1
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
3
|
Giorgetti E, Yu Z, Chua JP, Shimamura R, Zhao L, Zhu F, Venneti S, Pennuto M, Guan Y, Hung G, Lieberman AP. Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing. Cell Rep 2017; 17:125-136. [PMID: 27681426 DOI: 10.1016/j.celrep.2016.08.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/05/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder, is caused by a CAG/glutamine expansion in the androgen receptor (polyQ AR). Recent studies demonstrate that skeletal muscle is an important site of toxicity that contributes to the SBMA phenotype. Here, we sought to identify critical pathways altered in muscle that underlie disease manifestations in AR113Q mice. This led to the unanticipated identification of gene expression changes affecting regulators of carbohydrate metabolism, similar to those triggered by denervation. AR113Q muscle exhibits diminished glycolysis, altered mitochondria, and an impaired response to exercise. Strikingly, the expression of genes regulating muscle energy metabolism is rescued following peripheral polyQ AR gene silencing by antisense oligonucleotides (ASO), a therapeutic strategy that alleviates disease. Our data establish the occurrence of a metabolic imbalance in SBMA muscle triggered by peripheral expression of the polyQ AR and indicate that alterations in energy utilization contribute to non-neuronal disease manifestations.
Collapse
Affiliation(s)
- Elisa Giorgetti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhigang Yu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason P Chua
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryosuke Shimamura
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Fan Zhu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sriram Venneti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gene Hung
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 2014; 7:774-84. [PMID: 24746732 DOI: 10.1016/j.celrep.2014.02.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 01/10/2014] [Accepted: 02/05/2014] [Indexed: 02/07/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.
Collapse
|
5
|
Yamamoto T, Yokota K, Amao R, Maeno T, Haga N, Taguri M, Ohtsu H, Ichikawa Y, Goto J, Tsuji S. An open trial of long-term testosterone suppression in spinal and bulbar muscular atrophy. Muscle Nerve 2013; 47:816-22. [PMID: 23512333 DOI: 10.1002/mus.23759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2012] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We investigated the long-term effects of leuprorelin on leg-muscle strength in spinal and bulbar muscular atrophy (SBMA). We hypothesized that testosterone suppression by leuprorelin would prevent the progression of muscle weakness. METHODS In a prospective, long duration, open trial, 16 SBMA patients underwent medical castration with leuprorelin for 3.5 years. Chlormadinone was coadministered initially to prevent a testosterone surge. The strength of knee extension and flexion were quantitated using a torque machine. RESULTS Our hypothesis was rejected. The leg strength measures decreased significantly with the mean reduction of 22.3-27.8%. In a post hoc analysis, the leg strength of 4 patients with higher pretreatment baseline total testosterone levels and short disease duration of 1-6 years were stronger at baseline and decreased by only 12.3-15.7% after treatment. CONCLUSIONS Leuprorelin was not effective in this small long-term treatment trial in SBMA. The possibility that earlier treatment might be beneficial may deserve further study.
Collapse
Affiliation(s)
- Tomotaka Yamamoto
- Department of Neurology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Expression of the polyalanine expansion mutant of nuclear poly(A)-binding protein induces apoptosis via the p53 pathway. Cell Biol Int 2012; 36:697-704. [PMID: 22519734 DOI: 10.1042/cbi20110348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The PABPN1 [nuclear poly(A)-binding protein 1] is ubiquitous, binds to the nascent mRNA transcript and controls the poly(A) tract elongation process in multicellular organisms. Expansion of GCG repeats that encode first 6 of the 10 alanine residues of a polyalanine tract at the N-terminus of wild-type PABPN1 to 12-17 alanine residues causes aggregation of the protein and cell death. Patients with the adult onset autosomal dominant OPMD (oculopharyngeal muscular dystrophy) carry the GCG expansion mutation in their PABPN1 gene. The symptoms of OPMD include drooping eye lids and difficulty swallowing. The severity of symptoms increases with the length of the expansion. We have investigated the mechanism of cell death in HeLa and HEK-293 (human embryonic kidney) cultured cells expressing the mutant PABPN1 with a polyalanine tract containing 17 alanine residues (PABPN1-A17). In cells expressing PABPN1-A17, the abundance of pro-apoptotic proteins, p53, PUMA (p53 up-regulated modulator of apoptosis) and Noxa, are up-regulated. This was associated with the redistribution of p53 to the nucleus and mitochondria. Concomitantly Bax was translocated to the mitochondria, followed by the release of cytochrome c and the cleavage of caspase 3. Furthermore, blocking p53-mediated transcription using pifithrin significantly reduced apoptosis. Our findings suggest a key role of p53-mediated apoptosis in death of cells expressing the polyalanine expansion mutant of PABPN1.
Collapse
|
7
|
Mariani S, Musumeci B, Basciani S, Fiore D, Francia P, Persichetti A, Volpe M, Autore C, Moretti C, Ulisse S, Gnessi L. Lack of Influence of the Androgen Receptor Gene CAG-Repeat Polymorphism on Clinical and Electrocardiographic Manifestations of the Brugada Syndrome in Man. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2012; 6:145-52. [PMID: 23136466 PMCID: PMC3489086 DOI: 10.4137/cmc.s10553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Clinical studies suggest that testosterone (T) plays an important role in the male predominance of the clinical manifestations of the Brugada syndrome (BS). However, no statistically significant correlations have been observed between T levels and electrocardiogram (ECG) parameters in the BS patients. We investigated whether the hormonal pattern and the variation within CAG repeat polymorphism in exon 1 of the androgen receptor (AR) gene, affecting androgen sensitivity, are associated with the Brugada ECG phenotype in males. Methods and Results 16 male patients with BS (mean age 45.06 ± 11.3 years) were studied. 12-lead ECG was recorded. Blood levels of follicle-stimulating hormone, luteinizing hormone, prolactin, testosterone, free-T, dihydrotestosterone, 17-β-estradiol, estrone, 3-alpha-androstanediol-glucuronide, delta-4-androstenedione, dehydroepiandrosterone sulphate, progesterone, 17-hydroxyprogesterone, and sex hormone binding globulin were assayed. Genotyping of CAG repeats on DNA extracted from leukocytes was carried out. No relationship was found between hormone values and ECG parameters of BS. BS patients showed the CAG length normally recognized in the human polymorphism range and the number of CAG repeats did not correlate with the ECG pattern of BS. Conclusions The AR CAG repeat length does not correlate with the ECG features of the patients affected by BS. The search for genes downstream AR activation as possibly responsible for the increased risk of spontaneous arrhythmias in BS males after puberty is warranted.
