1
|
Leale I, Di Stefano V, Costanza C, Brighina F, Roccella M, Palma A, Battaglia G. Telecoaching: a potential new training model for Charcot-Marie-Tooth patients: a systematic review. Front Neurol 2024; 15:1359091. [PMID: 38784904 PMCID: PMC11112069 DOI: 10.3389/fneur.2024.1359091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Charcot-Marie-Tooth disease (CMT) is an inherited neuropathy that affects the sensory and motor nerves. It can be considered the most common neuromuscular disease, with a prevalence of 1/2500. Methods Considering the absence of a specific medical treatment and the benefits shown by physical activity in this population, a systematic review was completed using several search engines (Scopus, PubMed, and Web of Science) to analyze the use, effectiveness, and safety of a training program performed in telecoaching (TC). TC is a new training mode that uses mobile devices and digital technology to ensure remote access to training. Results Of the 382 studies identified, only 7 met the inclusion criteria. The effects of a TC training program included improvements in strength, cardiovascular ability, and functional abilities, as well as gait and fatigue. However, the quality of the studies was moderate, the size of the participants in each study was small, and the outcome measured was partial. Discussion Although many studies have identified statistically significant changes following the administration of the TC training protocol, further studies are needed, with appropriate study power, better quality, and a higher sample size.
Collapse
Affiliation(s)
- Ignazio Leale
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
- Ph.D. Program in Health Promotion and Cognitive Sciences, University of Palermo, Palermo, Italy
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Vincenzo Di Stefano
- Neurology Unit, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Carola Costanza
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Neurology Unit, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Regional Sports School of Italian National Olympic Committee (CONI) Sicilia, Palermo, Italy
| |
Collapse
|
2
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
3
|
Zheng Y, Zhang J, Zhu X, Wei Y, Zhao W, Si S, Li Y. A Mitochondrial Perspective on Noncommunicable Diseases. Biomedicines 2023; 11:biomedicines11030647. [PMID: 36979626 PMCID: PMC10045938 DOI: 10.3390/biomedicines11030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria are the center of energy metabolism in eukaryotic cells and play a central role in the metabolism of living organisms. Mitochondrial diseases characterized by defects in oxidative phosphorylation are the most common congenital diseases. Meanwhile, mitochondrial dysfunction caused by secondary factors such as non-inherited genetic mutations can affect normal physiological functions of human cells, induce apoptosis, and lead to the development of various diseases. This paper reviewed several major factors and mechanisms that contribute to mitochondrial dysfunction and discussed the development of diseases closely related to mitochondrial dysfunction and drug treatment strategies discovered in recent years.
Collapse
Affiliation(s)
- Yifan Zheng
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Zhang
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaohong Zhu
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanjuan Wei
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| | - Shuyi Si
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| | - Yan Li
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| |
Collapse
|
4
|
Murakami A, Noda S, Kazuta T, Hirano S, Kimura S, Nakanishi H, Matsuo K, Tsujikawa K, Iida M, Koike H, Sakamoto K, Hara Y, Kuru S, Kadomatsu K, Shimamura T, Ogi T, Katsuno M. Metabolome and transcriptome analysis on muscle of sporadic inclusion body myositis. Ann Clin Transl Neurol 2022; 9:1602-1615. [PMID: 36107781 PMCID: PMC9539386 DOI: 10.1002/acn3.51657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Methods Results Interpretation
Collapse
Affiliation(s)
- Ayuka Murakami
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Seiya Noda
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Tomoyuki Kazuta
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Satoko Hirano
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Seigo Kimura
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | | | - Koji Matsuo
- Department of Neurology Kariya Toyota General Hospital Kariya Japan
| | - Koyo Tsujikawa
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Madoka Iida
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Haruki Koike
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Kazuma Sakamoto
- Department of Biochemistry Nagoya University Graduate School of Medicine Nagoya Japan
- Institute for Glyco‐Core Research (iGCORE), Nagoya University Nagoya Japan
| | - Yuichiro Hara
- Department of Genetics Research Institute of Environmental Medicine (RLeM), Nagoya University Nagoya Japan
- Department of Human Genetics and Molecular Biology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Satoshi Kuru
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Kenji Kadomatsu
- Department of Biochemistry Nagoya University Graduate School of Medicine Nagoya Japan
- Institute for Glyco‐Core Research (iGCORE), Nagoya University Nagoya Japan
| | - Teppei Shimamura
- Division of Systems Biology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Tomoo Ogi
- Department of Genetics Research Institute of Environmental Medicine (RLeM), Nagoya University Nagoya Japan
- Department of Human Genetics and Molecular Biology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masahisa Katsuno
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Clinical Research Education Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
5
|
Low Tissue Creatine: A Therapeutic Target in Clinical Nutrition. Nutrients 2022; 14:nu14061230. [PMID: 35334887 PMCID: PMC8955088 DOI: 10.3390/nu14061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Low tissue creatine characterizes many conditions, including neurodegenerative, cardiopulmonary, and metabolic diseases, with a magnitude of creatine shortfall often corresponds well to a disorder’s severity. A non-invasive monitoring of tissue metabolism with magnetic resonance spectroscopy (MRS) might be a feasible tool to evaluate suboptimal levels of creatine for both predictive, diagnostic, and therapeutic purposes. This mini review paper summarizes disorders with deficient creatine levels and provides arguments for assessing and employing tissue creatine as a relevant target in clinical nutrition.
Collapse
|
6
|
Kreider RB, Jäger R, Purpura M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients 2022; 14:nu14051035. [PMID: 35268011 PMCID: PMC8912867 DOI: 10.3390/nu14051035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
In 2011, we published a paper providing an overview about the bioavailability, efficacy, and regulatory status of creatine monohydrate (CrM), as well as other “novel forms” of creatine that were being marketed at the time. This paper concluded that no other purported form of creatine had been shown to be a more effective source of creatine than CrM, and that CrM was recognized by international regulatory authorities as safe for use in dietary supplements. Moreover, that most purported “forms” of creatine that were being marketed at the time were either less bioavailable, less effective, more expensive, and/or not sufficiently studied in terms of safety and/or efficacy. We also provided examples of several “forms” of creatine that were being marketed that were not bioavailable sources of creatine or less effective than CrM in comparative effectiveness trials. We had hoped that this paper would encourage supplement manufacturers to use CrM in dietary supplements given the overwhelming efficacy and safety profile. Alternatively, encourage them to conduct research to show their purported “form” of creatine was a bioavailable, effective, and safe source of creatine before making unsubstantiated claims of greater efficacy and/or safety than CrM. Unfortunately, unsupported misrepresentations about the effectiveness and safety of various “forms” of creatine have continued. The purpose of this critical review is to: (1) provide an overview of the physiochemical properties, bioavailability, and safety of CrM; (2) describe the data needed to substantiate claims that a “novel form” of creatine is a bioavailable, effective, and safe source of creatine; (3) examine whether other marketed sources of creatine are more effective sources of creatine than CrM; (4) provide an update about the regulatory status of CrM and other purported sources of creatine sold as dietary supplements; and (5) provide guidance regarding the type of research needed to validate that a purported “new form” of creatine is a bioavailable, effective and safe source of creatine for dietary supplements. Based on this analysis, we categorized forms of creatine that are being sold as dietary supplements as either having strong, some, or no evidence of bioavailability and safety. As will be seen, CrM continues to be the only source of creatine that has substantial evidence to support bioavailability, efficacy, and safety. Additionally, CrM is the source of creatine recommended explicitly by professional societies and organizations and approved for use in global markets as a dietary ingredient or food additive.
