1
|
Abdullah Aziz M, Kuppusamy R, Mazumder K, Hui A, Maulvi F, Stapleton F, Willcox M. Absorption and attachment of atropine to etafilcon A contact lenses. Cont Lens Anterior Eye 2024; 47:102246. [PMID: 38851947 DOI: 10.1016/j.clae.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Myopia (short-sightedness) is a growing vision problem worldwide. Currently atropine eye drops are used to control the progression of myopia but these suffer from potential lack of bioavailability and low ocular residence time. Commercially available myopia control contact lenses are also used to limit myopia progression, but neither atropine nor contact lenses individually completely stop progression. Development of myopia control contact lenses which could deliver therapeutic doses of atropine is thus desirable and may provide increased efficacy. This study was designed to explore the feasibility of attaching atropine to etafilcon A contact lenses through an esterification reaction. METHODS Carboxylic acid groups on etafilcon A contact lenses were quantified using Toluidine Blue O. The carboxylic acid groups in etafilcon A contact lenses were activated using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC-HCl) and N-hydroxysuccinimide (NHS) crosslinkers after which atropine was added to undergo potential binding via esterification. Atropine was released from lenses by alkaline hydrolysis. Reverse phase high performance liquid chromatography (HPLC) was used to detect and quantify the released atropine and its degradation products in solution. Contact lenses that had not been activated by EDC-NHS (controls) were also examined to determine the amount of atropine that could be absorbed rather than chemically bound to lenses. RESULTS Each etafilcon A contact lens contained 741.1 ± 5.5 µg carboxylic acid groups which may be available for esterification. HPLC had a limit of detection for atropine of 0.38 µg/mL and for tropic acid, an atropine degradation product, of 0.80 µg/mL. The limits of quantification were 1.16 µg/mL for atropine and 2.41 µg/mL for tropic acid in NH4HCO3. The etafilcon A lenses adsorbed up to 7.69 μg atropine when incubated in a 5 mg/mL atropine solution for 24 h. However, there was no evidence that atropine could be chemically linked to the lenses, as washing in a high concentration of NaCl removed all the atropine from the contact lenses with no atropine being subsequently released from the lenses after incubating in 0.01 N NH4HCO3. CONCLUSIONS Etafilcon A contact lenses contain free carboxylic acids which may be an appropriate option for attaching drugs such as atropine. Etafilcon A lenses adsorbed up to 7.69 μg atropine, which would be more than enough to deliver atropine to eyes to control myopia. However, atropine could not be chemically bound to the carboxylic acids of the etafilcon A lenses using this methodology.
Collapse
Affiliation(s)
- Md Abdullah Aziz
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; School of Chemistry, University of Sydney, Sydney, Australia
| | - Kishor Mazumder
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Alex Hui
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; Centre for Ocular Research and Education, School of Optometry & Vision Science, University of Waterloo, Canada
| | - Furqan Maulvi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Yu Liu X, Ying Mao H, Hong S, Jin CH, Jiang HL, Guan Piao M. Dual-targeting galactose-functionalized hyaluronic acid modified lipid nanoparticles delivering silybin for alleviating alcoholic liver injury. Int J Pharm 2024; 666:124662. [PMID: 39241932 DOI: 10.1016/j.ijpharm.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
Collapse
Affiliation(s)
- Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - He Ying Mao
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Shuai Hong
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Cheng-Hua Jin
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Hu-Lin Jiang
- School of Pharmacy, Yanbian University, Yanji 133002, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
3
|
Sznaider F, Rojas AM, Stortz CA, Navarro DA. Amidation of arabinoglucuronoxylans to modulate their flow behavior. Carbohydr Polym 2024; 336:122123. [PMID: 38670754 DOI: 10.1016/j.carbpol.2024.122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Arabinoglucuronoxylans obtained from the exudate of Cercidium praecox (Brea gum) were subjected to an amidation reaction to modulate their flow behavior to obtain a product with similar behavior to gum Arabic. The amidation reaction of the uronic acids present in this exudate was studied using the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) system with the aim of maximizing product yield and minimizing by-product. An analysis of the significant factors involved in the reaction was carried out and a response surface methodology was conducted to optimize the stoichiometry of the reagents used. It was possible to obtain models for predicting the degree of amidation (DA) of arabinoglucuronoxylans and the formation of by-products. The formation of a secondary product derived from the amino acid β-alanine which has not been reported previously in the reaction with polysaccharides, was described. The flow behavior of an amidated product (DA = 52 %) was determined, showing a pseudoplastic behavior and a decreased Newtonian viscosity (η0 = 36.2 Pa s) at the lowest shear rate range with respect to native product solution (η0 = 115 Pa s). Amidated arabinoglucuronoxylans had a flow behavior more similar to that of gum Arabic.