Collapse
Affiliation(s)
- S Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology and Endocrinology, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu Z, Wang AM, Adachi H, Katsuno M, Sobue G, Yue Z, Robins DM, Lieberman AP. Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genet 2011; 7:e1002321. [PMID: 22022281 PMCID: PMC3192827 DOI: 10.1371/journal.pgen.1002321] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/10/2011] [Indexed: 12/11/2022] Open
Abstract
Altered protein homeostasis underlies degenerative diseases triggered by misfolded proteins, including spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder caused by a CAG/glutamine expansion in the androgen receptor. Here we show that the unfolded protein response (UPR), an ER protein quality control pathway, is induced in skeletal muscle from SBMA patients, AR113Q knock-in male mice, and surgically denervated wild-type mice. To probe the consequence of UPR induction, we deleted CHOP (C/EBP homologous protein), a transcription factor induced following ER stress. CHOP deficiency accentuated atrophy in both AR113Q and surgically denervated muscle through activation of macroautophagy, a lysosomal protein quality control pathway. Conversely, impaired autophagy due to Beclin-1 haploinsufficiency decreased muscle wasting and extended lifespan of AR113Q males, producing a significant and unexpected amelioration of the disease phenotype. Our findings highlight critical cross-talk between the UPR and macroautophagy, and they indicate that autophagy activation accentuates aspects of the SBMA phenotype. In many age-dependent neurodegenerative diseases, the accumulation of misfolded or mutant proteins drives pathogenesis. Several protein quality control pathways have emerged as central regulators of the turnover of these toxic proteins and therefore impact phenotypic severity. In spinal and bulbar muscular atrophy (SBMA), the mutant androgen receptor with an expanded glutamine tract undergoes hormone-dependent nuclear translocation, unfolding, and oligomerization—steps that are critical to the development of progressive proximal limb and bulbar muscle weakness in men. Here we show that the unfolded protein response (UPR), an endoplasmic reticulum stress response, is triggered in skeletal muscle from SBMA patients and knock-in mice. We find that disruption of the UPR exacerbates skeletal muscle atrophy through the induction of macroautophagy, a lysosomal protein quality pathway. In contrast, impaired autophagy diminishes muscle wasting and prolongs lifespan of SBMA mice. Our findings highlight cross-talk between the UPR and autophagy, and they suggest that limited activation of the autophagic pathway may be beneficial in certain neuromuscular diseases such as SBMA where the nucleus is the essential site of toxicity.
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adrienne M. Wang
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University, Nagoya, Japan
| | | | - Gen Sobue
- Department of Neurology, Nagoya University, Nagoya, Japan
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Diane M. Robins
- Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Andrew P. Lieberman
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
9
|
Brooke GN, Bevan CL. The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 2011; 10:18-25. [PMID: 19721807 PMCID: PMC2699836 DOI: 10.2174/138920209787581307] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/11/2008] [Accepted: 10/20/2008] [Indexed: 12/03/2022] Open
Abstract
Prostate tumour growth is almost always dependent upon the androgen receptor pathway and hence therapies aimed at blocking this signalling axis are useful tools in the management of this disease. Unfortunately such therapies invariably fail; and the tumour progresses to an “androgen-independent” stage. In such cases androgen receptor expression is almost always maintained and much evidence exists to suggest that it may still be driving growth. One mechanism by which the receptor is thought to remain active is mutation. This review summarises the present data on androgen receptor mutations in prostate cancer, and how such substitutions offer a growth advantage by affecting cofactor interactions or by reducing ligand specificity. Such alterations appear to have a subsequent effect upon gene expression suggesting that tumours may “behave” differently dependent upon the ligand promoting growth and if a mutation is present.
Collapse
Affiliation(s)
- G N Brooke
- Androgen Signalling Laboratory, Department of Oncology, Imperial College London, London, W12 0NN, UK
| | | |
Collapse
|
10
|
Hwang K, Yatsenko AN, Jorgez CJ, Mukherjee S, Nalam RL, Matzuk MM, Lamb DJ. Mendelian genetics of male infertility. Ann N Y Acad Sci 2010; 1214:E1-E17. [PMID: 21382200 PMCID: PMC3654696 DOI: 10.1111/j.1749-6632.2010.05917.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infertility is defined as the inability of a couple to conceive despite trying for a year, and it affects approximately 15% of the reproductive-age population. It is considered a genetically lethal factor, as the family lineage stops at that individual with no progeny produced. A genetic defect associated with an infertile individual cannot be transmitted to the offspring, ensuring the maintenance of reproductive fitness of the species. However, with the advent of assisted reproductive techniques (ART), we are now able to overcome sterility and bypass nature's protective mechanisms that developed through evolution to prevent fertilization by defective or deficient sperm.
Collapse
Affiliation(s)
- Kathleen Hwang
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Lentiviral Vector-Mediated Gene Transfer and RNA Silencing Technology in Neuronal Dysfunctions. Mol Biotechnol 2010; 47:169-87. [DOI: 10.1007/s12033-010-9334-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Rhodes LE, Freeman BK, Auh S, Kokkinis AD, La Pean A, Chen C, Lehky TJ, Shrader JA, Levy EW, Harris-Love M, Di Prospero NA, Fischbeck KH. Clinical features of spinal and bulbar muscular atrophy. ACTA ACUST UNITED AC 2010; 132:3242-51. [PMID: 19846582 PMCID: PMC2792370 DOI: 10.1093/brain/awp258] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor gene. To characterize the natural history and define outcome measures for clinical trials, we assessed the clinical history, laboratory findings and muscle strength and function in 57 patients with genetically confirmed disease. We also administered self-assessment questionnaires for activities of daily living, quality of life and erectile function. We found an average delay of over 5 years from onset of weakness to diagnosis. Muscle strength and function correlated directly with serum testosterone levels and inversely with CAG repeat length, age and duration of weakness. Motor unit number estimation was decreased by about half compared to healthy controls. Sensory nerve action potentials were reduced in nearly all subjects. Quantitative muscle assessment and timed 2 min walk may be useful as meaningful indicators of disease status. The direct correlation of testosterone levels with muscle strength indicates that androgens may have a positive effect on muscle function in spinal and bulbar muscular atrophy patients, in addition to the toxic effects described in animal models.
Collapse
|
13
|
Dreyer JL. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions. Methods Mol Biol 2010; 614:3-35. [PMID: 20225033 DOI: 10.1007/978-1-60761-533-0_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animal models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect nondividing cells, thereby allowing stable gene transfer in postmitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter, I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition.