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-972-458-1498
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI 53202, USA; (R.J.); (M.P.)
| | | |
Collapse
|
7
|
Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022; 14:nu14030529. [PMID: 35276888 PMCID: PMC8838971 DOI: 10.3390/nu14030529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Collapse
|
8
|
Dunham TC, Murphy JE, MacPherson REK, Fajardo VA, Ward WE, Roy BD. Sex- and tissue-dependent creatine uptake in response to different creatine monohydrate doses in male and female Sprague-Dawley rats. Appl Physiol Nutr Metab 2021; 46:1298-1302. [PMID: 34171201 DOI: 10.1139/apnm-2021-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sprague-Dawley rats (n = 32) underwent 8-weeks of creatine monohydrate (CM) supplementation (0, 2.5, 5, and 10 g/L). Total creatine (TCr) concentrations in female white fibre-dominant gastrocnemius (WGAS) and cardiac muscle (HRT) were significantly higher compared with males (p < 0.05). CM supplementation increased TCr concentrations in female WGAS (p < 0.05) and HRT (p < 0.01) and in male red fibre-dominant gastrocnemius muscle (RGAS) (p < 0.05). Future research should further investigate sex-differences in basal levels of TCr and the response to CM supplementation. Novelty: There is a sex- and tissue-dependant response to CM supplementation in rats.
Collapse
Affiliation(s)
- Tyler C Dunham
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Jensen E Murphy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | | | | | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
9
|
Evans WJ, Shankaran M, Smith EC, Morris C, Nyangau E, Bizieff A, Matthews M, Mohamed H, Hellerstein M. Profoundly lower muscle mass and rate of contractile protein synthesis in boys with Duchenne muscular dystrophy. J Physiol 2021; 599:5215-5227. [PMID: 34569076 DOI: 10.1113/jp282227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022] Open
Abstract
Boys with Duchenne muscular dystrophy (DMD) experience a progressive loss of functional muscle mass, with fibrosis and lipid accumulation. Accurate evaluation of whole-body functional muscle mass (MM) in DMD patients has not previously been possible and the rate of synthesis of muscle proteins remains unexplored. We used non-invasive, stable isotope-based methods from plasma and urine to measure the fractional rate of muscle protein synthesis (FSR) functional muscle mass (MM), and fat free mass (FFM) in 10 DMD (6-17 years) and 9 age-matched healthy subjects. An oral dose of D3 creatine in 70% 2 H2 O was administered to determine MM and FFM followed by daily 70% 2 H2 O to measure protein FSR. Functional MM was profoundly reduced in DMD subjects compared to controls (17% vs. 41% of body weight, P < 0.0001), particularly in older, non-ambulant patients in whom functional MM was extraordinarily low (<13% body weight). We explored the urine proteome to measure FSR of skeletal muscle-derived proteins. Titin, myosin light chain and gelsolin FSRs were substantially lower in DMD subjects compared to controls (27%, 11% and 40% of control, respectively, P < 0.0001) and were strongly correlated. There were no differences in muscle-derived sarcoplasmic proteins FSRs (creatine kinase M-type and carbonic anhydrase-3) measured in plasma. These data demonstrate that both functional MM, body composition and muscle protein synthesis rates can be quantified non-invasively and are markedly different between DMD and control subjects and suggest that the rate of contractile but not sarcoplasmic protein synthesis is affected by a lack of dystrophin. KEY POINTS: Duchenne muscular dystrophy (DMD) results in a progressive loss of functional skeletal muscle but total body functional muscle mass or rates of muscle protein synthesis have not previously been assessed in these patients. D3 -creatine dilution was used to measure total functional muscle mass and oral 2 H2 O was used to examine the rates of muscle protein synthesis non-invasively in boys with DMD and healthy controls using urine samples. Muscle mass was profoundly lower in DMD compared to control subjects, particularly in older, non-ambulant patients. The rates of contractile protein synthesis but not sarcoplasmic proteins were substantially lower in DMD. These results may provide non-invasive biomarkers for disease progression and therapeutic efficacy in DMD and other neuromuscular diseases.
Collapse
Affiliation(s)
- William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA.,Department of Medicine, Duke Medical Center, Durham, NC, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Edward C Smith
- Department of Pediatrics, Duke Medical Center, Durham, NC, USA
| | | | - Edna Nyangau
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Alec Bizieff
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Marcy Matthews
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hussein Mohamed
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Korzeniewski B. Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies. J Appl Physiol (1985) 2021; 131:768-777. [PMID: 34197225 DOI: 10.1152/japplphysiol.00196.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Simulations carried out using a previously developed model of the skeletal muscle bioenergetic system, involving the "inorganic phosphate (Pi) double-threshold" mechanism of muscle fatigue, lead to the conclusion that a decrease in the oxidative phosphorylation (OXPHOS) activity, caused by mutations in mitochondrial or nuclear DNA, is the main mechanism underlying the changes in the kinetic properties of the system in mitochondrial myopathies (MM). These changes generally involve the very-heavy-exercise-like behavior and exercise termination because of fatigue at low work intensities. In particular, a sufficiently large (at a given work intensity) decrease in OXPHOS activity leads to slowing of the primary phase II of the oxygen uptake (V̇o2) on-kinetics, decrease in maximal V̇o2 (V̇o2max), appearance of the slow component of the V̇o2 on-kinetics, exercise intolerance, and lactic acidosis at relatively low power outputs encountered in experimental studies in patients with MM. Thus, the "Pi double-threshold" mechanism of muscle fatigue is able to account, at least semiquantitatively, for various kinetic effects of inborn OXPHOS deficiencies of the skeletal muscle bioenergetic system. Exercise can be potentially lengthened and V̇o2max elevated in patients with MM through an increase in peak Pi (Pipeak), at which exercise is terminated because of fatigue. Generally, a mechanism underlying the kinetic effects of OXPHOS deficiencies on the skeletal muscle bioenergetic system in MM is proposed that was absent in the literature.NEW & NOTEWORTHY A mechanism of the OXPHOS deficiencies-induced changes of the skeletal muscle bioenergetic system in patients with mitochondrial myopathies (MM), namely, appearance of the slow component of the V̇o2 on-kinetics at relatively low work intensities, slowed primary phase II of the V̇o2 on-kinetics, lowered V̇o2max, and lactic acidosis is proposed. It involves a decrease in OXPHOS activity acting through the "Pi double-threshold" mechanism of muscle fatigue comprising initiation of the additional ATP usage and termination of exercise.
Collapse
|
11
|
Harmon KK, Stout JR, Fukuda DH, Pabian PS, Rawson ES, Stock MS. The Application of Creatine Supplementation in Medical Rehabilitation. Nutrients 2021; 13:1825. [PMID: 34071875 PMCID: PMC8230227 DOI: 10.3390/nu13061825] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous health conditions affecting the musculoskeletal, cardiopulmonary, and nervous systems can result in physical dysfunction, impaired performance, muscle weakness, and disuse-induced atrophy. Due to its well-documented anabolic potential, creatine monohydrate has been investigated as a supplemental agent to mitigate the loss of muscle mass and function in a variety of acute and chronic conditions. A review of the literature was conducted to assess the current state of knowledge regarding the effects of creatine supplementation on rehabilitation from immobilization and injury, neurodegenerative diseases, cardiopulmonary disease, and other muscular disorders. Several of the findings are encouraging, showcasing creatine's potential efficacy as a supplemental agent via preservation of muscle mass, strength, and physical function; however, the results are not consistent. For multiple diseases, only a few creatine studies with small sample sizes have been published, making it difficult to draw definitive conclusions. Rationale for discordant findings is further complicated by differences in disease pathologies, intervention protocols, creatine dosing and duration, and patient population. While creatine supplementation demonstrates promise as a therapeutic aid, more research is needed to fill gaps in knowledge within medical rehabilitation.