Collapse
Affiliation(s)
- Frank Sznaider
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina
| | - Ana M Rojas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ/CONICET-UBA), Departamento de Industrias, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina
| | - Carlos A Stortz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina
| | - Diego A Navarro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina.
| |
Collapse
|
4
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
5
|
Szarpak A, Auzély-Velty R. Hyaluronic acid single-network hydrogel with high stretchable and elastic properties. Carbohydr Polym 2023; 320:121212. [PMID: 37659792 DOI: 10.1016/j.carbpol.2023.121212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 09/04/2023]
Abstract
Stretchable materials have demonstrated great interest in wearable or implantable applications. Most of the existing hydrogels with high stretchability characteristics are based on double networks, exhibit large hysteresis loops, and cannot recover after deformation due to permanent rupture of network. Elastic, biodegradable, and biocompatible hydrogels are desirable for wound dressing of joints with frequent motions or post-surgical healing of mobile tissues. Here, we show a simple strategy for the preparation of a hyaluronic acid (HA) single-network hydrogel that can be stretchable and highly elastic without the addition of other components/partners or complicated processes of preparation. Our strategy relies on the use of high Mw HA to create a chemical hydrogel in which densely entangled HA chains are tied together by a small number of covalent bonds. While the presence of covalent cross-links can prevent disintegration of the HA network, entanglements endow the hydrogel with high stretchability through transmission of tension along the length of the long HA chains. The stretching-relaxation cycles show negligible hysteresis and perfect recovery of material after the release of force. The diminution of Mw together with increasing the concentration or cross-linker amount leads to brittle hydrogels.
Collapse
Affiliation(s)
- Anna Szarpak
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | | |
Collapse
|
6
|
Ogata S, Tsuji R, Moritaka A, Ito S, Mochizuki S. Modification of the antigenicity of cancer cells by conjugates consisting of hyaluronic acid and foreign antigens. Biomater Sci 2023; 11:5809-5818. [PMID: 37522638 DOI: 10.1039/d3bm00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Tumor-specific cytotoxic T-lymphocytes (CTLs) recognize tumor-associated antigens presented on major histocompatibility complex (MHC) class I molecules. However, it is difficult to induce potent CTLs by vaccination because the antigenicity is not so high, compared with that of foreign antigens derived from viruses and microbes. The affinity of binding to MHC class I molecules is proportional to the antigenicity of the antigen that they are presenting. Here, we prepared several conjugates consisting of hyaluronic acid (HA) as a carrier to cancer cells and ovalbumin (OVA) as a foreign protein and changed the antigens on cancer cells from intrinsic antigens to OVA fragments. The conjugate containing multiple HA and OVA molecules (100k4HA-3OVA) adopted a highly condensed structure and was well recognized by recombinant CD44 molecules in quartz crystal microbalance analysis and incorporated into cancer cells (CT26 cells). A mixture of CT26 cells treated with 100k4HA-3OVA and splenocytes including OVA-specific CTLs induced abundant secretion of IFN-γ into the supernatant. At 48 h after mixing with the CTLs, almost all CT26 cells had died. These results indicate that 100k4HA-3OVA is actively internalized into the cells through interaction between HA and CD44. Subsequently, CT26 cells present not only self-antigens, but also OVA fragments on MHC class I molecules and are recognized by OVA-specific CTLs. We thus succeeded in modifying the antigenicity from self- to non-self-antigens on cancer cells. Therefore, this foreign-antigen delivery using HA to cancer cells, followed by antigen replacement, could be used as a novel strategy for treating cancers.