Collapse
Affiliation(s)
- Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
14
|
Abstract
Formation of small interfering RNA (siRNA) occurs in two steps involving binding of the RNA nucleases to a large double‐stranded RNA (dsRNA) and its cleavage into fragments called siRNA. In the second step, these siRNAs join a multinuclease complex, which degrades the homologous single‐stranded mRNAs. The delivery of siRNA involves viral‐ and non‐viral‐mediated delivery systems; the approaches for chemical modifications have also been developed. It has various therapeutic applications for disorders like cardiovascular diseases, central nervous system (CNS) disorders, cancer, human immunodeficiency virus (HIV), hepatic disorders, etc. The present review gives an overview of the applications of siRNA and their potential for treating many hitherto untreatable diseases.
Collapse
Affiliation(s)
- Bhoomika R Goyal
- Institute of Pharmacy, Nirma University of Science and Technology, Ahmedabad 382 481, Gujarat, India.
| | | | | | | |
Collapse
|
15
|
Yu Z, Wang AM, Robins DM, Lieberman AP. Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. Dis Model Mech 2009; 2:500-7. [PMID: 19692580 DOI: 10.1242/dmm.003301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here, we used a mouse model of Kennedy disease, a degenerative disorder caused by an expanded CAG repeat in the androgen receptor (AR) gene, to explore pathways leading to cellular dysfunction. We demonstrate that male mice containing a targeted Ar allele with 113 CAG repeats (AR113Q mice) exhibit hormone- and glutamine length-dependent missplicing of Clcn1 RNA in skeletal muscle. Changes in RNA splicing are associated with increased expression of the RNA-binding protein CUGBP1. Furthermore, we show that skeletal muscle denervation in the absence of a repeat expansion leads to increased CUGBP1 expression. However, this induction of CUGBP1 is not sufficient to alter Clcn1 RNA splicing, indicating that changes mediated by both denervation and AR113Q toxicity contribute to altered RNA processing. To test this notion directly, we exogenously expressed the AR in vitro and observed hormone-dependent changes in the splicing of pre-mRNAs from a human cardiac troponin T minigene. These effects were notably similar to changes mediated by RNA with expanded CUG tracts, but not CAG tracts, highlighting unanticipated similarities between CAG and CUG repeat diseases. The expanded glutamine AR also altered hormone-dependent splicing of a calcitonin/calcitonin gene-related peptide minigene, suggesting that toxicity of the mutant protein additionally affects RNA processing pathways that are distinct from those regulated by CUGBP1. Our studies demonstrate the occurrence of hormone-dependent alterations in RNA splicing in Kennedy disease models, and they indicate that these changes are mediated by both the cell-autonomous effects of the expanded glutamine AR protein and by alterations in skeletal muscle that are secondary to denervation.
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
16
|
Mukherjee S, Thomas M, Dadgar N, Lieberman AP, Iñiguez-Lluhí JA. Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. J Biol Chem 2009; 284:21296-306. [PMID: 19497852 PMCID: PMC2755854 DOI: 10.1074/jbc.m109.011494] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Indexed: 01/30/2023] Open
Abstract
The neurodegenerative disorder spinal and bulbar muscular atrophy or Kennedy disease is caused by a CAG trinucleotide repeat expansion within the androgen receptor (AR) gene. The resulting expanded polyglutamine tract in the N-terminal region of the receptor renders AR prone to ligand-dependent misfolding and formation of oligomers and aggregates that are linked to neuronal toxicity. How AR misfolding is influenced by post-translational modifications, however, is poorly understood. AR is a target of SUMOylation, and this modification inhibits AR activity in a promoter context-dependent manner. SUMOylation is up-regulated in response to multiple forms of cellular stress and may therefore play an important cytoprotective role. Consistent with this view, we find that gratuitous enhancement of overall SUMOylation significantly reduced the formation of polyglutamine-expanded AR aggregates without affecting the levels of the receptor. Remarkably, this effect requires SUMOylation of AR itself because it depends on intact AR SUMOylation sites. Functional analyses, however, indicate that the protective effects of enhanced AR SUMOylation are not due to alterations in AR transcriptional activity because a branched protein structure in the appropriate context of the N-terminal region of AR is necessary to antagonize aggregation but not for inhibiting AR transactivation. Remarkably, small ubiquitin-like modifier (SUMO) attenuates AR aggregation through a unique mechanism that does not depend on critical features essential for its interaction with canonical SUMO binding motifs. Our findings therefore reveal a novel function of SUMOylation and suggest that approaches that enhance AR SUMOylation may be of clinical use in polyglutamine expansion diseases.
Collapse
Affiliation(s)
| | - Monzy Thomas
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | - Nahid Dadgar
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | - Andrew P. Lieberman
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | | |
Collapse
|
17
|
Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 2008; 30:1172-84. [DOI: 10.1002/bies.20852] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Adachi H, Waza M, Katsuno M, Tanaka F, Doyu M, Sobue G. Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropathol Appl Neurobiol 2007; 33:135-51. [PMID: 17359355 DOI: 10.1111/j.1365-2990.2007.00830.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is a motor neurone disease characterized by muscle atrophy, weakness, contraction fasciculations and bulbar involvement. SBMA mainly affects males, while females are usually asymptomatic. SBMA is caused by expansion of a polyglutamine (polyQ)-encoding CAG trinucleotide repeat in the androgen receptor (AR) gene. AR belongs to the heat shock protein 90 (Hsp90) client protein family. The histopathologic hallmarks of SBMA are diffuse nuclear accumulation and nuclear inclusions of the mutant AR with expanded polyQ in residual motor neurones in the brainstem and spinal cord as well as in some other visceral organs. There is increasing evidence that the ligand of AR and molecular chaperones play a crucial role in the pathogenesis of SBMA. The success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of its pathophysiology using animal models has led to the development of disease-modifying drugs, that is, Hsp90 inhibitor and Hsp inducer, which inhibit the pathogenic process of neuronal degeneration. SBMA is a slowly progressive disease by nature. The degree of nuclear accumulation of mutant AR in scrotal skin epithelial cells was correlated with that in spinal motor neurones in autopsy specimens; therefore, the results of scrotal skin biopsy may be used to assess the efficacy of therapeutic trials. Clinical and pathological parameters that reflect the pathogenic process of SBMA should be extensively investigated.
