1
|
Marzi J, Munnig Schmidt EC, Brauchle EM, Wissing TB, Bauer H, Serrero A, Söntjens SHM, Bosman AW, Cox MAJ, Smits AIPM, Schenke-Layland K. Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Front Cardiovasc Med 2022; 9:885873. [PMID: 35656396 PMCID: PMC9152121 DOI: 10.3389/fcvm.2022.885873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The equilibrium between scaffold degradation and neotissue formation, is highly essential for in situ tissue engineering. Herein, biodegradable grafts function as temporal roadmap to guide regeneration. The ability to monitor and understand the dynamics of degradation and tissue deposition in in situ cardiovascular graft materials is therefore of great value to accelerate the implementation of safe and sustainable tissue-engineered vascular grafts (TEVGs) as a substitute for conventional prosthetic grafts. In this study, we investigated the potential of Raman microspectroscopy and Raman imaging to monitor degradation kinetics of supramolecular polymers, which are employed as degradable scaffolds in in situ tissue engineering. Raman imaging was applied on in vitro degraded polymers, investigating two different polymer materials, subjected to oxidative and enzymatically-induced degradation. Furthermore, the method was transferred to analyze in vivo degradation of tissue-engineered carotid grafts after 6 and 12 months in a sheep model. Multivariate data analysis allowed to trace degradation and to compare the data from in vitro and in vivo degradation, indicating similar molecular observations in spectral signatures between implants and oxidative in vitro degradation. In vivo degradation appeared to be dominated by oxidative pathways. Furthermore, information on collagen deposition and composition could simultaneously be obtained from the same image scans. Our results demonstrate the sensitivity of Raman microspectroscopy to determine degradation stages and the assigned molecular changes non-destructively, encouraging future exploration of this techniques for time-resolved quality assessment of in situ tissue engineering processes.
Collapse
Affiliation(s)
- Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- *Correspondence: Julia Marzi
| | - Emma C. Munnig Schmidt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eva M. Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tamar B. Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | | | | | | | | | | | - Anthal I. P. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Creative transformation of biomedical polyurethanes: from biostable tubing to biodegradable smart materials. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
An Z, Zhang L, Liu Y, Zhao H, Zhang Y, Cao Y, Zhang Y, Pei R. Injectable thioketal-containing hydrogel dressing accelerates skin wound healing with the incorporation of reactive oxygen species scavenging and growth factor release. Biomater Sci 2021; 10:100-113. [PMID: 34792044 DOI: 10.1039/d1bm01179k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex dynamic process. During the occurrence of skin injury, the excessive reactive oxygen species (ROS) level is associated with sustained inflammatory response, which limits efficient wound repair. Although multifunctional hydrogels are considered ideal wound dressings due to their unique advantages, the development of hydrogel dressings with rapid gelling rates, shape adaptation, and antioxidant function is still a vital challenge. In this work, a ROS-responsive injectable polyethylene glycol hydrogel containing thioketal bonds (PEG-TK hydrogel) was synthesized and utilized to deliver epidermal growth factor (EGF). We adopted bio-orthogonal click chemistry for crosslinking the polymer chains to obtain the EGF@PEG-TK hydrogel with fast gelation time, injectability and shape-adaptability. More interestingly, the thioketal bonds in the PEG-TK hydrogel not only scavenged excessive ROS in the wound sites but also achieved responsive and controlled EGF release to facilitate regeneration. The EGF@PEG-TK hydrogel treatment offered the benefits of protecting cells from oxidative stress, accelerating wound closure, and reducing scar formation in the full-thickness skin defect model. This work provides a promising strategy for developing antioxidant hydrogel dressing for facilitating the repair of wounds.
Collapse
Affiliation(s)
- Zhen An
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hongbo Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
4
|
Martin JR, Patil P, Yu F, Gupta MK, Duvall CL. Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials 2020; 263:120377. [PMID: 32947094 DOI: 10.1016/j.biomaterials.2020.120377] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels crosslinked with enzyme-cleavable peptides are promising biodegradable vehicles for therapeutic cell delivery. However, peptide synthesis at the level required for bulk biomaterial manufacturing is costly, and fabrication of hydrogels from scalable, low-cost synthetic precursors while supporting cell-specific degradation remains a challenge. Reactive oxygen species (ROS) are cell-generated signaling molecules that can also be used as a trigger to mediate specific in vivo degradation of biomaterials. Here, PEG-based hydrogels crosslinked with ROS-degradable poly(thioketal) (PTK) polymers were successfully synthesized via thiol-maleimide chemistry and employed as a cell-degradable, antioxidative stem cell delivery platform. PTK hydrogels were mechanically robust and underwent ROS-mediated, dose-dependent degradation in vitro, while promoting robust cellular infiltration, tissue regeneration, and bioresorption in vivo. Moreover, these ROS-sensitive materials successfully encapsulated mesenchymal stem cells (MSCs) and maintained over 40% more viable cells than gold-standard hydrogels crosslinked with enzymatically-degradable peptides. The higher cellular survival in PTK-based gels was associated with the antioxidative function of the ROS-sensitive crosslinker, which scavenged free radicals and protected encapsulated MSCs from cytotoxic doses of ROS. Improved MSC viability was also observed in vivo as MSCs delivered within injectable PTK hydrogels maintained significantly more viability over 11 days compared against cells delivered within gels crosslinked with either a PEG-only control polymer or a gold-standard enzymatically-degradable peptide. Together, this study establishes a new paradigm for scalable creation and application of cell-degradable hydrogels, particularly for cell delivery applications.
Collapse
Affiliation(s)
- John R Martin
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Prarthana Patil
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Fang Yu
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Mukesh K Gupta
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA.
| | - Craig L Duvall
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA.
| |
Collapse
|
5
|
|
6
|
Li J, Chen Z, Yang X. State of the Art of Small-Diameter Vessel-Polyurethane Substitutes. Macromol Biosci 2019; 19:e1800482. [PMID: 30840365 DOI: 10.1002/mabi.201800482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases are a severe threat to human health. Implantation of small-diameter vascular substitutes is a promising therapy in clinical operations. Polyurethane (PU) is considered one of the most suitable materials for this substitution due to its good mechanical properties, controlled biostability, and proper biocompatibility. According to biodegradability and biostability, in this review, PU small-diameter vascular substitutes are divided into two groups: biodegradable scaffolds and biostable prostheses, which are applied to the body for short- and long-term, respectively. Following this category, the degradation principles and mechanisms of different kinds of PUs are first discussed; then the chemical and physical methods for adjusting the properties and the research advances are summarized. On the basis of these discussions, the problems remaining at present are addressed, and the contour of future research and development of PU-based small-diameter vascular substitutes toward clinical applications is outlined.