Collapse
Affiliation(s)
- Soichi Ogata
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Reika Tsuji
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Atsushi Moritaka
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Shoya Ito
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
7
|
Bedini E, Cassese E, D'Agostino A, Cammarota M, Frezza MA, Lepore M, Portaccio M, Schiraldi C, La Gatta A. Self-esterified hyaluronan hydrogels: Advancements in the production with positive implications in tissue healing. Int J Biol Macromol 2023; 236:123873. [PMID: 36870627 DOI: 10.1016/j.ijbiomac.2023.123873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Hyaluronan-(HA) short half-life in vivo limits its benefits in tissue repair. Self-esterified-HA is of great interest because it progressively releases HA, promoting tissue-regeneration longer than the unmodified-polymer. Here, the 1-ethyl-3-(3-diethylaminopropyl)carbodiimide(EDC)-hydroxybenzotriazole(HOBt) carboxyl-activating-system was evaluated for self-esterifying HA in the solid state. The aim was to propose an alternative to the time-consuming, conventional reaction of quaternary-ammonium-salts of HA with hydrophobic activating-systems in organic media, and to the EDC-mediated reaction, limited by by-product formation. Additionally, we aimed to obtain derivatives releasing defined molecular-weight(MW)-HA that would be valuable for tissue renewal. A 250 kDa-HA(powder/sponge) was reacted with increasing EDC/HOBt amounts. HA-modification was investigated through Size-Exclusion-Chromatography-Triple-Detector-Array-analyses, FT-IR/1H NMR and the products(XHAs) extensively characterized. Compared to conventional protocols, the set procedure is more efficient, avoids side-reactions, allows for an easier processing to diverse clinically-usable 3D-forms, leads to products gradually releasing HA under physiological conditions with the possibility to tune the MW of the biopolymer-released. Finally, the XHAs exhibit sound stability to Bovine-Testicular-Hyaluronidase, hydration/mechanical properties suitable for wound-dressings, with improvements over available matrices, and prompt in vitro wound-regeneration, comparably to linear-HA. To the best of our knowledge, the procedure is the first valid alternative to conventional protocols for HA self-esterification with advances in the process itself and in product performance.
Collapse
Affiliation(s)
- Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Naples, Italy
| | - Elisabetta Cassese
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonella D'Agostino
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Maria Assunta Frezza
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Maria Lepore
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Marianna Portaccio
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Annalisa La Gatta
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
8
|
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17:100453. [PMID: 36254248 PMCID: PMC9568881 DOI: 10.1016/j.mtbio.2022.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/30/2022] Open
Abstract
In the last decade, hyaluronic acid (HA) has attracted an ever-growing interest in the biomedical engineering field as a biocompatible, biodegradable, and chemically versatile molecule. In fact, HA is a major component of the extracellular matrix (ECM) and is essential for the maintenance of cellular homeostasis and crosstalk. Innovative experimental strategies in vitro and in vivo using three-dimensional (3D) HA systems have been increasingly reported in studies of diseases, replacement of tissue and organ damage, repairing wounds, and encapsulating stem cells for tissue regeneration. The present work aims to give an overview and comparison of recent work carried out on HA systems showing advantages, limitations, and their complementarity, for a comprehensive characterization of their use. A special attention is paid to the use of HA in three important areas: cancer, diseases of the central nervous system (CNS), and tissue regeneration, discussing the most innovative experimental strategies. Finally, perspectives within and beyond these research fields are discussed.