Collapse
Affiliation(s)
- H Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 2006; 116:2663-72. [PMID: 16981011 PMCID: PMC1564432 DOI: 10.1172/jci28773] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 07/25/2006] [Indexed: 01/26/2023] Open
Abstract
Kennedy disease, a degenerative disorder characterized by androgen-dependent neuromuscular weakness, is caused by a CAG/glutamine tract expansion in the androgen receptor (Ar) gene. We developed a mouse model of Kennedy disease, using gene targeting to convert mouse androgen receptor (AR) to human sequence while introducing 113 glutamines. AR113Q mice developed hormone and glutamine length-dependent neuromuscular weakness characterized by the early occurrence of myopathic and neurogenic skeletal muscle pathology and by the late development of neuronal intranuclear inclusions in spinal neurons. AR113Q males unexpectedly died at 2-4 months. We show that this androgen-dependent death reflects decreased expression of skeletal muscle chloride channel 1 (CLCN1) and the skeletal muscle sodium channel alpha-subunit, resulting in myotonic discharges in skeletal muscle of the lower urinary tract. AR113Q limb muscles show similar myopathic features and express decreased levels of mRNAs encoding neurotrophin-4 and glial cell line-derived neurotrophic factor. These data define an important myopathic contribution to the Kennedy disease phenotype and suggest a role for muscle in non-cell autonomous toxicity of lower motor neurons.
Collapse
MESH Headings
- Androgens/metabolism
- Androgens/pharmacology
- Animals
- Chloride Channels/genetics
- Chloride Channels/metabolism
- Disease Models, Animal
- Female
- Gene Expression/genetics
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Mutation/genetics
- Myogenin/genetics
- NAV1.4 Voltage-Gated Sodium Channel
- Nerve Growth Factors/genetics
- Orchiectomy
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cholinergic/genetics
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Survival Analysis
- Testis/pathology
- Testosterone/pharmacology
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0605, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Tomik B, Partyka D, Sułek A, Kurek-Gryz EA, Banach M, Ostrowska M, Zaremba J, Figlewicz DA, Szczudlik A. A phenotypic-genetic study of a group of Polish patients with spinal and bulbar muscular atrophy. ACTA ACUST UNITED AC 2006; 7:72-9. [PMID: 16753970 DOI: 10.1080/17482960600664839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We studied phenotype-genotype correlation in a group of Polish males with spinal and bulbar muscular atrophy (SBMA) and in female carriers. Eleven males with suspected SBMA phenotype and three suspected female carriers were examined. Male patients presented with the predominant signs of progressive, symmetrical distal limb weakness with amyotrophy, facial muscular weakness with orofacial fasciculations, nasal voice and slight dysphagia, gynaecomastia, decreased potency, as well as hand tremor and distal peripheral sensory disturbances in a few cases. One of the carriers presented with a 30-year history of fasciculations and minimal distal weakness and cramps in the legs, while the other two were asymptomatic. DNA analysis revealed expanded size of CAG repeats in Xq11-12 in the AR gene in 10 out of 11 men (range 45-52 CAG repeats) and in the women (range 46-48 CAG repeats). There was no correlation between CAG repeat size and the age of disease onset and duration of the disease. A rare, predominantly distal distribution of weakness and amyotrophy was found in our group of the SBMA patients (8 out of 11 cases) from three unrelated kindreds and also in the remaining two sporadic cases. The extended CAG repeats within families were stable.
Collapse
Affiliation(s)
- Barbara Tomik
- Department of Neurology, Jagiellonian University Medical College, 3 Botaniczna Street, 31-503 Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Thomas M, Harrell JM, Morishima Y, Peng HM, Pratt WB, Lieberman AP. Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 2006; 15:1876-83. [PMID: 16644868 DOI: 10.1093/hmg/ddl110] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The molecular chaperone hsp90 has emerged as an important therapeutic target in cancer and neurodegenerative diseases, including the polyglutamine expansion disorders, because of its ability to regulate the activity, turnover and trafficking of many proteins. For neurodegenerative disorders associated with protein aggregation, the rationale has been that inhibition of hsp90 by geldanamycin and related compounds activates heat shock factor 1 (HSF1) to induce the production of the chaperones hsp70 and hsp40 that promote disaggregation and protein degradation. However, we show here that geldanamycin blocks the development of aggregates of the expanded glutamine androgen receptor (AR112Q) of Kennedy disease in Hsf1(-/-) mouse embryonic fibroblasts where these chaperones are not induced. Geldanamycin is additionally known to inhibit hsp90-dependent protein trafficking and to promote proteasomal degradation of client proteins. Overexpression of the hsp90 cochaperone p23 also promotes AR112Q degradation, and inhibits both AR trafficking and AR112Q aggregation without altering levels of hsp70 or hsp40. The hsp90-dependent trafficking mechanism has been defined, and it is shown that key immunophilin (IMM) components of the trafficking machinery are present in polyglutamine aggregates in cell and mouse models of Kennedy disease. Our results indicate that inhibition of the hsp90-dependent trafficking mechanism prevents aggregation of the expanded glutamine androgen receptor, thereby opening a variety of novel therapeutic approaches to these neurodegenerative disorders.
Collapse
Affiliation(s)
- Monzy Thomas
- Department of Pathology, University of Michigan Medical School, 1301 Catherine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yu Z, Dadgar N, Albertelli M, Scheller A, Albin RL, Robins DM, Lieberman AP. Abnormalities of germ cell maturation and sertoli cell cytoskeleton in androgen receptor 113 CAG knock-in mice reveal toxic effects of the mutant protein. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:195-204. [PMID: 16400023 PMCID: PMC1592669 DOI: 10.2353/ajpath.2006.050619] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unresolved question in the study of the polyglutamine neurodegenerative disorders is the extent to which partial loss of normal function of the mutant protein contributes to the disease phenotype. To address this, we studied Kennedy disease, a degenerative disorder of lower motor neurons caused by a CAG/glutamine expansion in the androgen receptor (Ar) gene. Signs of partial androgen insensitivity, including testicular atrophy and decreased fertility, are common in affected males, although the underlying mechanisms are not well understood. Here, we describe a knock-in mouse model that reproduces the testicular atrophy, diminished fertility, and systemic signs of partial androgen insensitivity that occur in Kennedy disease patients. Using this model, we demonstrate that the testicular pathology in this disorder is distinct from that mediated by loss of AR function. Testes pathology in 113 CAG knock-in mice was characterized by morphological abnormalities of germ cell maturation, decreased solubility of the mutant AR protein, and alterations of the Sertoli cell cytoskeleton, changes that are distinct from those produced by AR loss-of-function mutation in testicular feminization mutant mice. Our data demonstrate that toxic effects of the mutant protein mediate aspects of the Kennedy disease phenotype previously attributed to a loss of AR function.