Collapse
Affiliation(s)
- Jinge Li
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Ave., Changchun, 130022, China
| | - Zhaobin Chen
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Ave., Changchun, 130022, China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Ave., Changchun, 130022, China
| |
Collapse
|
7
|
Dandeniyage LS, Knower W, Adhikari R, Bown M, Shanks R, Adhikari B, Gunatillake PA. In vitro oxidative stability of high strength siloxane poly(urethane-urea) elastomers based on linked-macrodiol. J Biomed Mater Res B Appl Biomater 2019; 107:2557-2565. [PMID: 30835945 DOI: 10.1002/jbm.b.34346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
In vitro oxidative stability of two siloxane poly(urethane urea)s synthesized using 4,4'-methylenediphenyl diisocyanate (in SiPUU-1) and Isophorone diisocyanate (in SiPUU-2) linked soft segment was evaluated using 20% H2 O2 and 0.1 mol/L CoCl2 solution at 37°C under 150% strain. Commercially available siloxane polyurethane (Elast-Eon™ 2A) and polyether polyurethane (ChronoThane P™ 80A) were used as negative and positive controls, respectively. ChronoSil™ 80A was included as another commercially available polycarbonate polyurethane. Scanning electron microscopic (SEM) examinations, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and molecular weight reduction revealed the extensive degradation of ChronoThane P™ 80A after 90 days while SiPUU-1, SiPUU-2 and Elast-Eon™ 2A showed no noticeable surface degradation. ChronoSil™ 80A showed degradation in both soft and hard segments. Tensile testing was carried out only on unstrained polyurethanes for 90 days. ChronoThane P™ 80A showed 35% loss in ultimate tensile strength and it was only 13-14% for SiPUU-1 and Elast-Eon™ 2A. However, the tensile strength of ChronoSil™ 80A was not significantly affected. The results of this study proved that SiPUU-1 possess oxidative stability comparable with Elast-Eon™ 2A. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2557-2565, 2019.
Collapse
Affiliation(s)
- Loshini S Dandeniyage
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.,CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Warren Knower
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Raju Adhikari
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Mark Bown
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Robert Shanks
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | | |
Collapse
|
8
|
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Xu M, Guo C, Dou H, Zuo Y, Sun Y, Zhang J, Li W. Tailoring the degradation and mechanical properties of poly(ε-caprolactone) incorporating functional ε-caprolactone-based copolymers. Polym Chem 2019. [DOI: 10.1039/c9py00174c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional block copolymers (COPs) were synthesized through the ring-opening polymerization, and the effects of COPs on the hydrolytic & oxidative degradation and mechanical properties of PCL/COP composites were studied.
Collapse
Affiliation(s)
- Mi Xu
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Cuili Guo
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Haozhen Dou
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Yi Zuo
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Yawei Sun
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Wei Li
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| |
Collapse
|
10
|
|
11
|
Melamine-based poly(azomethine) hydrogels: Mechanical, biodegradability, drug loading and antibacterial properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Marcano A, Fatyeyeva K, Koun M, Dubuis P, Grimme M, Marais S. Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Polyurethane (PU) elastomers represent an important class of segmented copolymers. Thanks to many available chemical compositions, a rather broad range of chemical, physical, and biocompatible properties of PU can be obtained. These polymers are often characterized by high tensile and tear strength, elongation, fatigue life, and wear resistance. However, their relatively high permeability towards gases and water as well as their biocompatibility still limits the PU’s practical application, especially for biomedical use, for example, in implants and medical devices. In this review, the barrier and permeability properties of segmented PUs related to their chemical structure and physical and chemical properties have been discussed, including the latest developments and different approaches to improve the PU barrier properties.
Collapse
Affiliation(s)
- Aracelys Marcano
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
- CARMAT SA, 36 Avenue de l’Europe, Immeuble l’Etendard , 78140 Vélizy Villacoublay , France
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
| | - Malys Koun
- ALTEN, 221bis Bd. Jean Jaurès , 92100 Boulogne-Billancourt , France
| | - Pascal Dubuis
- INOPROD, 46 Rue de Sarlieve , 63800 Cournon D’Auvergne , France
| | - Marc Grimme
- CARMAT SA, 36 Avenue de l’Europe, Immeuble l’Etendard , 78140 Vélizy Villacoublay , France
| | - Stéphane Marais
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
| |
Collapse
|
13
|
Dorrepaal RM, Lawless BM, Burton HE, Espino DM, Shepherd DE, Gowen AA. Hyperspectral chemical imaging reveals spatially varied degradation of polycarbonate urethane (PCU) biomaterials. Acta Biomater 2018; 73:81-89. [PMID: 29626697 DOI: 10.1016/j.actbio.2018.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Hyperspectral chemical imaging (HCI) is an emerging technique which combines spectroscopy with imaging. Unlike traditional point spectroscopy, which is used in the majority of polymer biomaterial degradation studies, HCI enables the acquisition of spatially localised spectra across the surface of a material in an objective manner. Here, we demonstrate that attenuated total reflectance Fourier transform infra-red (ATR-FTIR) HCI reveals spatial variation in the degradation of implantable polycarbonate urethane (PCU) biomaterials. It is also shown that HCI can detect possible defects in biomaterial formulation or specimen production; these spatially resolved images reveal regional or scattered spatial heterogeneity. Further, we demonstrate a map sampling method, which can be used in time-sensitive scenarios, allowing for the investigation of degradation across a larger component or component area. Unlike imaging, mapping does not produce a contiguous image, yet grants an insight into the spatial heterogeneity of the biomaterial across a larger area. These novel applications of HCI demonstrate its ability to assist in the detection of defective manufacturing components and lead to a deeper understanding of how a biomaterial's chemical structure changes due to implantation. STATEMENT OF SIGNIFICANCE The human body is an aggressive environment for implantable devices and their biomaterial components. Polycarbonate urethane (PCU) biomaterials in particular were investigated in this study. Traditionally one or a few points on the PCU surface are analysed using ATR-FTIR spectroscopy. However the selection of acquisition points is susceptible to operator bias and critical information can be lost. This study utilises hyperspectral chemical imaging (HCI) to demonstrate that the degradation of a biomaterial varies spatially. Further, HCI revealed spatial variations of biomaterials that were not subjected to oxidative degradation leading to the possibility of HCI being used in the assessment of biomaterial formulation and/or component production.