Collapse
Affiliation(s)
- Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Giuseppe Gigli
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Via Arnesano, 73100, Lecce, Italy
| | - Lorenzo Moroni
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| |
Collapse
|
9
|
Liu S, Zhang M, Lai Z, Tian H, Qiu Y, Li Z. Coral-like Magnetic Particles for Chemoselective Extraction of Anionic Metabolites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32890-32900. [PMID: 35819264 DOI: 10.1021/acsami.2c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, advanced chemical biology tools for chemoselective extraction of metabolites are limited. In this study, unique coral-like polymer particles were synthesized via high concentrations of 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), which are usually used as condensation agents. The polymers can wrap or adhere Fe3O4 nanoparticles (Fe3O4-NPs) to form polymer magnetic microparticles (PMMPs). With abundant NHS-activated moieties on their surface, the coral-like PMMPs could be modified by cystamine for the chemoselective extraction of phosphate/carboxylate anion metabolites from complex biological samples. Finally, 97 metabolites including nucleotides, phosphates, phosphate sugars, carboxylate sugars, and organic acids were extracted and identified from serum, tissues, and cells. These metabolites are involved in four major metabolic pathways including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and nucleotide metabolism. This study has provided a cost-effective and easy-to-implement preparation of PMMPs with a robust chemoselective extraction ability and versatile applications.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
10
|
Tsuji R, Ogata S, Mochizuki S. Interaction between CD44 and highly condensed hyaluronic acid through crosslinking with proteins. Bioorg Chem 2022; 121:105666. [DOI: 10.1016/j.bioorg.2022.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 02/06/2022] [Indexed: 11/02/2022]
|
11
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
12
|
Effects of Hinokitiol and Dicalcium Phosphate on the Osteoconduction and Antibacterial Activity of Gelatin-Hyaluronic Acid Crosslinked Hydrogel Membrane In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14080802. [PMID: 34451899 PMCID: PMC8401089 DOI: 10.3390/ph14080802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Many hydrogel-based crosslinking membranes have been designed and tailored to meet the needs of different applications. The aim of this research is to design a bifunctional hydrogel membrane with antibacterial and osteoconducting properties to guide different tissues. The membrane uses gelatin and hyaluronic acid as the main structure, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride as the crosslinker, hinokitiol as the antibacterial agent, and dicalcium phosphate anhydrous (DCPA) micron particles for osteoconduction. Results show that the hydrogel membrane with added DCPA and impregnated hinokitiol has a fixation index higher than 88%. When only a small amount of DCPA is added, the tensile strength does not decrease significantly. The tensile strength decreases considerably when a large amount of modified DCPA is added. The stress–strain curve shows that the presence of a large amount of hinokitiol in hydrogel membranes results in considerably improved deformation and toughness properties. Each group impregnated with hinokitiol exhibits obvious antibacterial capabilities. Furthermore, the addition of DCPA and impregnation with hinokitiol does not exert cytotoxicity on cells in vitro, indicating that the designed amount of DCPA and hinokitiol in this study is appropriate. After a 14-day cell culture, the hydrogel membrane still maintains a good shape because the cells adhere and proliferate well, thus delaying degradation. In addition, the hydrogel containing a small amount of DCPA has the best cell mineralization effect. The developed hydrogel has a certain degree of flexibility, degradability, and bifunctionality and is superficial. It can be used in guided tissue regeneration in clinical surgery.
Collapse
|
13
|
Alonci G, Mocchi R, Sommatis S, Capillo MC, Liga E, Janowska A, Nachbaur L, Zerbinati N. Physico-Chemical Characterization and In Vitro Biological Evaluation of a Bionic Hydrogel Based on Hyaluronic Acid and l-Lysine for Medical Applications. Pharmaceutics 2021; 13:pharmaceutics13081194. [PMID: 34452157 PMCID: PMC8400252 DOI: 10.3390/pharmaceutics13081194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Hyaluronic acid (HA) is an endogenous polysaccharide, whose hydrogels have been used in medical applications for decades. Here, we present a technology platform for stabilizing HA with a biocrosslinker, the amino acid l-Lysine, to manufacture bionic hydrogels for regenerative medicine. We synthetized bionic hydrogels with tailored composition with respect to HA concentration and degree of stabilization depending on the envisaged medical use. The structure of the hydrogels was assessed by microscopy and rheology, and the resorption behavior through enzymatic degradation with hyaluronidase. The biological compatibility was evaluated in vitro with human dermal fibroblast cell lines. HA bionic hydrogels stabilized with lysine show a 3D network structure, with a rheological profile that mimics biological matrixes, as a harmless biodegradable substrate for cell proliferation and regeneration and a promising candidate for wound healing and other medical applications.
