptosis-controlling factors including p53 and oxidative stress mechanism. Further investigations are required to establish whether direct functional relations exist between p53 and the apoptotic neuronal death in normal aging or Alzheimer brains.
Collapse
Affiliation(s)
- Y H Chung
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, 110-799, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|