Collapse
|
14
|
Gil D, Rex J, Reukov V, Vertegel A. In vitrostudy on the deterioration of polypropylene hernia repair meshes. J Biomed Mater Res B Appl Biomater 2017; 106:2225-2234. [DOI: 10.1002/jbm.b.34029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/04/2017] [Accepted: 09/24/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Dmitry Gil
- Department of Bioengineering; Clemson University; Clemson South Carolina
| | - James Rex
- Department of Bioengineering; Clemson University; Clemson South Carolina
| | - Vladimir Reukov
- Department of Bioengineering; Clemson University; Clemson South Carolina
- Institute for Biological Interfaces of Engineering; Clemson University; Clemson South Carolina
| | - Alexey Vertegel
- Department of Bioengineering; Clemson University; Clemson South Carolina
| |
Collapse
|
15
|
Da L, Gong M, Chen A, Zhang Y, Huang Y, Guo Z, Li S, Li-Ling J, Zhang L, Xie H. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater 2017; 59:45-57. [PMID: 28528117 DOI: 10.1016/j.actbio.2017.05.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023]
Abstract
Although soft tissue replacement has been clinically successful in many cases, the corresponding procedure has many limitations including the lack of resilience and mechanical integrity, significant donor-site morbidity, volume loss with time, and fibrous capsular contracture. These disadvantages can be alleviated by utilizing bio-absorbable scaffolds with high resilience and large strain, which are capable of stimulating natural tissue regeneration. Hence, the chemically crosslinked tridimensional scaffolds obtained by incorporating water-based polyurethane (PU) (which was synthesized from polytetramethylene ether glycol, isophorone diisocyanate, and 2,2-bis(hydroxymethyl) butyric acid) into a bioactive extracellular matrix consisting of small intestinal submucosa (SIS) have been tested in this study to develop a new approach for soft tissue engineering. After characterizing the structure and properties of the produced PU/SIS composites, the strength, Young's modulus, and resilience of wet PU/SIS samples were compared with those of crosslinked PU. In addition, the fabricated specimens were investigated using human umbilical vein endothelial cells to evaluate their ability to enhance cell attachment and proliferation. As a result, the synthesized PU/SIS samples exhibited high resilience and were capable of enhancing cell viability with no evidence of cytotoxicity. Subcutaneous implantation in animals and the subsequent testing conducted after 2, 4, and 8weeks indicated that sound implant integration and vascularization occurred inside the PU/SIS composites, while the presence of SIS promoted cell infiltration, angiogenesis, and ultimately tissue regeneration. The obtained results revealed that the produced PU/SIS composites were characterized by high bioactivity and resilience, and, therefore, could be used for soft tissue engineering applications. STATEMENT OF SIGNIFICANCE Hybrid composites containing synthetic polymers with high mechanical strength and naturally derived components, which create a bio-mimetic environment, are one of the most promising biomaterials. Although synthetic polymer/ECM composites have been previously used for soft tissue repair, their resilience properties were not investigated in sufficient detail, while the development of elastic composites composed of synthetic polymers and ECMs in nontoxic aqueous solutions remains a rather challenging task. In this study, porous PU/SIS composites were fabricated in a non-toxic manner; the obtained materials exhibited sufficient mechanical support, which promote cell growth, angiogenesis, and tissue regeneration. The described method can be adapted for the development of scaffolds with various acellular matrices and subsequently used during the restoration of particular types of tissue.
Collapse
Affiliation(s)
- Lincui Da
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Gong
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjing Chen
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Guo
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology of Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jesse Li-Ling
- Institute of Genetic Medicine, School of Life Science, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Wang Y, Hillmyer MA. Oxidatively Stable Polyolefin Thermoplastics and Elastomers for Biomedical Applications. ACS Macro Lett 2017; 6:613-618. [PMID: 35650846 DOI: 10.1021/acsmacrolett.7b00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Statistical copolymers were prepared by the Ring Opening Metathesis coPolymerization (ROMP) of (Z)-5,5-dimethylcyclooct-1-ene and cis-cyclooctene. Subsequent hydrogenation yielded poly(ethylene-co-isobutylene) (PEIB) materials. The feed ratio of the comonomers controls the degree of branching and resulting thermal and mechanical properties of the PEIB samples. Oxidative degradation studies, conducted under accelerated in vitro conditions were used to assess and predict their long-term biostability. Relative to commercial poly(ether urethanes) and a structurally similar polyolefin, poly(ethylene-co-1-butylene), the PEIB samples showed much better oxidative resistance. The facile synthesis, improved stability, and excellent mechanical performance of these PEIB materials bode well for their use in biomedical applications that require long-term biostability.
Collapse
Affiliation(s)
- Yanzhao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
17
|
Lawless BM, Espino DM, Shepherd DET. In vitro oxidative degradation of a spinal posterior dynamic stabilization device. J Biomed Mater Res B Appl Biomater 2017; 106:1237-1244. [PMID: 28580771 DOI: 10.1002/jbm.b.33913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/27/2017] [Accepted: 04/22/2017] [Indexed: 11/10/2022]
Abstract
This study quantified the changes of the frequency-dependant viscoelastic properties of the BDyn (S14 Implants, Pessac, France) spinal posterior dynamic stabilization (PDS) device due to in vitro oxidation. Six polycarbonate urethane (PCU) rings and six silicone cushions were degraded using a 20% hydrogen peroxide/0.1 M cobalt (II) chloride hexahydrate, at 37°C, for 24 days. The viscoelastic properties of the individual components and the components assembled into the BDyn PDS device were determined using Dynamic Mechanical Analysis at frequencies from 0.01 to 30 Hz. Attenuated Total Reflectance Fourier Transform Infra-Red spectra demonstrated chemical structure changes, of the PCU, associated with oxidation while Scanning Electron Microscope images revealed surface pitting. No chemical structure or surface morphology changes were observed for the silicone cushion. The BDyn device storage and loss stiffness ranged between 84.46 N/mm to 99.36 N/mm and 8.13 N/mm to 21.99 N/mm, respectively. The storage and loss stiffness for the components and BDyn device increased logarithmically with respect to frequency. Viscoelastic properties, between normal and degraded components, were significantly different for specific frequencies only. This study demonstrates the importance of analyzing changes of viscoelastic properties of degraded biomaterials and medical devices into which they are incorporated, using a frequency sweep. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1237-1244, 2018.