Collapse
Affiliation(s)
- Kylie K. Harmon
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA; (J.R.S.); (D.H.F.)
| | - David H. Fukuda
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA; (J.R.S.); (D.H.F.)
| | - Patrick S. Pabian
- Musculoskeletal Research Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Matt S. Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
12
|
Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci 2021; 13:617588. [PMID: 33679375 PMCID: PMC7930231 DOI: 10.3389/fnagi.2021.617588] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Afzal Misrani
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sidra Tabassum
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
13
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
14
|
Therapeutical Management and Drug Safety in Mitochondrial Diseases-Update 2020. J Clin Med 2020; 10:jcm10010094. [PMID: 33383961 PMCID: PMC7794679 DOI: 10.3390/jcm10010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases (MDs) are a group of genetic disorders that may manifest with vast clinical heterogeneity in childhood or adulthood. These diseases are characterized by dysfunctional mitochondria and oxidative phosphorylation deficiency. Patients are usually treated with supportive and symptomatic therapies due to the absence of a specific disease-modifying therapy. Management of patients with MDs is based on different therapeutical strategies, particularly the early treatment of organ-specific complications and the avoidance of catabolic stressors or toxic medication. In this review, we discuss the therapeutic management of MDs, supported by a revision of the literature, and provide an overview of the drugs that should be either avoided or carefully used both for the specific treatment of MDs and for the management of comorbidities these subjects may manifest. We finally discuss the latest therapies approved for the management of MDs and some ongoing clinical trials.
Collapse
|
15
|
Clarke H, Kim DH, Meza CA, Ormsbee MJ, Hickner RC. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients 2020; 12:nu12092834. [PMID: 32947909 PMCID: PMC7551337 DOI: 10.3390/nu12092834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Creatine is a naturally occurring compound, functioning in conjunction with creatine kinase to play a quintessential role in both cellular energy provision and intracellular energy shuttling. An extensive body of literature solidifies the plethora of ergogenic benefits gained following dietary creatine supplementation; however, recent findings have further indicated a potential therapeutic role for creatine in several pathologies such as myopathies, neurodegenerative disorders, metabolic disturbances, chronic kidney disease and inflammatory diseases. Furthermore, creatine has been found to exhibit non-energy-related properties, such as serving as a potential antioxidant and anti-inflammatory. Despite the therapeutic success of creatine supplementation in varying clinical populations, there is scarce information regarding the potential application of creatine for combatting the current leading cause of mortality, cardiovascular disease (CVD). Taking into consideration the broad ergogenic and non-energy-related actions of creatine, we hypothesize that creatine supplementation may be a potential therapeutic strategy for improving vascular health in at-risk populations such as older adults or those with CVD. With an extensive literature search, we have found only four clinical studies that have investigated the direct effect of creatine on vascular health and function. In this review, we aim to give a short background on the pleiotropic applications of creatine, and to then summarize the current literature surrounding creatine and vascular health. Furthermore, we discuss the varying mechanisms by which creatine could benefit vascular health and function, such as the impact of creatine supplementation upon inflammation and oxidative stress.
Collapse
Affiliation(s)
- Holly Clarke
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
| | - Do-Houn Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
| | - Cesar A. Meza
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
- Department of Biokenetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa
- Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL 32306, USA
| | - Robert C. Hickner
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
- Department of Biokenetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa
- Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL 32306, USA
- Correspondence:
| |
Collapse
|
16
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Zhang L, Zhang Z, Khan A, Zheng H, Yuan C, Jiang H. Advances in drug therapy for mitochondrial diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:17. [PMID: 32055608 PMCID: PMC6995731 DOI: 10.21037/atm.2019.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are a group of clinically and genetically heterogeneous disorders driven by oxidative phosphorylation dysfunction of the mitochondrial respiratory chain which due to pathogenic mutations of mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Recent progress in molecular genetics and biochemical methodologies has provided a better understanding of the etiology and pathogenesis of mitochondrial diseases, and this has expanded the clinical spectrum of this conditions. But the treatment of mitochondrial diseases is largely symptomatic and thus does not significantly change the course of the disease. Few clinical trials have led to the design of drugs aiming at enhancing mitochondrial function or reversing the consequences of mitochondrial dysfunction which are now used in the clinical treatment of mitochondrial diseases. Several other drugs are currently being evaluated for clinical management of patients with mitochondrial diseases. In this review, the current status of treatments for mitochondrial diseases is described systematically, and newer potential treatment strategies for mitochondrial diseases are also discussed.
Collapse
Affiliation(s)
- Lufei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoyong Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aisha Khan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hui Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders. The underlying dysfunction of the mitochondrial electron transport chain and oxidative phosphorylation is caused by variants of genes encoding mitochondrial proteins. Despite substantial advances in the understanding of the mechanism of these diseases, there are still no satisfactory therapies available. Therapeutic strategies include the use of antioxidants, inducers of mitochondrial biogenesis, enhancers of electron transfer chain function, energy buffers, amino acids restoring NO production, nucleotide bypass therapy, liver transplantation, and gene therapy. Although there are some promising projects underway, to date satisfactory therapies are missing.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
19
|
Fernandes AL, Hayashi AP, Jambassi-Filho JC, de Capitani MD, de Santana DA, Gualano B, Roschel H. Different protein and derivatives supplementation strategies combined with resistance training in pre-frail and frail elderly: Rationale and protocol for the "Pro-Elderly" Study. Nutr Health 2018; 23:251-260. [PMID: 29214924 DOI: 10.1177/0260106017737465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Frailty is a multifactorial geriatric syndrome characterized by progressive decline in health and associated with decreased muscle mass, strength, and functional capacity. Resistance training (RT) combined with protein or amino acids supplementation has been shown to be promising for mitigating age-related impairments. AIM To investigate the chronic effects of different strategies of protein and derivatives supplementation in association with RT on selected health-related parameters in pre-frail and frail elderly. METHODS This is a series of double-blind, randomized, placebo-controlled, parallel-group clinical trials. Volunteers will be divided into nine groups, comprising four different sub-studies evaluating the effects of: isolated leucine supplementation (study 1); protein source (whey vs. soy - study 2); combination of whey protein and creatine (study 3); and sexual dimorphism on the response to protein intake and RT (males vs. females - study 4). Muscle cross-sectional area, fiber cross-sectional area, body composition, lower-limb maximal dynamic and isometric strength, functionality, lipid profile, biochemical parameters, renal function, quality of life, and nutritional status will be assessed before and after a 16-week intervention period. Data will be tested for normality and a mixed-model for repeated measures will be conducted to assess within- and between-group effects of the intervention on the dependent variables. Confidence intervals (95%), effect sizes, and relative changes will also be determined, with significance set at p < 0.05.