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, University of Michigan Medical School, 1301 Catherine, 4233 Medical Science 1, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang Q, Mosser DD, Bag J. Induction of HSP70 expression and recruitment of HSC70 and HSP70 in the nucleus reduce aggregation of a polyalanine expansion mutant of PABPN1 in HeLa cells. Hum Mol Genet 2005; 14:3673-84. [PMID: 16239242 DOI: 10.1093/hmg/ddi395] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nuclear inclusions formed by the aggregation of a polyalanine expansion mutant of the nuclear poly(A)-binding protein (PABPN1) is a hallmark of oculopharyngeal muscular dystrophy (OPMD). OPMD is a dominant autosomal disease in which patients exhibit progressive difficulty of swallowing and eyelid elevation, starting around the age of 50. At present, there is no specific treatment to reduce the aggregate burden in patients. However, in cell culture models of OPMD, reduction of protein aggregation can be achieved by ectopic expression of HSP70. As gene transfer may not be the most effective means to elevate HSP70 levels, we tested four pharmacological agents for their ability to induce HSP70, recruit both HSP70 and HSC70 into the cell nucleus and reduce mutant PABPN1 aggregation in a HeLa cell culture model. We show here that exposure to moderate levels of ZnSO4, 8-hydroxyquinoline, ibuprofen and indomethacin produced a robust stress response resulting in the induction of HSP70 in HeLa cells expressing the mutant PABPN1 as a green fluorescent protein (GFP) fusion protein. Both HSP70 and the constitutive chaperone HSC70 localized in the nucleus of cells treated with any one of the four agents. This stress response was similar to what was observed following hyperthermia. All four agents also caused a significant reduction in the cellular burden of protein aggregates, as was judged by confocal microscopy and solubility changes of the aggregates. A concomitant reduction of cell death in drug-treated mutant PABPN1 expressing cells was also observed.
Collapse
Affiliation(s)
- Qishan Wang
- Department of Molecular and Cellular Biology, University of Guelph, Ont, Canada
| | | | | |
Collapse
|
24
|
Thomas M, Yu Z, Dadgar N, Varambally S, Yu J, Chinnaiyan AM, Lieberman AP. The Unfolded Protein Response Modulates Toxicity of the Expanded Glutamine Androgen Receptor. J Biol Chem 2005; 280:21264-71. [PMID: 15799970 DOI: 10.1074/jbc.m500144200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kennedy disease, a degenerative disorder caused by an expanded glutamine tract, is mediated by misfolding of the mutant androgen receptor (AR) protein, a process that may disrupt proteasome function. We hypothesized that this might lead to endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR), a complex physiologic pathway that regulates cell survival. To test this hypothesis, we used aminoterminal fragments of wild type (AR16Q) or mutant (AR112Q) AR that triggered glutamine length-dependent cell death and activated an ER stress-inducible promoter. To evaluate the role of the UPR, we examined the contributions of three proximal sensors of ER stress: activating transcription factor 6 (ATF6), inositol requiring 1 (IRE1), and PKR-like endoplasmic reticulum kinase (PERK). AR112Q toxicity was significantly increased by a dominant negative ATF6 mutant and significantly decreased by a constitutively active ATF6 mutant, indicating that ATF6 promoted cell survival. In contrast, co-transfection with three separate IRE1alpha dominant negative mutants failed to alter glutamine length-dependent toxicity, suggesting that this arm of the UPR did not significantly affect AR112Q induced cell death. Activation of PERK, an ER transmembrane protein that functions as the third proximal UPR sensor, promoted glutamine length-dependent toxicity. Although nuclear localization sequence- and nuclear export sequence-targeted proteins both activated the UPR, this pathway more potently influenced toxicity when proteins were targeted to the cytoplasm. Taken together, our data demonstrate that the UPR is activated in cells expressing long glutamine tracts and that this pathway modulates polyglutamine toxicity.
Collapse
Affiliation(s)
- Monzy Thomas
- Department of Pathology, the University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kouyoumdjian JA, Morita MDPA, Araújo RGMD. X-linked spinal and bulbar muscular atrophy (Kennedy's disease) with long-term electrophysiological evaluation: case report. ARQUIVOS DE NEURO-PSIQUIATRIA 2005; 63:154-9. [PMID: 15830083 DOI: 10.1590/s0004-282x2005000100028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked spinal and bulbar muscular atrophy or Kennedy's disease is an adult-onset motor neuronopathy caused by a CAG repeat expansion within the first exon of an androgen receptor gene. We report the case of a 66-year-old man, previously diagnosed with motor neuron disease (MND), who presented acute and reversible left vocal fold (dysphonia) and pharyngeal paresis, followed by a slowly progressive weakness and also bouts of weakness, wasting and fasciculation on tongue, masseter, face, pharyngeal, and some proximal more than distal upper limb muscles, associated to bilateral hand tremor and mild gynecomastia. There were 5 electroneuromyography exams between 1989 and 2003 that revealed chronic reinnervation, some fasciculations (less than clinically observed) and rare fibrillation potentials, and slowly progressive sensory nerve action potentials (SNAP) abnormality, leading to absent/low amplitude potentials. PCR techniques of DNA analysis showed an abnormal number of CAG repeats, found to be 44 (normal 11-34). Our case revealed an acute and asymmetric clinical presentation related to bulbar motoneurons; low amplitude/absent SNAP with mild asymmetry; a sub-clinical or subtle involvement of proximal/distal muscles of both upper and lower limbs; and a probable evolution with bouts of acute dennervation, followed by an efficient reinnervation.
Collapse
Affiliation(s)
- João Aris Kouyoumdjian
- Serviço de Doenças Neuromusculares e Eletroneuromiografia, Faculdade de Medicina de São José, Rio Preto, SP, Brazil.
| | | | | |
Collapse
|
26
|
Ciechanover A, Schwartz AL. The ubiquitin system: pathogenesis of human diseases and drug targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:3-17. [PMID: 15571805 DOI: 10.1016/j.bbamcr.2004.09.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
With the many processes and substrates targeted by the ubiquitin pathway, it is not surprising to find that aberrations in the system underlie, directly or indirectly, the pathogenesis of many diseases. While inactivation of a major enzyme such as E1 is obviously lethal, mutations in enzymes or in recognition motifs in substrates that do not affect vital pathways or that affect the involved process only partially may result in a broad array of phenotypes. Likewise, acquired changes in the activity of the system can also evolve into certain pathologies. The pathological states associated with the ubiquitin system can be classified into two groups: (a) those that result from loss of function-mutation in a ubiquitin system enzyme or in the recognition motif in the target substrate that lead to stabilization of certain proteins, and (b) those that result from gain of function-abnormal or accelerated degradation of the protein target. Studies that employ targeted inactivation of genes coding for specific ubiquitin system enzymes and substrates in animals can provide a more systematic view into the broad spectrum of pathologies that may result from aberrations in ubiquitin-mediated proteolysis. Better understanding of the processes and identification of the components involved in the degradation of key regulatory proteins will lead to the development of mechanism-based drugs that will target specifically only the involved proteins.