Collapse
Affiliation(s)
- Bernard M Lawless
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK
| | - Daniel M Espino
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK
| | - Duncan E T Shepherd
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Feng X, Wang G, Neumann K, Yao W, Ding L, Li S, Sheng Y, Jiang Y, Bradley M, Zhang R. Synthesis and characterization of biodegradable poly(ether-ester) urethane acrylates for controlled drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:270-278. [DOI: 10.1016/j.msec.2016.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/30/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
19
|
Abstract
Tissue engineering aims to repair the damaged tissue by transplantation of cells or introducing bioactive factors in a biocompatible scaffold. In recent years, biodegradable polymer scaffolds mimicking the extracellular matrix have been developed to promote the cell proliferation and extracellular matrix deposition. The biodegradable polymer scaffolds thus act as templates for tissue repair and regeneration. This article reviews the updated information regarding various types of natural and synthetic biodegradable polymers as well as their functions, physico-chemical properties, and degradation mechanisms in the development of biodegradable scaffolds for tissue engineering applications, including their combination with 3D printing.
Collapse
Affiliation(s)
- Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | |
Collapse
|
20
|
McEnery MAP, Lu S, Gupta MK, Zienkiewicz KJ, Wenke JC, Kalpakci KN, Shimko D, Duvall CL, Guelcher SA. Oxidatively Degradable Poly(thioketal urethane)/Ceramic Composite Bone Cements with Bone-Like Strength. RSC Adv 2016; 6:109414-109424. [PMID: 27895899 PMCID: PMC5123593 DOI: 10.1039/c6ra24642g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synthetic bone cements are commonly used in orthopaedic procedures to aid in bone regeneration following trauma or disease. Polymeric cements like PMMA provide the mechanical strength necessary for orthopaedic applications, but they are not resorbable and do not integrate with host bone. Ceramic cements have a chemical composition similar to that of bone, but their brittle mechanical properties limit their use in weight-bearing applications. In this study, we designed oxidatively degradable, polymeric bone cements with mechanical properties suitable for bone tissue engineering applications. We synthesized a novel thioketal (TK) diol, which was crosslinked with a lysine triisocyanate (LTI) prepolymer to create hydrolytically stable poly(thioketal urethane)s (PTKUR) that degrade in the oxidative environment associated with bone defects. PTKUR films were hydrolytically stable for up to 6 months, but degraded rapidly (<1 week) under simulated oxidative conditions in vitro. When combined with ceramic micro- or nanoparticles, PTKUR cements exhibited working times comparable to calcium phosphate cements and strengths exceeding those of trabecular bone. PTKUR/ceramic composite cements supported appositional bone growth and integrated with host bone near the bone-cement interface at 6 and 12 weeks post-implantation in rabbit femoral condyle plug defects. Histological evidence of osteoclast-mediated resorption of the cements was observed at 6 and 12 weeks. These findings demonstrate that a PTKUR bone cement with bone-like strength can be selectively resorbed by cells involved in bone remodeling, and thus represent an important initial step toward the development of resorbable bone cements for weight-bearing applications.
Collapse
Affiliation(s)
- Madison A P McEnery
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sichang Lu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katarzyna J Zienkiewicz
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joseph C Wenke
- U.S. Army Institute of Surgical Research, San Antonio, TX, USA
| | | | | | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Scott A Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Abstract
A series of segmented polyurethanes were synthesized by the reaction of poly (ethyleneadypate) diol, 4,4’-methylene-bis(phenyl isocyanate) and ethylene glycol. Various solvents were used as reaction media: N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) and mixtures of NMP with DMF, toluene, and ethyl acetate (at a rate 80/20 weight). These polyurethanes exhibited different behaviors due to different interactions between solvents and macromolecular chains or solvents and water. These phenomena in combination with the phase segregation in polyurethanes arising from the incompatibility between the hard and soft segments were utilized to produce a variety of polyurethane membranes by immersion precipitation. The type of solvent has a strong effect on the properties and morphology of polymers when they are cast using different solvents, which was confirmed by thermal and mechanical measurements.
Collapse
Affiliation(s)
- Stefan Oprea
- Institute of Macromolecular Chemistry, Aleea Grigore Ghica Vodă 41 A, Iasi, 700487, Romania
| |
Collapse
|
22
|
Fernández-d’Arlas B, Alonso-Varona A, Palomares T, Corcuera MA, Eceiza A. Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Brugmans M, Sӧntjens S, Cox M, Nandakumar A, Bosman A, Mes T, Janssen H, Bouten C, Baaijens F, Driessen-Mol A. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways. Acta Biomater 2015; 27:21-31. [PMID: 26316031 DOI: 10.1016/j.actbio.2015.08.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022]
Abstract
The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.