Collapse
Affiliation(s)
- Alan Lins Fernandes
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Ana Paula Hayashi
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - José Claudio Jambassi-Filho
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Mariana Dutilh de Capitani
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Davi Alves de Santana
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - Bruno Gualano
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - Hamilton Roschel
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| |
Collapse
|
20
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
21
|
El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab 2017; 122:1-9. [PMID: 28943110 PMCID: PMC5773113 DOI: 10.1016/j.ymgme.2017.09.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders that result from dysfunction of the mitochondrial oxidative phosphorylation due to molecular defects in genes encoding mitochondrial proteins. Despite the advances in molecular and biochemical methodologies leading to better understanding of the etiology and mechanism of these diseases, there are still no satisfactory therapies available for mitochondrial disorders. Treatment for mitochondrial diseases remains largely symptomatic and does not significantly alter the course of the disease. Based on limited number of clinical trials, several agents aiming at enhancing mitochondrial function or treating the consequences of mitochondrial dysfunction have been used. Several agents are currently being evaluated for mitochondrial diseases. Therapeutic strategies for mitochondrial diseases include the use of agents enhancing electron transfer chain function (coenzyme Q10, idebenone, riboflavin, dichloroacetate, and thiamine), agents acting as energy buffer (creatine), antioxidants (vitamin C, vitamin E, lipoic acid, cysteine donors, and EPI-743), amino acids restoring nitric oxide production (arginine and citrulline), cardiolipin protector (elamipretide), agents enhancing mitochondrial biogenesis (bezafibrate, epicatechin, and RTA 408), nucleotide bypass therapy, liver transplantation, and gene therapy. Although, there is a lack of curative therapies for mitochondrial disorders at the current time, the increased number of clinical research evaluating agents that target different aspects of mitochondrial dysfunction is promising and is expected to generate more therapeutic options for these diseases in the future.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | | | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
22
|
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017; 14:18. [PMID: 28615996 PMCID: PMC5469049 DOI: 10.1186/s12970-017-0173-z] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Douglas S. Kalman
- Nutrition Research Unit, QPS, 6141 Sunset Drive Suite 301, Miami, FL 33143 USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328 USA
| | - Tim N. Ziegenfuss
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
| | - Robert Wildman
- Post Active Nutrition, 111 Leslie St, Dallas, TX 75208 USA
| | - Rick Collins
- Collins Gann McCloskey & Barry, PLLC, 138 Mineola Blvd., Mineola, NY 11501 USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2 Canada
| | | | | | - Hector L. Lopez
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
- Supplement Safety Solutions, LLC, Bedford, MA 01730 USA
| |
Collapse
|
23
|
Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol 2017; 13:368-379. [DOI: 10.1038/nrrheum.2017.75] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model. PLoS One 2017; 12:e0173261. [PMID: 28267778 PMCID: PMC5340369 DOI: 10.1371/journal.pone.0173261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle homogenates. Mean serum free SA level was 0.166 μg/mL in patients and 18% lower (p<0.001) than that of age-matched control samples (0.203 μg/mL). In biopsies obtained from patients, mean free SA levels of different muscles ranged from 0.046–0.075 μg/μmol Cr and were markedly lower by 72–85% (p<0.001) than free SA from normal controls. Free SA was shown to constitute a small fraction (3–7%) of the total SA pool in muscle tissue. Differences in mean total SA levels in muscle from patients compared with normal controls were less distinct and more variable between different muscles, suggesting a small subset of sialylation targets could be responsible for the pathogenesis of GNEM. Normal quadriceps had significantly lower levels of free SA (reduced by 39%) and total SA (reduced by 53%) compared to normal gastrocnemius. A lower SA requirement for quadriceps may be linked to the reported quadriceps sparing in GNEM. Analysis of SA levels in GneM743T/M743T mutant mice corroborated the human study results. These results show that serum and muscle free SA is severely reduced in GNEM, which is consistent with the biochemical defect in SA synthesis associated with GNE mutations. These results therefore support the approach of reversing SA depletion as a potential treatment for GNEM patients.
Collapse
|
25
|
Kogan F, Stafford RB, Englund EK, Gold GE, Hariharan H, Detre JA, Reddy R. Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3673. [PMID: 27898185 PMCID: PMC5518925 DOI: 10.1002/nbm.3673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 05/08/2023]
Abstract
Creatine, a key component of muscle energy metabolism, exhibits a chemical exchange saturation transfer (CEST) effect between its amine group and bulk water, which has been exploited to spatially and temporally map creatine changes in skeletal muscle before and after exercise. In addition, exercise leads to an increase in muscle perfusion. In this work, we determined the effects of perfused blood on the CEST effects from creatine in skeletal muscle. Experiments were performed on healthy human subjects (n = 5) on a whole-body Siemens 7T magnetic resonance imaging (MRI) scanner with a 28-channel radiofrequency (RF) coil. Reactive hyperemia, induced by inflation and subsequent deflation of a pressure cuff secured around the thigh, was used to increase tissue perfusion whilst maintaining the levels of creatine kinase metabolites. CEST, arterial spin labeling (ASL) and 31 P MRS data were acquired at baseline and for 6 min after cuff deflation. Reactive hyperemia resulted in substantial increases in perfusion in human skeletal muscle of the lower leg as measured by the ASL mean percentage difference. However, no significant changes in CrCEST asymmetry (CrCESTasym ) or 31 P MRS-derived PCr levels of skeletal muscle were observed following cuff deflation. This work demonstrates that perfusion changes do not have a major confounding effect on CrCEST measurements.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Randall B. Stafford
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Erin K. Englund
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
| | - John A. Detre
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
- Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
| |
Collapse
|
26
|
DeBrosse C, Nanga RPR, Wilson N, D'Aquilla K, Elliott M, Hariharan H, Yan F, Wade K, Nguyen S, Worsley D, Parris-Skeete C, McCormick E, Xiao R, Cunningham ZZ, Fishbein L, Nathanson KL, Lynch DR, Stallings VA, Yudkoff M, Falk MJ, Reddy R, McCormack SE. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders. JCI Insight 2016; 1:e88207. [PMID: 27812541 DOI: 10.1172/jci.insight.88207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group-specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group-specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (P = 0.026) prolonged postexercise τCr in the medial gastrocnemius muscle, suggestive of less OXPHOS capacity. Additionally, we observed that lower resting CrCEST was associated with prolonged τPCr, with a Pearson's correlation coefficient of -0.42 (P = 0.046), consistent with previous hypotheses predicting that resting creatine levels may correlate with 31P magnetic resonance spectroscopy-based estimates of OXPHOS capacity. We conclude that CrCEST can noninvasively detect changes in muscle creatine content and OXPHOS capacity, with high anatomic resolution, in individuals with mitochondrial disorders.
Collapse
Affiliation(s)
- Catherine DeBrosse
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Elliott
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felicia Yan
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | - Kristin Wade
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | - Sara Nguyen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | - Diana Worsley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | | | - Elizabeth McCormick
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rui Xiao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Lauren Fishbein
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania
| | - David R Lynch
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Virginia A Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marc Yudkoff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marni J Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Solis MY, Hayashi AP, Artioli GG, Roschel H, Sapienza MT, Otaduy MC, De Sã Pinto AL, Silva CA, Sallum AME, Pereira RMR, Gualano B. Efficacy and safety of creatine supplementation in juvenile dermatomyositis: A randomized, double-blind, placebo-controlled crossover trial. Muscle Nerve 2015; 53:58-66. [PMID: 25899989 DOI: 10.1002/mus.24681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/16/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION It has been suggested that creatine supplementation is safe and effective for treating idiopathic inflammatory myopathies, but no pediatric study has been conducted to date. The objective of this study was to examine the efficacy and safety of creatine supplementation in juvenile dermatomyositis (JDM) patients. METHODS In this study, JDM patients received placebo or creatine supplementation (0.1 g/kg/day) in a randomized, crossover, double-blind design. Subjects were assessed at baseline and after 12 weeks. The primary outcome was muscle function. Secondary outcomes included body composition, aerobic conditioning, health-related quality of life, and muscle phosphocreatine (PCr) content. Safety was assessed by laboratory parameters and kidney function measurements. RESULTS Creatine supplementation did not affect muscle function, intramuscular PCr content, or any other secondary outcome. Kidney function was not affected, and no side effects were reported. CONCLUSIONS Twelve weeks of creatine supplementation in JDM patients were well-tolerated and free of adverse effects, but treatment did not affect muscle function, intramuscular PCr, or any other parameter.
Collapse
Affiliation(s)
| | | | | | - Hamilton Roschel
- School of Physical Education and Sport, University of São Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Bruno Gualano
- School of Physical Education and Sport, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
28
|
Kerksick CM, Roberts MD, Dalbo VJ, Sunderland KL. Intramuscular phosphagen status and the relationship to muscle performance across the age spectrum. Eur J Appl Physiol 2015; 116:115-27. [PMID: 26307531 DOI: 10.1007/s00421-015-3246-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To examine age-related differences in intramuscular concentrations of adenosine triphosphate (ATP), free creatine (FCr), phosphocreatine (PCr) and total creatine (TCr) and if these differences were related to muscle performance. METHODS Forty-two healthy, non-sedentary, males between 20 and 76 years provided muscle samples to determine [ATP], [FCr], [PCr], and [TCr]. Maximal strength and endurance were assessed and correlated with intramuscular variables. RESULTS Intramuscular [ATP] decreased by 13.5% (p = 0.013) in the older cohort (18.0 ± 0.6 mmol/kg dry wt) vs. the young cohort (20.8 ± 0.9 mmol/kg dry wt) and was significantly correlated to age (r = -0.38, p = 0.008). No other differences were observed between age groups for intramuscular [PCr], [FCr], [TCr], or [PCr]:[TCr] (p > 0.05). The older cohort consumed significantly less (p < 0.05) dietary protein when compared to the young cohort. Bivariate correlations were found for intramuscular [ATP] and lower body 1RM (r = 0.24, p = 0.066), leg press volume and free creatine (r = 0.325, p = 0.036) and leg press repetitions and free creatine (r = 0.373, p = 0.015). Partial correlations controlling for age eliminated the relationship between [ATP] and 1RM while intramuscular free creatine and leg press repetitions remained significant (p < 0.05) and leg press volume approached significance (p = 0.095). CONCLUSION These results expand upon previous observations indicative of age-related reductions in intramuscular [ATP] and dietary protein intake. The lack of change in other intramuscular PCr system markers are suggestive of dysfunctions at the mitochondrial level while the impact of neuromuscular changes, lean mass cross-sectional area and differences in physical activity are also important.