Collapse
Affiliation(s)
- Aaron Ciechanover
- Tumor and Vascular Biology Research Center, the Rappaport Family Institute for Research in the Medical Sciences, and the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | |
Collapse
|
27
|
Abstract
There has been considerable recent progress in understanding mechanisms by which gene mutations cause degeneration of motoneurons and peripheral nerves. Novel therapies inspired by these insights have begun to yield promising results in mouse models of these genetic diseases. Among these have been the use of small molecules or proteins to suppress gain-of-function mutations (eg, ascorbic acid for Charcot-Marie-Tooth disease type 1A) or to restore enzyme activities that are deficient because of loss-of-function mutations (eg, treatment of Fabry's disease with recombinant alpha-galactosidase or with low-molecular-weight alpha-galactosidase chaperones and treatment of spinal muscular atrophy with phenylbutyrate). Some of these therapies are already being tested in humans. Equally exciting is the prospect that small molecules and proteins will be identified that exert potent therapeutic effects in a broad spectrum of inherited and acquired motoneuron and peripheral nerve disorders.
Collapse
Affiliation(s)
- David Pleasure
- Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Philadelphia, PA 19104 USA.
| |
Collapse
|
28
|
Abstract
Kennedy's disease, also known as spinal and bulbar muscular atrophy, is a progressive degenerative condition affecting lower motor neurons. It is one of nine neurodegenerative disorders caused by a polyglutamine repeat expansion. Affecting only men, Kennedy's disease is the only one of these conditions that follows an X-linked mode of inheritance. The causative protein in Kennedy's disease, with a polyglutamine expansion residing in the first N-terminal domain, is the androgen receptor. Research in this field has made significant advances in recent years, and with the increased understanding of pathogenic mechanisms, feasible approaches to treatments are being investigated. In Kennedy's disease research, the most significant issue to emerge recently is the role of androgens in exacerbating the disease process. On the basis of animal experiments, a viable hypothesis is that higher circulating levels of androgens in men could trigger the degeneration of motor neurons causing this disease, and that lower levels in heterozygous and homozygous women are protective. This is a major issue, as treatment of individuals affected by Kennedy's disease with testosterone has been considered a reasonable therapy by some neurologists. The rationale behind this approach relates to the fact that Kennedy's disease is accompanied by mild androgen insensitivity. It was therefore believed that treatment with high doses of testosterone might compensate for this loss of androgen action, with the added benefit of preventing muscle wasting. The current review provides an overview of recent advances in the field of Kennedy's disease research, including approaches to treatment.
Collapse
Affiliation(s)
- K J Greenland
- Centre for Hormone Research, Murdoch Childrens Research Institute, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Thomas M, Dadgar N, Aphale A, Harrell JM, Kunkel R, Pratt WB, Lieberman AP. Androgen Receptor Acetylation Site Mutations Cause Trafficking Defects, Misfolding, and Aggregation Similar to Expanded Glutamine Tracts. J Biol Chem 2004; 279:8389-95. [PMID: 14670946 DOI: 10.1074/jbc.m311761200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Kennedy's disease is a degenerative disorder of motor neurons caused by the expansion of a glutamine tract near the amino terminus of the androgen receptor (AR). Ligand binding to the receptor is associated with several post-translational modifications, but it is poorly understood whether these affect the toxicity of the mutant protein. Our studies now demonstrate that mutation of lysine residues in wild-type AR that are normally acetylated in a ligand-dependent manner mimics the effects of the expanded glutamine tract on receptor trafficking, misfolding, and aggregation. Mutation of lysines 630 or 632 and 633 to alanine markedly delays ligand-dependent nuclear translocation. The K632A/K633A mutant also undergoes ligand-dependent misfolding and aggregation similar to the expanded glutamine tract AR. This acetylation site mutant exhibits ligand-dependent 1C2 immunoreactivity, forms aggregates that co-localize with Hsp40, Hsp70, and the ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP), and inhibits proteasome function. Ligand-dependent nuclear translocation of the wild-type receptor and misfolding and aggregation of the K632A/K633A mutant are blocked by radicicol, an Hsp90 inhibitor. These data identify a novel role for the acetylation site as a regulator of androgen receptor subcellular distribution and folding and indicate that ligand-dependent aggregation is dependent upon intact Hsp90 function.
Collapse
Affiliation(s)
- Monzy Thomas
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Agius LM. Dysregulatory dysequilibrium of gene transcription and of nuclear transport in polyglutamine neuro-degeneration. Med Hypotheses 2003; 60:869-73. [PMID: 12699716 DOI: 10.1016/s0306-9877(03)00068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyglutamine neurodegeneration as an essential expansion mutation of the CAG-trinucleotide repeat encoding glutamine would appear to constitute an integral process of aggregation/accumulation that self-propagates a secondary process of possible nuclear sequestration. Within such a scheme of progressive expansion of polyglutamine stretches in strict parallel correlation with increased CAG trinucleotide repeats in genes such as ataxin-7 and its messenger RNA, it would appear that a fundamental relationship of accumulation directly inducing biophysical disruption between nuclear/nucleolar and cytoplasmic protein machineries would constitute a dysfunctional dysequilibrium accounting for self-progressive neuronal degeneration with atrophy of the cerebral cortex and ganglia such as the caudate, that is limited often to specific population groups of neurons. It is for example in terms of Huntington's disease as an autosomal dominant disorder with high penetrance on a background of onset of dementia mainly in the fourth and fifth decades of life that one might conceive of polyglutamine neurodegeneration as fundamentally a developmental disturbance affecting neuronal maturation that accounts for abnormal neurophysiological and biochemical aspects of interaction of nucleus with cytoplasm. Polyglutamine expansion and trinucleotide repeats as both progressive processes of accumulation and synthesis would constitute a complex interplay of inducing and induced effects that both contribute in probably multiple ways to the self-progressive nature of a nuclear sequestration process.
Collapse
Affiliation(s)
- Lawrence M Agius
- Department of Pathology, St. Luke's Hospital, University of Malta, Malta.
| |
Collapse
|
31
|
Abstract
Over the past 15 years, molecular genetic advances have led to new approaches for evaluation of neurogenetic disease. New diagnostic tests are available, and in some cases new diseases have been defined. However, effective use of these new tests still relies on solid clinical assessment to prioritize testing and interpret results. This review presents applications of genetic advances to a series of neurogenetic disorders, emphasizing the specific uses of genetic testing and the clinical questions that may arise. The rapid expansion in molecular diagnostics and genomics has fundamentally changed the approach to neurogenetic illnesses. Use of molecular biologic techniques has elucidated new disease mechanisms and allowed the application of genetic concepts to classically nongenetic illnesses. This has led to a wealth of new clinical information and created new dilemmas in patient care. In addition, it has brought into common usage a series of clinical genetic terms, such as variable expressivity (the range of phenotypic features in which the same disease can manifest) and anticipation (the progressively earlier age of onset of a specific disease in a family). This review provides a practical approach for neurogenetic evaluation of individuals who are likely to present in neuro-ophthalmologic practices with inherited ataxias, myotonic dystrophy, oculopharyngeal dystrophy, and Parkinson disease.