Collapse
|
24
|
Mishra A, Seethamraju K, Delaney J, Willoughby P, Faust R. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes. J Biomed Mater Res A 2015; 103:3798-806. [PMID: 26097127 DOI: 10.1002/jbm.a.35523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/07/2022]
Abstract
Long-term in vitro stability of thermoplastic polyurethanes (TPUs) was studied for up to 52 weeks in phosphate buffer solution at 37, 55, and 80°C. Water uptake, molecular weights, and tensile properties were measured at regular intervals of 4, 8, 16, 32, and 52 weeks. The rate of molecular weight reduction increased with increasing temperature, and after 52 weeks at 80°C, all commercial polycarbonate (Bionate-55D, Quadrathane-80A, and Chronoflex-80A), poly(dimethylsiloxane) (ElastEon-2A) and polyether (Elasthane-55D) TPUs showed significant (43-51%) molecular weight (Mn ) reduction. The polyisobutylene (PIB)-based TPU exhibited a significantly lower decrease in Mn (26%) after 52 weeks at 80°C. For Bionate-55D and ElastEon-2A, at 80°C in dry nitrogen atmosphere substantial thermal degradation was observed, while for the other TPUs the effect of thermal degradation is small. The temperature dependent reduction of molecular weight was interpreted by simple second order kinetics. From the approximately linear Arrhenius plots the activation energies were calculated, which were highest for PIB-PU-020 and lowest for ElastEon-2A. For Elasthane-55D the in vitro molecular weight reduction was compared with that of explanted leads. The molecular weight reduction in vivo was much smaller than that predicted from in vitro data, which may suggest that the in vitro model does not adequately describe the hydrolysis in vivo. In the absence of validation for the other TPUs that in vitro methods closely reproduce in vivo degradation, it is unknown how these results correlate with in vivo performance.
Collapse
Affiliation(s)
- Abhinay Mishra
- Department of Chemistry, Polymer Science Program, University of Massachusetts Lowell, Lowell, Massachusetts, 01854
| | - Kasyap Seethamraju
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, Minnesota, 55112
| | - Joseph Delaney
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, Minnesota, 55112
| | - Patrick Willoughby
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, Minnesota, 55112
| | - Rudolf Faust
- Department of Chemistry, Polymer Science Program, University of Massachusetts Lowell, Lowell, Massachusetts, 01854
| |
Collapse
|
25
|
Effect of atom transfer radical polymerization macroinitiator on properties of poly(meth)acrylate-based pentablock type of thermoplastic elastomers. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:178-95. [PMID: 24907751 DOI: 10.1016/j.msec.2014.04.049] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/04/2014] [Accepted: 04/18/2014] [Indexed: 12/21/2022]
Abstract
Nanoengineered drug delivery systems (nDDS) have been successfully used as clinical tools for not only modulation of pharmacological drug release profile but also specific targeting of diseased tissues. Until now, encapsulation of anti-cancer molecules such as paclitaxel, vincristin and doxorubicin has been the main target of nDDS, whereby liposomes and polymer-drug conjugates remained as the most popular group of nDDS used for this purpose. The success reached by these nanocarriers can be imitated by careful selection and optimization of the different factors that affect drug release profile (i.e. type of biomaterial, size, system architecture, and biodegradability mechanisms) along with the selection of an appropriate manufacture technique that does not compromise the desired release profile, while it also offers possibilities to scale up for future industrialization. This review focuses from an engineering perspective on the different parameters that should be considered before and during the design of new nDDS, and the different manufacturing techniques available, in such a way to ensure success in clinical application.
Collapse
Affiliation(s)
- Betiana Felice
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Kirchner 1800, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina.; START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602
| | - Molamma P Prabhakaran
- START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602.
| | - Andrea P Rodríguez
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Kirchner 1800, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina
| | - Seeram Ramakrishna
- START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602; Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
27
|
Martin JR, Gupta MK, Page JM, Yu F, Davidson JM, Guelcher SA, Duvall CL. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 2014; 35:3766-76. [PMID: 24491510 DOI: 10.1016/j.biomaterials.2014.01.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/09/2014] [Indexed: 12/25/2022]
Abstract
Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous polyester-based biomaterials and provide a robust, cell-degradable substrate for guiding new tissue formation.
Collapse
Affiliation(s)
- John R Martin
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN 37235-1631, USA
| | - Mukesh K Gupta
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN 37235-1631, USA
| | - Jonathan M Page
- Chemical and Biomolecular Engineering, Vanderbilt University, 2301 Vanderbilt Place, VU Station B #351604, Nashville, TN 37235-1604, USA
| | - Fang Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Medical Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A Guelcher
- Chemical and Biomolecular Engineering, Vanderbilt University, 2301 Vanderbilt Place, VU Station B #351604, Nashville, TN 37235-1604, USA
| | - Craig L Duvall
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN 37235-1631, USA.
| |
Collapse
|
28
|
Dempsey DK, Carranza C, Chawla CP, Gray P, Eoh JH, Cereceres S, Cosgriff-Hernandez EM. Comparative analysis of in vitro oxidative degradation of poly(carbonate urethanes) for biostability screening. J Biomed Mater Res A 2013; 102:3649-65. [PMID: 24265203 DOI: 10.1002/jbm.a.35037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022]
Abstract
The resistance to oxidation and environmental stress cracking of poly(carbonate urethanes) (PCUs) has generated significant interest as potential replacements of poly(ether urethanes) in medical devices. Several in vitro models have been developed to screen segmented polyurethanes for oxidative stability. High concentrations of reactive oxygen intermediates produced by combining hydrogen peroxide and dissolved cobalt ions has frequently been used to predict long-term oxidative degradation with short-term testing. Alternatively, a 3% H₂O₂ concentration without metal ions is suggested within the ISO 10993-13 standard to simulate physiological degradation rates. A comparative analysis which evaluates the predictive capabilities of each test method has yet to be completed. To this end, we have utilized both systems to test three commercially available PCUs with low and high soft segment content: Bionate PCU and Bionate II PCUs, two materials with different soft segment chemistries, and CarboSil TSPCU, a thermoplastic silicone PCU. Bulk properties of all PCUs were retained with minor changes in molecular weight and tensile properties indicating surface oxidative degradation in the accelerated system after 36 days. Soft segment loss and surface damage were comparable to previous in vivo data. The 3% H₂O₂ method exhibited virtually no changes on the surface or in bulk properties after 12 months of treatment despite previous in vivo results. These results indicate the accelerated test method more effectively characterized the oxidative degradation profiles than the 3% H₂O₂ treatment system. The lack of bulk degradation in the 12-month study also supports the hydrolytic stability of these PCUs.