Collapse
Affiliation(s)
- Chad M Kerksick
- Department of Exercise Science, School of Sport, Recreation and Exercise Sciences, Lindenwood University, St. Charles, MO, 63301, USA.
| | | | - Vincent J Dalbo
- Clinical Biochemistry Laboratory, School of Medicine and Applied Sciences, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Kyle L Sunderland
- Department of Exercise Science, High Point University, High Point, NC, 27262, USA
| |
Collapse
|
29
|
Hayashi AP, Solis MY, Sapienza MT, Otaduy MCG, de Sá Pinto AL, Silva CA, Sallum AME, Pereira RMR, Gualano B. Efficacy and safety of creatine supplementation in childhood-onset systemic lupus erythematosus: a randomized, double-blind, placebo-controlled, crossover trial. Lupus 2014; 23:1500-1511. [DOI: 10.1177/0961203314546017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Introduction Creatine supplementation has emerged as a promising non-pharmacological therapeutic strategy to counteract muscle dysfunction and low lean mass in a variety of conditions, including in pediatric and rheumatic diseases. The objective of this study was to examine the efficacy and safety of creatine supplementation in childhood systemic lupus erythematosus (C-SLE). Methods C-SLE patients with mild disease activity ( n = 15) received placebo or creatine supplementation in a randomized fashion using a crossover, double-blind, repeated-measures design. The participants were assessed at baseline and after 12 weeks in each arm, interspersed by an eight-week washout period. The primary outcomes were muscle function, as assessed by a battery of tests including one-maximum repetition (1-RM) tests, the timed-up-and-go test, the timed-stands test, and the handgrip test. Secondary outcomes included body composition, biochemical markers of bone remodeling, aerobic conditioning, quality of life, and physical capacity. Possible differences in dietary intake were assessed by three 24-hour dietary recalls. Muscle phosphorylcreatine content was measured through phosphorus magnetic resonance spectroscopy (31 P-MRS). The safety of the intervention was assessed by laboratory parameters, and kidney function was measured by 51Cr-EDTA clearance. Additionally, self-reported adverse events were recorded throughout the trial. Results Intramuscular phosphorylcreatine content was not significantly different between creatine and placebo before or after the intervention (creatine-Pre: 20.5 ± 2.6, Post: 20.4 ± 4.1, placebo-Pre: 19.8 ± 2.0; Post: 20.2 ± 3.2 mmol/kg wet muscle; p = 0.70 for interaction between conditions). In addition, probably as a consequence of the lack of change in intramuscular phosphorylcreatine content, there were no significant changes between placebo and creatine for any muscle function and aerobic conditioning parameters, lean mass, fat mass, bone mass, and quality of life scores ( p > 0.05). The 51Cr-EDTA clearance was not altered by creatine supplementation and no side effects were noticed. Conclusion A 12-week creatine supplementation protocol at 0.1 g/kg/d is well tolerated and free of adverse effects but did not affect intramuscular phosphorylcreatine, muscle function, free-fat mass or quality of life in non-active C-SLE patients. Trial registration Clinicaltrials.gov number: NCT01217320.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - B Gualano
- School of Medicine
- School of Physical Education and Sport, University of São Paulo, Brazil
| |
Collapse
|
30
|
Kresta JY, Oliver JM, Jagim AR, Fluckey J, Riechman S, Kelly K, Meininger C, Mertens-Talcott SU, Rasmussen C, Kreider RB. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J Int Soc Sports Nutr 2014; 11:55. [PMID: 25505854 PMCID: PMC4263036 DOI: 10.1186/s12970-014-0055-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The purpose of this study was to examine the short-term and chronic effects of β-ALA supplementation with and without creatine monohydrate on body composition, aerobic and anaerobic exercise performance, and muscle carnosine and creatine levels in college-aged recreationally active females. METHODS Thirty-two females were randomized in a double-blind, placebo-controlled manner into one of four supplementation groups: β-ALA only (BA, n = 8), creatine only (CRE, n = 8), β-ALA and creatine combined (BAC, n = 9) and placebo (PLA, n = 7). Participants supplemented for four weeks included a loading phase for the creatine for week 1 of 0.3 g/kg of body weight and a maintenance phase for weeks 2-4 of 0.1 g/kg of body weight, with or without a continuous dose of β-ALA of 0.1 g/kg of body weight with doses rounded to the nearest 800 mg capsule providing an average of 6.1 ± 0.7 g/day of β-ALA. Participants reported for testing at baseline, day 7 and day 28. Testing sessions consisted of obtaining a resting muscle biopsy of the vastus lateralis, body composition measurements, performing a graded exercise test on the cycle ergometer for VO2peak with lactate threshold determination, and multiple Wingate anaerobic capacity tests. RESULTS Although mean changes were consistent with prior studies and large effect sizes were noted, no significant differences were observed among groups in changes in muscle carnosine levels (BA 35.3 ± 45; BAC 42.5 ± 99; CRE 0.72 ± 27; PLA 13.9 ± 44%, p = 0.59). Similarly, although changes in muscle phosphagen levels after one week of supplementation were consistent with prior reports and large effect sizes were seen, no statistically significant effects were observed among groups in changes in muscle phosphagen levels and the impact of CRE supplementation appeared to diminish during the maintenance phase. Additionally, significant time × group × Wingate interactions were observed among groups for repeated sprint peak power normalized to bodyweight (p = 0.02) and rate of fatigue (p = 0.04). CONCLUSIONS Results of the present study did not reveal any consistent additive benefits of BA and CRE supplementation in recreationally active women.