Collapse
Affiliation(s)
- David R Lynch
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
32
|
Wakimoto H, Maguire CT, Sherwood MC, Vargas MM, Sarkar PS, Han J, Reddy S, Berul CI. Characterization of cardiac conduction system abnormalities in mice with targeted disruption of Six5 gene. J Interv Card Electrophysiol 2002; 7:127-35. [PMID: 12397222 DOI: 10.1023/a:1020881520353] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3' untranslated region of the myotonic dystrophy protein kinase gene (DMPK) on chromosome 19q13. Cardiac involvement in DM includes conduction abnormalities and functional deficits. Three hypotheses of molecular mechanisms for DM pathophysiology are; first, partial loss of myotonic dystrophy protein kinase (DMPK); second, decreased transcription of a neighboring homeodomain-encoding gene, Six5 (or DMAHP), and third, transdominant effects of the RNA and regulation of splicing associated with expression of expanded CUG repeats. However, the precise pathogenetic mechanism remains unresolved. We previously reported that dosage of Dm15, the mouse homologue of DMPK, strongly associates with the cardiac conduction abnormalities. For further distinction of the molecular mechanisms underlying the cardiac phenotype of DM, in the present study, we characterized the cardiac conduction findings of mice with targeted disruption of Six5 gene. Six5 heterozygous mice (adult and young) and their age matched wild type littermates were studied using in vivo electrophysiologic techniques, echocardiography, heart rate variability and exercise tolerance testing. No PR prolongation was detected, however, prolonged QRS duration and delayed infraHisian conduction were significant in adult Six5 heterozygous mice. By echocardiography, left ventricular (LV) end-diastolic dimension was enlarged in adult Six5 heterozygous mice, although neither fractioning shortening nor LV wall thickness showed significant differences. Six5 loss may partly contribute to conduction abnormalities in myotonic dystrophy, particularly infraHisian conduction delay, one of the initial phenotypes of adult-onset cardiac conduction abnormalities in DM patients.
Collapse
Affiliation(s)
- Hiroko Wakimoto
- Department of Cardiology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ross OA, Awayn NH, McWhinney D, Maxwell LD, El-Agnaf OMA, Barnett YA, Rea IM, Middleton D, Wallace A, Gibson JM, Curran MD. A novel polymorphic triplet repeat in intron five of the alpha-synuclein gene: no evidence of expansion or allelic association with idiopathic Parkinson's disease in the Irish. Neuroreport 2002; 13:1621-5. [PMID: 12352614 DOI: 10.1097/00001756-200209160-00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The recent discovery of two mutations associated with autosomal dominant Parkinson's disease (PD) has led to the hypothesis that the alpha-synuclein gene plays a role in the pathogenesis of PD. Here we report a novel triplet CAA repeat within the unusually large intron 5 sequence of the alpha-synuclein gene. Microsatellite analysis revealed a high degree of polymorphism within the Irish population with seven alleles detected, ranging from eight to 17 CAA repeats. Analysis of the allele/genotype frequency differences observed between an Irish idiopathic PD cohort (eta = 98) and a healthy aged control group ( eta= 92) revealed no strong association with either group. All PD subjects displaying homozygous profiles were examined for expansion of the trinucleotide repeat, but no expansion was observed. These results would suggest that polymorphism of the alpha-synuclein gene may not play as significant a role in the pathogenesis of idiopathic PD as previously hypothesised.
Collapse
Affiliation(s)
- Owen A Ross
- Northern Ireland Regional Histocompatibility and Immunogenetics Laboratory, Blood Transfusion Building, Belfast City Hospital, Belfast BT9 7TS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In the last twenty years, the genetic basis for most of the inherited myopathies and muscular dystrophies has been unveiled. Diseases have been found to result from loss of function of structural components of the muscle basal lamina (e.g., MCD1A), sarcolemma (e.g., the sarcoglycanopathies), nucleus (e.g., EDMD) and sarcomere (e.g., the nemaline myopathies). A few have been associated with abnormalities in the genes for muscle enzymes (e.g., calpain and fukutin). Alternate mechanisms of pathogenesis have also recently been suggested by mutations lying outside of coding regions, such as the "field effect" of chromosomal mutations in DM2. In the future, we will likely identify the genes responsible for the remaining disorders, including many of the distal myopathies. In addition, we may also find skeletal muscle diseases associated with some of the presently non-implicated muscle proteins: syntropin, dystrobrevin, epsilon-sarcoglycan and sarcospan. The next steps may be to identify and understand the relationship of modifier genes producing the phenotypic heterogeneity of many of these diseases and to characterize those and other targets for therapeutic intervention, whether by gene therapy or by pharmacological treatment.
Collapse
Affiliation(s)
- Kathryn R Wagner
- Department of Neurology, Johns Hopkins Hospital, Meyer 5-119, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
35
|
Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G. Brain MRI features of congenital- and adult-form myotonic dystrophy type 1: case-control study. Neuromuscul Disord 2002; 12:476-83. [PMID: 12031621 DOI: 10.1016/s0960-8966(01)00324-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To compare and characterize the magnetic resonance imaging (MRI) of brain in the congenital and adult form of myotonic dystrophy type 1, we evaluated five patients with congenital dystrophy type 1, 10 age- and 10 disease duration-matched patients with adult-form dystrophy type 1 and 20 age-matched healthy volunteers. The ventricular enlargement was evaluated by the ventricular:brain ratio, the signal intensity of white matter posterosuperior to trigones by reference to standard images and the white matter lesions by a semiquantitative method. In the congenital dystrophy type 1, MRI was characterized by ventriculomegaly and moderate/severe hyperintensity of white matter posterosuperior to trigones, which showed no correlation with the age. MRI in the adult-form dystrophy type 1 was strictly related to disease duration and varied between normal findings, except for temporo-polar white matter lesions, in age-matched patients and ventriculomegaly with white matter hyperintensities in disease duration-matched patients. These results suggest that the origin of MRI abnormalities in myotonic dystrophy type 1 is mainly developmental for the congenital form and mainly degenerative for the adult form.