Collapse
Affiliation(s)
- Giuseppe Alonci
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Matex Lab Switzerland SA, 1228 Plan-les-Ouates, Switzerland
| | - Roberto Mocchi
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Sabrina Sommatis
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Maria Chiara Capillo
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Elsa Liga
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Agata Janowska
- Department of Dermatology, University of Pisa, 56121 Pisa, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Lidia Nachbaur
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Correspondence: (L.N.); (N.Z.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.N.); (N.Z.)
| |
Collapse
|
14
|
Goodarzi K, Rao SS. Hyaluronic acid-based hydrogels to study cancer cell behaviors. J Mater Chem B 2021; 9:6103-6115. [PMID: 34259709 DOI: 10.1039/d1tb00963j] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hyaluronic acid (HA) is a natural polysaccharide and a key component of the extracellular matrix (ECM) in many tissues. Therefore, HA-based biomaterials are extensively utilized to create three dimensional ECM mimics to study cell behaviors in vitro. Specifically, derivatives of HA have been commonly used to fabricate hydrogels with controllable properties. In this review, we discuss the various chemistries employed to fabricate HA-based hydrogels as a tunable matrix to mimic the cancer microenvironment and subsequently study cancer cell behaviors in vitro. These include Michael-addition reactions, photo-crosslinking, carbodiimide chemistry, and Diels-Alder chemistry. The utility of these HA-based hydrogels to examine cancer cell behaviors such as proliferation, migration, and invasion in vitro in various types of cancer are highlighted. Overall, such hydrogels provide a biomimetic material-based platform to probe cell-matrix interactions in cancer cells in vitro and study the mechanisms associated with cancer progression.
Collapse
Affiliation(s)
- Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| | | |
Collapse
|
15
|
Xu C, Hung C, Cao Y, Liu HH. Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions. ACS APPLIED BIO MATERIALS 2021; 4:2408-2428. [PMID: 35014361 DOI: 10.1021/acsabm.0c01300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article reports tunable crosslinking, reversible phase transition, and three-dimensional printing (3DP) of hyaluronic acid (HyA) hydrogels via dynamic coordination of Fe3+ ions with their innate carboxyl groups for the first time. The concentrations of Fe3+ and H+ ions and the reaction time determine the tunable ratios of mono-, bi-, and tridentate coordination, leading to the low-to-high crosslinking densities and reversible solid-liquid phase transition of HyA hydrogels. At the monodentate-dominant coordination, the liquid hydrogels have low crosslinking densities (HyA_L). At the mixed coordination of mono-, bi-, and tridentate bonding, the solid hydrogels have medium crosslinking densities (HyA_M). At the tridentate-dominant coordination, the solid hydrogels have high crosslinking densities (HyA_H). The reversible solid-liquid phase transitions among HyA_L, HyA_M, and HyA_H were achieved via controlling the concentrations of Fe3+ and H+ ions and reaction time. When the crosslinking densities are between HyA_L and HyA_M, the hydrogels become 3D printable (HyA_P). HyA_P hydrogels were 3D-printed successfully using cold-stage or direct writing methods, and the 3D constructs achieved better structural stability using the latter method. In the direct exposure culture with bone marrow-derived mesenchymal stem cells, the 3D-printed HyA_H (HyA_H_3D) and HyA_H hydrogels showed higher average cell adhesion densities than the HyA_M, HyA_P, and HyA_L hydrogel groups under both direct and indirect contact conditions. For all hydrogel groups, cell adhesion densities under direct contact conditions were statistically lower than the same groups under indirect contact conditions. In this article, we elucidated the mechanisms of dynamic coordination and the relationships among the key parameters in controlling the tunable crosslinking, reversible phase transition, and 3DP of HyA hydrogels without blending with other polymers or adding functional groups. This approach can be potentially adapted to crosslink and 3D print other polymeric hydrogels with carboxyl groups, which is promising for a wide range of applications.