Collapse
Affiliation(s)
- Julie Y Kresta
- Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jonathan M Oliver
- Kinesiology Department, Texas Christian University, Fort Worth, TX 76129 USA
| | - Andrew R Jagim
- Department of Exercise & Sport Science, University of Wisconsin - La Crosse, La Crosse, WI 54601 USA
| | - James Fluckey
- Department of Health and Kinesiology, Muscle Biology Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Steven Riechman
- Department of Health and Kinesiology, Human Countermeasures Laboratory, Texas A&M University, College Station, TX 77843-4243 USA
| | - Katherine Kelly
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843-1114 USA
| | - Cynthia Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843-1114 USA
| | - Susanne U Mertens-Talcott
- Department of Nutrition and Food Science, Institute for Obesity Research and Program Evaluation, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Department of Health and Kinesiology, Exercise and Sport Nutrition Lab, Texas A&M University, College Station, TX 77843-4243 USA
| | - Richard B Kreider
- Department of Health and Kinesiology, Exercise and Sport Nutrition Lab, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
31
|
D'Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613890. [PMID: 25243159 PMCID: PMC4163371 DOI: 10.1155/2014/613890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (LUSAMMR), University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Piero Micheletti
- Department of Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Roberto Aquilani
- Maugeri Foundation IRCCS, Montescano Scientific Institute, Via Per Montescano 31, 27040 Montescano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Via Emilia 12, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
32
|
Brown EL, Snow RJ, Wright CR, Cho Y, Wallace MA, Kralli A, Russell AP. PGC-1α and PGC-1β increase CrT expression and creatine uptake in myotubes via ERRα. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2937-43. [PMID: 25173818 DOI: 10.1016/j.bbamcr.2014.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/20/2022]
Abstract
Intramuscular creatine plays a crucial role in maintaining skeletal muscle energy homeostasis, and its entry into the cell is dependent upon the sodium chloride dependent Creatine Transporter (CrT; Slc6a8). CrT activity is regulated by a number of factors including extra- and intracellular creatine concentrations, hormones, changes in sodium concentration, and kinase activity, however very little is known about the regulation of CrT gene expression. The present study aimed to investigate how Creatine Transporter (CrT) gene expression is regulated in skeletal muscle. Within the first intron of the CrT gene, we identified a conserved sequence that includes the motif recognized by the Estrogen-related receptor α (ERRα), also known as an Estrogen-related receptor response element (ERRE). Additional ERREs confirming to the known consensus sequence were also identified in the region upstream of the promoter. When partnered with peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1α) or beta (PGC-1β), ERRα induces the expression of many genes important for cellular bioenergetics. We therefore hypothesized that PGC-1 and ERRα could also regulate CrT gene expression and creatine uptake in skeletal muscle. Here we show that adenoviral overexpression of PGC-1α or PGC-1β in L6 myotubes increased CrT mRNA (2.1 and 1.7-fold, P<0.0125) and creatine uptake (1.8 and 1.6-fold, P<0.0125), and this effect was inhibited with co-expression of shRNA for ERRα. Overexpression of a constitutively active ERRα (VP16-ERRα) increased CrT mRNA approximately 8-fold (P<0.05), resulting in a 2.2-fold (P<0.05) increase in creatine uptake. Lastly, chromatin immunoprecipitation assays revealed that PGC-1α and ERRα directly interact with the CrT gene and increase CrT gene expression.
Collapse
Affiliation(s)
- Erin L Brown
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Rod J Snow
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Craig R Wright
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marita A Wallace
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron P Russell
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia.
| |
Collapse
|
33
|
Oliver JM, Jagim AR, Pischel I, Jäger R, Purpura M, Sanchez A, Fluckey J, Riechman S, Greenwood M, Kelly K, Meininger C, Rasmussen C, Kreider RB. Effects of short-term ingestion of Russian Tarragon prior to creatine monohydrate supplementation on whole body and muscle creatine retention and anaerobic sprint capacity: a preliminary investigation. J Int Soc Sports Nutr 2014; 11:6. [PMID: 24568653 PMCID: PMC3975968 DOI: 10.1186/1550-2783-11-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/19/2014] [Indexed: 11/28/2022] Open
Abstract
Background Extracts of Russian Tarragon (RT) have been reported to produce anti-hyperglycemic effects and influence plasma creatine (Cr) levels while supplementing with creatine monohydrate (CrM). The purpose of this preliminary study was to determine if short-term, low-dose aqueous RT extract ingestion prior to CrM supplementation influences whole body Cr retention, muscle Cr or measures of anaerobic sprint performance. Methods In a double-blind, randomized, and crossover manner; 10 recreationally trained males (20 ± 2 yrs; 179 ± 9 cm; 91.3 ± 34 kg) ingested 500 mg of aqueous RT extract (Finzelberg, Andernach, Germany) or 500 mg placebo 30-minutes prior to ingesting 5 g of CrM (Creapure®, AlzChem AG, Germany) twice per day for 5-days then repeated after a 6-week wash-out period. Urine was collected at baseline and during each of the 5-days of supplementation to determine urine Cr content. Whole body Cr retention was estimated from urine samples. Muscle biopsies were obtained for determination of muscle free Cr content. Participants also performed two 30-second Wingate anaerobic capacity tests prior to and following supplementation for determination of peak power (PP), mean power (MP), and total work (TW). Data were analysed by repeated measures MANOVA. Results Whole body daily Cr retention increased in both groups following supplementation (0.0 ± 0.0; 8.2 ± 1.4, 6.5 ± 2.4, 5.6 ± 3.2, 6.1 ± 2.6, 4.8 ± 3.2 g · d-1; p = 0.001) with no differences observed between groups (p = 0.59). After 3 and 5-days of supplementation, respectively, both supplementation protocols demonstrated a significant increase in muscle free Cr content from baseline (4.8 ± 16.7, 15.5 ± 23.6 mmol · kg-1 DW, p = 0.01) with no significant differences observed between groups (p = 0.34). Absolute change in MP (9 ± 57, 35 ± 57 W; p = 0.031), percent change in MP (2.5 ± 10.5, 6.7 ± 10.4%; p = 0.026), absolute change in TW (275 ± 1,700, 1,031 ± 1,721 J; p = 0.032), and percent change in TW (2.5 ± 10.5, 6.6 ± 10.4%; p = 0.027) increased over time in both groups with no differences observed between groups. Conclusions Short-term CrM supplementation (10 g · d-1 for 5-days) significantly increased whole body Cr retention and muscle free Cr content. However, ingesting 500 mg of RT 30-min prior to CrM supplementation did not affect whole body Cr retention, muscle free Cr content, or anaerobic sprint capacity in comparison to ingesting CrM with a placebo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Richard B Kreider
- Department of Health and Kinesiology, Exercise and Sport Nutrition Lab, Texas A&M University, College Station, TX 77843-4243, USA.
| |
Collapse
|
34
|
In vivo (31)P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats. Eur J Appl Physiol 2014; 114:847-58. [PMID: 24399112 DOI: 10.1007/s00421-013-2810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Muscle paralysis after spinal cord injury leads to muscle atrophy, enhanced muscle fatigue, and increased energy demands for functional activities. Phosphorus magnetic resonance spectroscopy ((31)P-MRS) offers a unique non-invasive alternative of measuring energy metabolism in skeletal muscle and is especially suitable for longitudinal investigations. We determined the impact of spinal cord contusion on in vivo muscle bioenergetics of the rat hind limb muscle using (31)P-MRS. METHODS A moderate spinal cord contusion injury (cSCI) was induced at the T8-T10 thoracic spinal segments. (31)P-MRS measurements were performed weekly in the rat hind limb muscles for 3 weeks. Spectra were acquired in a Bruker 11 T/470 MHz spectrometer using a 31P surface coil. The sciatic nerve was electrically stimulated by subcutaneous needle electrodes. Spectra were acquired at rest (5 min), during stimulation (6 min), and recovery (20 min). Phosphocreatine (PCr) depletion rates and the pseudo first-order rate constant for PCr recovery (k PCr) were determined. The maximal rate of PCr resynthesis, the in vivo maximum oxidative capacity (V max) and oxidative adenosine triphosphate (ATP) synthesis rate (Q max) were subsequently calculated. RESULTS One week after cSCI, there was a decline in the resting total creatine of the paralyzed muscle. There was a significant reduction (~24 %) in k PCr measures of the paralyzed muscle, maximum in vivo mitochondrial capacity (V max) and the maximum oxidative ATP synthesis rate (Q max) at 1 week post-cSCI. During exercise, the PCr depletion rates in the paralyzed muscle one week after injury were rapid and to a greater extent than in a healthy muscle. CONCLUSIONS Using in vivo MRS assessments, we reveal an acute oxidative metabolic defect in the paralyzed hind limb muscle. These altered muscle bioenergetics might contribute to the host of motor dysfunctions seen after cSCI.