Collapse
Affiliation(s)
- David K Dempsey
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120
| | | | | | | | | | | | | |
Collapse
|
29
|
Chaffin KA, Wilson CL, Himes AK, Dawson JW, Haddad TD, Buckalew AJ, Miller JP, Untereker DF, Simha NK. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature. Biomaterials 2013; 34:8030-41. [DOI: 10.1016/j.biomaterials.2013.06.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
|
30
|
Arjun GN, Menon G, Ramesh P. Plasma surface modification of fibroporous polycarbonate urethane membrane by polydimethyl siloxane: Structural characterization, mechanical properties, and in vitro
cytocompatibility evaluation. J Biomed Mater Res A 2013; 102:947-57. [DOI: 10.1002/jbm.a.34781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 01/05/2023]
Affiliation(s)
- G. N. Arjun
- Biomedical Technology Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Poojappura, Thiruvananthapuram 695012 India
| | - Girish Menon
- Department of Neurosurgery; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram 695011 India
| | - P. Ramesh
- Biomedical Technology Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Poojappura, Thiruvananthapuram 695012 India
| |
Collapse
|
31
|
|
32
|
Choi T, Weksler J, Padsalgikar A, Runt J. Novel Hard-Block Polyurethanes with High Strength and Transparency for Biomedical Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:973-80. [DOI: 10.1163/092050610x540684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Taeyi Choi
- a Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jadwiga Weksler
- b AorTech Biomaterials, Dalmore Drive, Caribbean Park, Scoresby, VIC 3179, Australia
| | - Ajay Padsalgikar
- c AorTech Biomaterials, Dalmore Drive, Caribbean Park, Scoresby, VIC 3179, Australia
| | - James Runt
- d Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA;,
| |
Collapse
|
33
|
Muppalla R, Jewrajka SK. Synthesis, morphology and properties of poly(dimethylsiloxane)/poly(n-butyl acrylate) mixed soft block-based copolymers: A new class of thermoplastic elastomer. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.01.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Park D, Wu W, Wang Y. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials 2011; 32:777-86. [PMID: 20937526 DOI: 10.1016/j.biomaterials.2010.09.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/19/2010] [Indexed: 11/28/2022]
Abstract
Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A): poly(ethylene glycol). The polymer was characterized by GPC, FTIR and (1)H FTNMR. Rheological study demonstrated that ESHU solution in phosphate-buffered saline initiated phase transition at 32 °C and reached maximum elastic modulus at 37 °C. The in vitro degradation tests performed in PBS and cholesterol esterase solutions revealed that the polymer was hydrolyzable and the presence of cholesterol esterase greatly accelerated the hydrolysis. The in vitro cytotoxicity tests carried out using baboon smooth muscle cells demonstrated that ESHU had good cytocompatibility with cell viability indistinguishable from tissue culture treated polystyrene. Subcutaneous implantation in rats revealed well tolerated accurate inflammatory response with moderate ED-1 positive macrophages in the early stages, which largely resolved 4 weeks post-implantation. We functionalized ESHU with a hexapeptide, Ile-Lys-Val-Ala-Val-Ser (IKVAVS), which gelled rapidly at body temperature. We expect this new platform of functionalizable reverse thermal gels to provide versatile biomaterials in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Daewon Park
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
35
|
Riyahi-Alam N, Behrouzkia Z, Seifalian A, Haghgoo Jahromi S. Properties evaluation of a new MRI contrast agent based on Gd-loaded nanoparticles. Biol Trace Elem Res 2010; 137:324-34. [PMID: 20049554 DOI: 10.1007/s12011-009-8587-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The aim of this research was to characterize a novel emulsion composed of a silicon-based nanocomposite polymer (NCP) and gadolinium (III) oxide (Gd₂O₃) nanoparticles. The size and morphological structure of this nanoparticle are determined by particle size analysis device (zeta sizer) and transmission electronic microscope. We determined composition of Gd₂O₃ nanoparticles with energy dispersive X-ray analysis (EDXA) and magnetic resonance signal by T₁-weighted MRI. Cytotoxicity of Gd₂O₃ nanoparticles in SK-MEL-3 cancer cells was evaluated. Zeta sizer showed Gd₂O₃ nanoparticles to be 75 nm in size. EDXA indicated the two main chemical components of gadolinium-nanocomposite polymer emulsion: gadolinium and silicon and MRI also showed a significantly higher incremental relaxivity for Gd₂O₃ nanoparticles compared to Magnevist (conventional contrast agent). In such concentrations, the slope of R₁ relaxivity (1/T₁) vs. concentration curve of Magnevist and Gd₂O₃ were 4.33, 7.98 s⁻¹ mM⁻¹. The slope of R₂ relaxivity (1/T₂) vs. concentration curve of Magnevist and Gd₂O₃ were 5.06, 13.75 s⁻¹ mM⁻¹. No appreciable toxicity was observed with Gd₂O₃ nanoparticles. Gadolinium-nanocomposite polymer emulsion is well characterized and has potential as a useful contrast agent for magnetic resonance molecular imaging.
Collapse
Affiliation(s)
- Nader Riyahi-Alam
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Iran
| | | | | | | |
Collapse
|
36
|
Hafeman AE, Zienkiewicz KJ, Zachman AL, Sung HJ, Nanney LB, Davidson JM, Guelcher SA. Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds. Biomaterials 2010; 32:419-29. [PMID: 20864156 DOI: 10.1016/j.biomaterials.2010.08.108] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/30/2010] [Indexed: 11/16/2022]
Abstract
Characterization of the degradation mechanism of polymeric scaffolds and delivery systems for regenerative medicine is essential to assess their clinical applicability. Key performance criteria include induction of a minimal, transient inflammatory response and controlled degradation to soluble non-cytotoxic breakdown products that are cleared from the body by physiological processes. Scaffolds fabricated from biodegradable poly(ester urethane)s (PEURs) undergo controlled degradation to non-cytotoxic breakdown products and support the ingrowth of new tissue in preclinical models of tissue regeneration. While previous studies have shown that PEUR scaffolds prepared from lysine-derived polyisocyanates degrade faster under in vivo compared to in vitro conditions, the degradation mechanism is not well understood. In this study, we have shown that PEUR scaffolds prepared from lysine triisocyanate (LTI) or a trimer of hexamethylene diisocyanate (HDIt) undergo hydrolytic, esterolytic, and oxidative degradation. Hydrolysis of ester bonds to yield α-hydroxy acids is the dominant mechanism in buffer, and esterolytic media modestly increase the degradation rate. While HDIt scaffolds show a modest (<20%) increase in degradation rate in oxidative medium, LTI scaffolds degrade six times faster in oxidative medium. Furthermore, the in vitro rate of degradation of LTI scaffolds in oxidative medium approximates the in vivo rate in rat excisional wounds, and histological sections show macrophages expressing myeloperoxidase at the material surface. While recent preclinical studies have underscored the potential of injectable PEUR scaffolds and delivery systems for tissue regeneration, this promising class of biomaterials has a limited regulatory history. Elucidation of the macrophage-mediated oxidative mechanism by which LTI scaffolds degrade in vivo provides key insights into the ultimate fate of these materials when injected into the body.