Collapse
Affiliation(s)
- Alfonso Di Costanzo
- Department of Neurological Sciences, Second University of Naples, Piazza L. Miraglia, Naples, Italy.
| | | | | | | | | |
Collapse
|
36
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3056] [Impact Index Per Article: 138.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
37
|
Abstract
BACKGROUND Due to high polymorphism, common sequences, and ubiquitous presence, short tandem repeats (STRs) may enhance genomic typing to determine prostate carcinoma (CaP) predisposition. The human phosphoglycerate kinase (PGK1) gene is located within Xq11-Xq13, a region implicated in familial prostate carcinoma, androgen insensitivity, perineal hypospadias, and other genitourinary abnormalities. The PGK1 STR is the most polymorphic site described in the Xq11-Xq13 interval and was investigated for its ability to detect differences comparing a heterogeneous CaP population versus controls. METHODS We compared PGK1 STR allele sizes in 103 localized CaP patients with 299 control subjects to evaluate the STR's ability to detect potential CaP predisposing genetic factors. Allele sizes were measured with an automated DNA sequencer after polymerase chain reaction (PCR) based copying of the PGK1 STR region. Allele sizes were compared using chi square and Mann-Whitney U tests. RESULTS Among 402 subjects, there were 10 distinct allele sizes consisting of five common and five relatively rare alleles. The PGK1 STR, 12 allele (12 tetrameric repeats) was more common among patients with CaP (p=0.03). Allele 13 was more common in CaP patients > 60 years old than among younger patients (p< 0.005). CONCLUSIONS Our findings suggest that STRs in the Xq11-Xq13 region and other regions may provide a means to rapidly scan genetic loci in large populations of CaP patients and controls. Within limitations, STRs offer the advantage of relatively uniform protocols that could potentially provide a means to comprehensively scan genomes at known predisposing loci.
Collapse
Affiliation(s)
- D E Riley
- Department of Veteran Affairs, Seattle, WA 98108-1597, USA.
| | | |
Collapse
|
38
|
Galvão R, Mendes-Soares L, Câmara J, Jaco I, Carmo-Fonseca M. Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis. Brain Res Bull 2001; 56:191-201. [PMID: 11719250 DOI: 10.1016/s0361-9230(01)00651-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ten years after the discovery of human diseases caused by trinucleotide repeat expansions, searching for mechanistic links between gene mutation and pathological phenotype remains a fundamental and unsolved issue. Evidence accumulated so far indicates that the pathogenesis of repeat disorders is complex and multi-factorial. Diseases caused by CAG expansions coding for polyglutamine tracts have been extensively studied, and in most cases a toxic gain-of-function of the mutant protein was demonstrated. Most recently, tracking the effects of repeats along the pathway of gene expression is providing additional clues to understand how a triplet repeat expansion can cause disease. Expanded repeats form DNA secondary structures that confer genetic instability, and most likely contribute to alter the local chromatin configuration leading to transcriptional silencing. At the level of RNA, the expanded repeat may either interfere with processing of the primary transcript, resulting in deficit of the corresponding protein, or interact with RNA-binding proteins altering their normal activity. The latter mechanism, termed RNA gain-of-function, has no precedents in human genetics. Recent evidence suggests that expanded RNAs and associated RNA-binding proteins are potential contributors to the pathogenesis of several triplet repeat diseases.
Collapse
Affiliation(s)
- R Galvão
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
39
|
Abstract
The present review on the pharmacological reactivation of inactive genes focuses on our experience with the fragile X syndrome. The fragile X syndrome of mental retardation is the prototype of a series of inherited neurological disorders caused by abnormal expansion of repeated trinucleotide sequences embedded in various genes. In a number of these disorders, such as Huntington disease and several forms of spinocerebellar ataxias, the expanded CAG repeat is translated, resulting in a polyglutamine-containing protein that indirectly causes neurodegeneration. On the contrary, in the fragile X syndrome, the expanded CGG repeat is contained in the regulatory region of the FMR1 gene and causes transcriptional inactivation. The mutation spares the coding region of the FMR1 gene, which potentially would allow synthesis of a normal protein if transcription could be restored. This prompted us to try and reactivate the gene function with different pharmacological regimens. We discuss our successful results with DNA demethylating and histone hyperacetylating drugs and their implications for future treatments of the fragile X syndrome.
Collapse
Affiliation(s)
- P Chiurazzi
- Department of Pediatrics, University of Messina, Messina, Italy
| | | |
Collapse
|
40
|
Abstract
Mutations that totally disrupt androgen receptor function cause the well known testicular feminizing syndrome or complete androgen insensitivity syndrome, wherein a 46 XY individual is completely feminized at birth. Recently it has been increasingly obvious that androgen receptor mutations not only result in the complete androgen insensitivity syndrome, but can cause a wide spectrum of milder insensitivity syndromes including ambiguous genitalia in newborn infants, and 'idiopathic' male infertility in otherwise normal males. Characterization of the molecular and structural mechanisms of androgen receptor dysfunction in these cases has led to directed hormonal therapy. Thus the differential response of a Met807Thr mutant androgen receptor to dihydrotestosterone but not testosterone, have been used to restore male genital development in an infant with partial AIS. Of greater significance, because they affect larger numbers of patients, are the mutations and polymorphisms that result in depressed spermatogenesis and male infertility in phenotypic males. Studies involving Singaporean, Australian, North American and Japanese subjects have established that increases in length of a trinucleotide repeat (CAG) tract, encoding a polyglutamine stretch in the transactivation domain of the androgen receptor, are associated with increased risk of defective spermatogenesis and undermasculinization. Independent of the CAG repeats, missense amino-acid substitutions in the ligand-binding domain, involving residues 727, 798 and 886 cause infertility through a novel mechanism. Pathogenicity is transmitted, not through defective ligand binding, but through defective protein-protein interactions between receptor domains and coactivator proteins that are essential for gene transcription. Elucidation of the molecular and structural basis of androgen receptor dysfunction in these cases allows precise genetic counseling and can lead to the design of rational hormonal therapy.
Collapse
Affiliation(s)
- C J Loy
- Department of Obstetrics & Gynaecology, National University of Singapore, Republic of Singapore
| | | |
Collapse
|
41
|
|
42
|
Chinnery PF, Johnson MA, Walls TJ, Gibson GJ, Fawcett PRW, Jamieson S, Fulthorpe JJ, Cullen M, Hudgson P, Bushby KMD. A novel autosomal dominant distal myopathy with early respiratory failure: Clinico-pathologic characteristics and exclusion of linkage to candidate genetic loci. Ann Neurol 2001. [DOI: 10.1002/ana.93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|