Collapse
|
35
|
Kogan F, Haris M, Debrosse C, Singh A, Nanga RP, Cai K, Hariharan H, Reddy R. In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T. J Magn Reson Imaging 2013; 40:596-602. [PMID: 24925857 DOI: 10.1002/jmri.24412] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/21/2013] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To characterize the chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr), a key component of muscle energy metabolism, distribution in skeletal muscle with high spatial resolution before and after exercise at 3T. MATERIALS AND METHODS CrCEST saturation parameters were empirically optimized for 3T. CEST, T2 , magnetization transfer ratio (MTR), and (31) P magnetic resonance spectroscopy (MRS) acquisitions of the lower leg were performed before and after mild plantar flexion exercise on a 3T whole-body MR scanner on six healthy volunteers. RESULTS The feasibility of imaging Cr changes in skeletal muscle following plantar flexion exercise using CrCEST was demonstrated at 3T. This technique exhibited good spatial resolution and was able to differentiate differences in muscle use among subjects. The CrCEST results were compared with (31) P MRS results, showing good agreement in the Cr and PCr recovery kinetics. A relationship of 0.45% CrCESTasym /mM Cr was observed across all subjects. CONCLUSION It is demonstrated that the CrCEST technique could be applied at 3T to measure dynamic changes in creatine in muscle in vivo. The widespread availability and clinical applicability of 3T scanners has the potential to clinically advance this method.
Collapse
Affiliation(s)
- Feliks Kogan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. Previous updates were in 2009 and 2011. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH METHODS On 11 September 2012, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL (2012, Issue 9 in The Cochrane Library), MEDLINE (January 1966 to September 2012) and EMBASE (January 1980 to September 2012) for randomised controlled trials (RCTs) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS A total of 14 trials, including 364 randomised participants, met the selection criteria. The risk of bias was low in most studies. Only one trial had a high risk of selection, performance and detection bias. No new studies were identified at this update.Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of participants felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event.In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of activities of daily living (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired activities of daily living and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
37
|
Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RPR, Hariharan H, Reddy R. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 2013; 71:164-72. [PMID: 23412909 DOI: 10.1002/mrm.24641] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/07/2012] [Accepted: 12/26/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. METHODS Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. RESULTS Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. CONCLUSION Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle.
Collapse
Affiliation(s)
- Feliks Kogan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, Pennsylvania, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jerônimo DP, de Souza RA, da Silva FF, Camargo GL, Miranda HL, Xavier M, Sakane KK, Ribeiro W. Detection of creatine in rat muscle by FTIR spectroscopy. Ann Biomed Eng 2012; 40:2069-77. [PMID: 22419197 DOI: 10.1007/s10439-012-0549-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/06/2012] [Indexed: 12/13/2022]
Abstract
There is a current lack of clarity regarding the use of Fourier-transform infrared spectroscopy (FT-IR) to evaluate intramuscular concentrations of creatine (Cr). Thus, the aim of this study was to assess the FT-IR spectral features of tibialis anterior muscle in rats submitted in conditions that were expected to perturb the Cr pool. First, an experiment was performed to ensure that FT-IR was able to detect the Cr intramuscular in sedentary and supplemented rats (Experiment 1). The effect of physical exercise on spectral muscle features was then examined, especially in relation to the spectroscopy markers (Experiment 2). Using pure Cr (control), it was possible to verify that only the peaks centered at 1308 and 1396 cm(-1) of all the spectra showed the same peak positions, indicating these FT-IR shifts as indirect markers of Cr intramuscular content. Experiment 2 revealed a higher Cr content for the Cr-supplemented and exercised animals than the rats of other groups. In conclusion, it was demonstrated that FT-IR spectroscopy using 1396 cm(-1) and mainly 1308 band was able to monitor Cr muscle content in rats sedentary, Cr-supplemented, and submitted to physical training. Besides, FT-IR could be a feasible method for the nondestructive assessment of Cr skeletal muscle content.
Collapse
Affiliation(s)
- Diego Pereira Jerônimo
- Laboratory of Physiology and Pharmacodynamics, Institute of Research and Development (IP&D), Vale do Paraiba University (UNIVAP), Av. Shishima Hifumi, 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, Medicine Society TM. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol 2011; 11:414-30. [PMID: 19891905 DOI: 10.1007/s11940-009-0046-0] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of mitochondrial disease varies considerably. Most experts use a combination of vitamins, optimize patients' nutrition and general health, and prevent worsening of symptoms during times of illness and physiologic stress. We agree with this approach, and we agree that therapies using vitamins and cofactors have value, though there is debate about the choice of these agents and the doses prescribed. Despite the paucity of high-quality scientific evidence, these therapies are relatively harmless, may alleviate select clinical symptoms, and theoretically may offer a means of staving off disease progression. Like many other mitochondrial medicine physicians, we have observed significant (and at times life-altering) clinical responses to such pharmacologic interventions. However, it is not yet proven that these therapies truly alter the course of the disease, and some experts may choose not to use these medications at all. At present, the evidence of their effectiveness does not rise to the level required for universal use. Based on our clinical experience and judgment, however, we agree that a therapeutic trial of coenzyme Q10, along with other antioxidants, should be attempted. Although individual specialists differ as to the exact drug cocktail, a common approach involves combinations of antioxidants that may have a synergistic effect. Because almost all relevant therapies are classified as medical foods or over-the-counter supplements, most physicians also attempt to balance the apparent clinical benefit of mitochondrial cocktails with the cost burden that these supplements pose for the family.
Collapse
Affiliation(s)
- Sumit Parikh
- Sumit Parikh, MD Neurometabolism & Neurogenetics, Cleveland Clinic, 9500 Euclid Avenue, S71, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Creatine as a therapeutic strategy for myopathies. Amino Acids 2011; 40:1397-407. [PMID: 21399918 DOI: 10.1007/s00726-011-0876-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022]
Abstract
Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075-0.1 g/kg/day) with greater strength (~9%) and fat-free mass (~0.63 kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle's disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids).
Collapse
|
41
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Specialized Register (4 October 2010), the Cochrane Central Register of Controlled Trials (11 October 2010, Issue 4, 2010 in The Cochrane Library), MEDLINE (January 1966 to September 2010) and EMBASE (January 1980 to September 2010) for randomised controlled trials (RCT) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS The updated searches identified two new studies. A total of 14 trials, including 364 randomised participants, met the selection criteria. Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a weighted mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of patients felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event. In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of ADL (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired ADL and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la-Camp-Platz 1, Bochum, Germany, 44789
| | | | | |
Collapse
|
42
|
|
43
|
Wary C, Nadaj-Pakleza A, Laforêt P, Claeys KG, Carlier R, Monnet A, Fleury S, Baligand C, Eymard B, Labrune P, Carlier PG. Investigating glycogenosis type III patients with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul Disord 2010; 20:548-58. [DOI: 10.1016/j.nmd.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
44
|
Kan HE, Klomp DWJ, Wohlgemuth M, van Loosbroek-Wagemans I, van Engelen BGM, Padberg GW, Heerschap A. Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR IN BIOMEDICINE 2010; 23:563-568. [PMID: 20175146 DOI: 10.1002/nbm.1494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by asymmetric dysfunctioning of individual muscles. Currently, it is unknown why specific muscles are affected before others and more particularly what pathophysiology is causing this differential progression. The aim of our study was to use a combination of (31)P magnetic resonance spectroscopic imaging (MRSI) and T1-weighted MRI to uncover metabolic differences in fat infiltrated and not fat infiltrated muscles in patients with FSHD. T1-weighted images and 3D (31)P MRSI were obtained from the calf muscles of nine patients with diagnosed FSHD and nine healthy age and sex matched volunteers. Muscles of patients were classified as fat infiltrated (PFM) and non fat-infiltrated (PNM) based on visual assessment of the MR images. Ratios of phosphocreatine (PCr), phosphodiesters (PDE) and inorganic phosphate (Pi) over ATP and tissue pH were compared between PFM and PNM and the same muscles in healthy volunteers. Of all patients, seven showed moderate to severe fatty infiltration in one or more muscles. In these muscles, decreases in PCr/ATP and increases in tissue pH were observed compared to the same muscles in healthy volunteers. Interestingly, these differences were absent in the PNM group. Our data show that differences in metabolite ratios and tissue pH in skeletal muscle between healthy volunteers and patients with FSHD appear to be specific for fat infiltrated muscles. Normal appearing muscles on T1 weighted images of patients showed normal phosphoryl metabolism, which suggests that in FSHD disease progression is truly muscle specific.