Collapse
Affiliation(s)
- Andrea E Hafeman
- Department of Chemical & Biological Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Cozzens D, Ojha U, Kulkarni P, Faust R, Desai S. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. J Biomed Mater Res A 2010; 95:774-82. [DOI: 10.1002/jbm.a.32897] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Machado HB, Correia RN, Covas JA. Synthesis, extrusion and rheological behaviour of PU/HA composites for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2057-2066. [PMID: 20405172 DOI: 10.1007/s10856-010-4079-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Biostable polyurethane/hydroxyapatite (PU/HA) composites with potential application as bone replacement materials were synthesized in bulk and processed in a screw extruder. The polyurethanes (PU) were prepared by reacting an aliphatic diisocyanate, 4-methylene-bis-diisocyanate (MDI), with poly-(epsilon-caprolactone) (PCL) diols and polytetramethylene oxide (PTMO) of different molecular weights, extended with 1, 4-butanediol (BDO). Glass-transition temperatures were measured by differential scanning calorimetry (DSC). The specific PU groups were assessed by total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of polymer chemistry and filler content on the rheological behaviour were studied by oscillatory rheometry. Polymers with larger chain lengths showed higher viscosity and, for identical chain lengths, polyether urethanes seem to have higher viscosities than polyester based urethanes. A lubricating effect was found for composites containing 50% weight of filler, whereas at higher filler contents a solid-like behaviour was measured. Polymer chemistry seems to be affected by ageing but not so by the presence of filler. Ageing is characterized by a decrease in the concentration of hydrogen bonds involving between urethane linkages.
Collapse
Affiliation(s)
- H B Machado
- Department of Ceramic Engineering, Univ. Aveiro, 3810-193 Aveiro, Portugal.
| | | | | |
Collapse
|
39
|
McBane JE, Matheson LA, Santerre JP, Labow RS. The effects of phorbol ester activation and reactive oxygen species scavengers on the macrophage-mediated foreign body reaction to polyurethanes. J Biomed Mater Res A 2009; 91:1150-9. [DOI: 10.1002/jbm.a.32261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Jewrajka SK, Kang J, Erdodi G, Kennedy JP, Yilgor E, Yilgor I. Polyisobutylene-based polyurethanes. II. Polyureas containing mixed PIB/PTMO soft segments. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23361] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Xie X, Wang R, Li J, Luo L, Wen D, Zhong Y, Zhao C. Fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: Blood compatibility and chemical stability assessments. J Biomed Mater Res B Appl Biomater 2009; 89:223-41. [DOI: 10.1002/jbm.b.31212] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Liu C, Hu CP. Synthesis, characterization and in vitro oxidative stability of poly(3,3,3-trifluoropropyl)methylsiloxane modified polyurethaneurea. Polym Degrad Stab 2009. [DOI: 10.1016/j.polymdegradstab.2008.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Choi T, Weksler J, Padsalgikar A, Hernéndez R, Runt J. Polydimethylsiloxane-Based Polyurethanes: Phase-Separated Morphology and In Vitro Oxidative Biostability. Aust J Chem 2009. [DOI: 10.1071/ch09096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three series of segmented polyurethane block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) or 1,3-bis(4-hydroxybutyl)tetramethyl disiloxane (BHTD) as the hard segments, and soft segments composed of poly(dimethyl siloxane) (PDMS)-based and poly(hexamethylene oxide) (PHMO) macrodiols. Copolymers synthesized with the PDMS macrodiol and PDMS and PHMO macrodiol mixtures consist of three microphases: a PDMS phase, hard domains, and a mixed phase of PHMO (when present), PDMS ether end-group segments and some dissolved hard segments. Degrees of phase separation were characterized using small-angle X-ray scattering by applying a pseudo two-phase model, and the morphology resulting from unlike segment demixing was found to be closely related to the in vitro oxidative biostability of these segmented polyurethanes.
Collapse
|
44
|
Hernandez R, Weksler J, Padsalgikar A, Runt J. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. J Biomed Mater Res A 2008; 87:546-56. [PMID: 18186070 DOI: 10.1002/jbm.a.31823] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The resistance to in vitro metal ion oxidation of a polydimethylsiloxane (PDMS)-containing thermoplastic polyurethane elastomer (Elast-Eon) is compared with that of a polyurethane consisting of the same hard segment chemistry and content, but with aliphatic polycarbonate soft segments (PCU). Scanning electron microscopy and attenuated total reflectance Fourier transform infrared spectroscopy were used to assess changes in surface morphology and chemistry. The extent of bulk degradation was assessed indirectly by dynamic mechanical analysis and small-angle X-ray scattering experiments. The findings indicate that Elast-Eon is more resistant to oxidation than the PCU, because of the presence of the PDMS soft segments as well as its phase separated microstructure. The PCU exhibits a rather high degree of intermixing between hard and soft segments, rendering the hard segments dissolved or trapped in the soft phase more susceptible to oxidative conditions. By contrast, we propose that the existence of a completely phase separated PDMS soft phase in Elast-Eon protects the remainder of the segments from oxidation.