Collapse
Affiliation(s)
- H E Kan
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A 2010; 107:1571-5. [PMID: 20080599 DOI: 10.1073/pnas.0906039107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in either the mitochondrial or nuclear genomes can give rise to respiratory chain disease (RCD), a large class of devastating metabolic disorders. Their clinical management is challenging, in part because we lack facile and accurate biomarkers to aid in diagnosis and in the monitoring of disease progression. Here we introduce a sequential strategy that combines biochemical analysis of spent media from cell culture with analysis of patient plasma to identify disease biomarkers. First, we applied global metabolic profiling to spotlight 32 metabolites whose uptake or secretion kinetics were altered by chemical inhibition of the respiratory chain in cultured muscle . These metabolites span a wide range of pathways and include lactate and alanine, which are used clinically as biomarkers of RCD. We next measured the cell culture-defined metabolites in human plasma to discover that creatine is reproducibly elevated in two independent cohorts of RCD patients, exceeding lactate and alanine in magnitude of elevation and statistical significance. In cell culture extracellular creatine was inversely related to the intracellular phosphocreatine:creatine ratio suggesting that the elevation of plasma creatine in RCD patients signals a low energetic state of tissues using the phosphocreatine shuttle. Our study identifies plasma creatine as a potential biomarker of human mitochondrial dysfunction that could be clinically useful. More generally, we illustrate how spent media from cellular models of disease may provide a window into the biochemical derangements in human plasma, an approach that could, in principle, be extended to a range of complex diseases.
Collapse
|
46
|
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids 2009; 38:31-44. [PMID: 19253023 DOI: 10.1007/s00726-009-0263-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson's, Huntington's, and Alzheimer's), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.
Collapse
Affiliation(s)
- Bruno Gualano
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
47
|
DiMauro S, Hirano M. Pathogenesis and treatment of mitochondrial disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:139-70. [PMID: 20225024 PMCID: PMC10440730 DOI: 10.1007/978-90-481-2813-6_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, our understanding of the biochemical and molecular causes of mitochondrial diseases, defined restrictively as disorders due to defects of the mitochondrial respiratory chain (RC), has made great strides. Mitochondrial diseases can be due to mutations in mitochondrial DNA (mtDNA) or in nuclear DNA (nDNA) and each group can be subdivided into more specific classes. Thus, mtDNA-related disorders can result from mutations in genes affecting protein synthesis in toto or mutations in protein-coding genes. Mendelian mitochondrial disorders can be attributed to mutations in genes that (i) encode subunits of the RC ("direct hits"); (ii) encode assembly proteins or RC complexes ("indirect hits"); (iii) encode factors needed for mtDNA maintenance, replication, or translation (intergenomic signaling); (iv) encode components of the mitochondrial protein import machinery; (v) control the synthesis and composition of mitochondrial membrane phospholipids; and (vi) encode proteins involved in mitochondrial dynamics.In contrast to this wealth of knowledge about etiology, our understanding of pathogenic mechanism is very limited. We discuss pathogenic factors that can influence clinical expression, especially ATP shortage and reactive oxygen radicals (ROS) excess. Therapeutic options are limited and fall into three modalities: (i) symptomatic interventions, which are palliative but crucial for day-to-day management; (ii) radical approaches aimed at correcting the biochemical or molecular error, which are interesting but still largely experimental; and (iii) pharmacological means of interfering with the pathogenic cascade of events (e.g. boosting ATP production or scavenging ROS), which are inconsistently and incompletely effective, but can be safe and helpful.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 3-313 Russ Berrie Medical Science Pavilion, New York, NY 10032, USA.
| | | |
Collapse
|
48
|
Schober MS, Chidlow G, Wood JP, Casson RJ. Bioenergetic-based neuroprotection and glaucoma. Clin Exp Ophthalmol 2008; 36:377-85. [PMID: 18700928 DOI: 10.1111/j.1442-9071.2008.01740.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary open-angle glaucoma (POAG) is a pressure-sensitive optic neuropathy which results in the death of retinal ganglion cells and causes associated loss of vision. Presently, the only accepted treatment strategy is to lower the intraocular pressure; however, for some patients this is insufficient to prevent progressive disease. Although the pathogenesis of POAG remains unclear, there is considerable evidence that energy failure at the optic nerve head may be involved. Neuroprotection, a strategy which directly enhances the survival of neurons, is desirable, but remains clinically elusive. One particular form of neuroprotection involves the notion of enhancing the energy supply of neurons. These 'bioenergetic' methods of neuroprotection have proven successful in animal models of other neurodegenerative diseases and conditions, including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and traumatic brain injury, but have been relatively unexplored in glaucoma models. This review focuses on some of the potential approaches for bioenergetic neuroprotection in the retina, including increasing the energy buffering capacity of damaged cells, decreasing the permeability of the mitochondrial membrane pore and free radical scavenging.
Collapse
Affiliation(s)
- Michael S Schober
- South Australian Institute of Ophthalmology, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
49
|
Abstract
Many of the neuromuscular (e.g., muscular dystrophy) and neurometabolic (e.g., mitochondrial cytopathies) disorders share similar final common pathways of cellular dysfunction that may be favorably influenced by creatine monohydrate (CrM) supplementation. Studies using the mdx model of Duchenne muscular dystrophy have found evidence of enhanced mitochondrial function, reduced intra-cellular calcium and improved performance with CrM supplementation. Clinical trials in patients with Duchenne and Becker's muscular dystrophy have shown improved function, fat-free mass, and some evidence of improved bone health with CrM supplementation. In contrast, the improvements in function in myotonic dystrophy and inherited neuropathies (e.g., Charcot-Marie-Tooth) have not been significant. Some studies in patients with mitochondrial cytopathies have shown improved muscle endurance and body composition, yet other studies did not find significant improvements in patients with mitochondrial cytopathy. Lower-dose CrM supplementation in patients with McArdle's disease (myophosphorylase deficiency) improved exercise capacity, yet higher doses actually showed some indication of worsened function. Based upon known cellular pathologies, there are potential benefits from CrM supplementation in patients with steroid myopathy, inflammatory myopathy, myoadenylate deaminase deficiency, and fatty acid oxidation defects. Larger randomized control trials (RCT) using homogeneous patient groups and objective and clinically relevant outcome variables are needed to determine whether creatine supplementation will be of therapeutic benefit to patients with neuromuscular or neurometabolic disorders. Given the relatively low prevalence of some of the neuromuscular and neurometabolic disorders, it will be necessary to use surrogate markers of potential clinical efficacy including markers of oxidative stress, cellular energy charge, and gene expression patterns.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine (Neurology and Rehabilitation), Neuromuscular and Neurometabolic Clinic, Rm 2H26, McMaster University Medical Center, 1200 Main St. W., Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
50
|
Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 2007; 35:235-42. [PMID: 17080429 DOI: 10.1002/mus.20688] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mitochondrial disorders share common cellular consequences: (1) decreased ATP production; (2) increased reliance on alternative anaerobic energy sources; and (3) increased production of reactive oxygen species. The purpose of the present study was to determine the effect of a combination therapy (creatine monohydrate, coenzyme Q(10), and lipoic acid to target the above-mentioned cellular consequences) on several outcome variables using a randomized, double-blind, placebo-controlled, crossover study design in patients with mitochondrial cytopathies. Three patients had mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), four had mitochondrial DNA deletions (three patients with chronic progressive external ophthalmoplegia and one with Kearns-Sayre syndrome), and nine had a variety of other mitochondrial diseases not falling into the two former groups. The combination therapy resulted in lower resting plasma lactate and urinary 8-isoprostanes, as well as attenuation of the decline in peak ankle dorsiflexion strength in all patient groups, whereas higher fat-free mass was observed only in the MELAS group. Together, these results suggest that combination therapies targeting multiple final common pathways of mitochondrial dysfunction favorably influence surrogate markers of cellular energy dysfunction. Future studies with larger sample sizes in relatively homogeneous groups will be required to determine whether such combination therapies influence function and quality of life.
Collapse
|