Collapse
Affiliation(s)
- Rebeca Hernandez
- Department of Materials Science and Engineering, Pennsylvania State University, Pennsylvania, USA.
| | | | | | | |
Collapse
|
45
|
Chandy T, Van Hee J, Nettekoven W, Johnson J. Long‐term
in vitro
stability assessment of polycarbonate urethane micro catheters: Resistance to oxidation and stress cracking. J Biomed Mater Res B Appl Biomater 2008; 89:314-324. [DOI: 10.1002/jbm.b.31218] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | - Jay Johnson
- Super Dimension Inc., Minneapolis, Minnesota 55441
| |
Collapse
|
46
|
Stachelek SJ, Alferiev I, Fulmer J, Ischiropoulos H, Levy RJ. Biological stability of polyurethane modified with covalent attachment of di-tert-butyl-phenol. J Biomed Mater Res A 2007; 82:1004-11. [PMID: 17370325 DOI: 10.1002/jbm.a.31215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polyurethane cardiovascular implants are subject to oxidation initiated surface degradation, which is mediated by monocyte-derived macrophages (MDM); this often leads to surface cracking and device failure. The present studies examined the hypothesis that covalently attaching antioxidant, di-tert-butylphenol (DBP), to the urethane nitrogens of a polyether polyurethane (PU) via bromo-alkylation reactions could prevent this problem. PU was configured with two dosages of DBP, 0.14 mM DBP/g PU of DBP (PU-DBP) and a more highly modified (HM) 0.40 mM DBP/g PU (PU-DBP-HM). THP-1 cells, a human MDM cell line, stimulated with phorbol ester and seeded on PU, PU-DBP, and PU-DBP-HM films were assessed for reactive oxygen species (ROS) production via a fluorescent based dihydrorhodamine-123 assay. Results from these studies showed a significant dose-dependent reduction of ROS levels for THP-1 cells seeded on PU-DBP versus unmodified PU. PU, PU-DBP, or PU-DBP-HM films were implanted into subdermal pouches of Sprague-Dawley rats. Films were explanted after 10 weeks and assessed for oxidative degradation via light and scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR). Light microscopy showed extensive surface cracking, which was confirmed via SEM, on unmodified PU surfaces that was absent in both PU-DBP and PU-DBP-HM explanted films. FTIR analysis showed reduction in oxidation-induced ether crosslinking that was directly related to DBP dosages. It is concluded that modifying PU with the covalent attachment of an antioxidant confers biodegradation resistance in vivo in a dose dependent manner; this effect is likely due to quenching of the ROS generated by the adherent macrophages.
Collapse
Affiliation(s)
- Stanley J Stachelek
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Abramson Research Bldg., Suite 702, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | |
Collapse
|
47
|
McBane JE, Santerre JP, Labow RS. The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation. J Biomed Mater Res A 2007; 82:984-94. [PMID: 17335034 DOI: 10.1002/jbm.a.31263] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although relatively resistant to oxidation, polycarbonate-based polyurethanes (PCNUs) are degraded by monocyte-derived macrophages (MDM) by a co-mediated mechanism involving both hydrolytic and oxidative pathways. Since a previous study showed that PCNU pretreatment with H(2)O(2) modulated degradation by esterases, human MDM were used to further elucidate this dual pathway mechanism of degradation for (14)C-radiolabeled PCNUs (synthesized with 1,6-hexane diisocyanate:polycarbonatediol: butanediol with different stoichiometry (HDI431 and HDI321) or another diisocyanate 4,4'-methylene bisphenyl diisocyanate (MDI321)). Scanning electron microscopy of PCNU slips pretreated with 20% H(2)O(2) showed that HDI431 had visible holes with more radiolabel release than from the other PCNUs. When MDM were seeded on H(2)O(2)-treated PCNUs, degradation of HDI321 and MDI321, but not HDI431 was decreased. Esterase activity was inhibited in MDM on all surfaces except MDI321, whereas inhibition of acid phosphatase occurred on all surfaces. The material surface itself, induced H(2)O(2) release from live MDM, with more H(2)O(2) elicited by phorbol myristate acetate treated MDM when cultured on HDI431 but not the other materials. H(2)O(2) pretreatment affected cell function by chemically altering the material surface and MDM-mediated degradation, known to be dependent on surface chemistry. The findings highlight that both oxidative and hydrolytic mechanisms need to be understood in order to tailor material chemistry to produce desired cell responses for in vivo applications.
Collapse
Affiliation(s)
- Joanne E McBane
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
48
|
Lupu M, Macocinschi D, Ioanid G, Butnaru M, Ioan S. Surface tension of poly(ester urethane)s and poly(ether urethane)s. POLYM INT 2007. [DOI: 10.1002/pi.2163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Stachelek SJ, Alferiev I, Choi H, Chan CW, Zubiate B, Sacks M, Composto R, Chen IW, Levy RJ. Prevention of oxidative degradation of polyurethane by covalent attachment of di-tert-butylphenol residues. J Biomed Mater Res A 2006; 78:653-61. [PMID: 16736485 DOI: 10.1002/jbm.a.30828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyurethane (PU) components of cardiovascular devices are subjected to oxidation-initiated surface degradation, which leads to cracking and ultimately device failure. In the present study, we investigated a novel bromoalkylation chemical strategy to covalently attach the antioxidant, di-tert-butylphenol (DBP), and/or cholesterol (Chol) to the PU urethane nitrogen groups to hypothetically prevent oxidative degradation. These experiments compared PU, PU-DBP, PU-Chol, and PU-Chol-DBP. A series of comparative oxidative degradation studies involved exposing PU samples (modified and unmodified) to H2O2-CoCl2 for 15 days at 37 degrees C, to cause accelerated oxidative degradation. The extent and effects of degradation were assessed by attenuated total reflectance Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface contact angle measurements, and mechanical testing. Both the Chol and DBP modification conferred significant resistance to oxidation related changes compared to unmodified PU per FTIR and SEM results. SEM demonstrated cavitation only in unmodified PU. However, contact angle analysis showed significant oxidation-induced changes only in the Chol-modified PU formulations. Most importantly, uniaxial stress-strain testing revealed that only PU-DBP demonstrated bulk elastomeric properties that were minimally affected by oxidation; PU, PU-Chol, PU-Chol-DBP showed marked deterioration of their stress-strain properties following oxidation. In conclusion, these results demonstrate that derivatizing PU with DBP confers significant resistance to oxidative degradation compared with unmodified PU.
Collapse
Affiliation(s)
- Stanley J Stachelek
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|