Collapse
Affiliation(s)
- Changlu Xu
- Materials Science and Engineering Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chengi Hung
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Yue Cao
- Department of Chemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan H Liu
- Materials Science and Engineering Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.,Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
16
|
Wang F, Song Y, Liang S, Yu Y, Liang J, Jiang M. Polyamidoxime nanoparticles/polyvinyl alcohol composite chelating nanofibers prepared by centrifugal spinning for uranium extraction. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Li LS, Ren B, Yang X, Cai ZC, Zhao XJ, Zhao MX. Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals (Basel) 2021; 14:ph14020101. [PMID: 33525717 PMCID: PMC7911392 DOI: 10.3390/ph14020101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Functionalized gold nanoparticles (AuNPs) have been successfully used in many fields as a result of having low cytotoxicity, good biocompatibility, excellent optical properties, and their ability to target cancer cells. Here, we synthesized AuNP carriers that were modified by hyaluronic acid (HA), polyethylene glycol (PEG), and adipic dihydrazide (ADH). The antitumor drug doxorubicin (Dox) was loaded into AuNP carriers and attached chemically. The Au nanocomposite AuNPs@MPA-PEG-HA-ADH-Dox was able to disperse uniformly in aqueous solution, with a diameter of 15 nm. The results of a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that AuNP carriers displayed very little toxicity toward cells in high doses, although the antitumor properties of Au nanocomposites were significantly enhanced. Cellular uptake experiments demonstrated that AuNPs modified with hyaluronic acid were more readily ingested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A series of experiments measuring apoptosis such as Rh123 and annexin V-FITC staining, and analysis of mitochondrial membrane potential (MMP) analysis, indicated that apoptosis played a role in the inhibition of cell proliferation by AuNPs@MPA-PEG-HA-ADH-Dox. Excessive production of reactive oxygen species (ROS) was the principal mechanism by which the Au nanocomposites inhibited cell proliferation, leading to apoptosis. Thus, the Au nanocomposites, which allowed cell imaging in real-time and induced apoptosis in specific cell types, represent theragnostic agents with potential for future clinical applications in bowel cancer.
Collapse
Affiliation(s)
- Lin-Song Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Bin Ren
- School of Mathematics and Statistics, Henan University, Jinming Campus, Kaifeng 475004, China;
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Zhong-Chao Cai
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
- Correspondence:
| |
Collapse
|
18
|
Islam MR, Nguy C, Pandit S, Lyon LA. Design and Synthesis of Core–Shell Microgels with One‐Step Clickable Crosslinked Cores and Ultralow Crosslinked Shells. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Molla R. Islam
- Schmid College of Science and Technology Chapman University Orange CA 92866 USA
| | - Chelsey Nguy
- Schmid College of Science and Technology Chapman University Orange CA 92866 USA
| | - Sanika Pandit
- Schmid College of Science and Technology Chapman University Orange CA 92866 USA
| | - Louis Andrew Lyon
- Schmid College of Science and Technology Chapman University Orange CA 92866 USA
- Chapman University Orange CA 92866 USA
| |
Collapse
|
19
|
Bayer IS. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020; 25:molecules25112649. [PMID: 32517278 PMCID: PMC7321085 DOI: 10.3390/molecules25112649] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hyaluronic acid (HA) also known as hyaluronan, is a natural polysaccharide—an anionic, non-sulfated glycosaminoglycan—commonly found in our bodies. It occurs in the highest concentrations in the eyes and joints. Today HA is used during certain eye surgeries and in the treatment of dry eye disease. It is a remarkable natural lubricant that can be injected into the knee for patients with knee osteoarthritis. HA has also excellent gelling properties due to its capability to bind water very quickly. As such, it is one the most attractive controlled drug release matrices and as such, it is frequently used in various biomedical applications. Due to its reactivity, HA can be cross-linked or conjugated with assorted bio-macromolecules and it can effectively encapsulate several different types of drugs, even at nanoscale. Moreover, the physiological significance of the interactions between HA and its main membrane receptor, CD44 (a cell-surface glycoprotein that modulates cell–cell interactions, cell adhesion and migration), in pathological processes, e.g., cancer, is well recognized and this has resulted in an extensive amount of studies on cancer drug delivery and tumor targeting. HA acts as a therapeutic but also as a tunable matrix for drug release. Thus, this review focuses on controlled or sustained drug release systems assembled from HA and its derivatives. More specifically, recent advances in controlled release of proteins, antiseptics, antibiotics and cancer targeting drugs from HA and its derivatives were reviewed. It was shown that controlled release from HA has many benefits such as optimum drug concentration maintenance, enhanced therapeutic effects, improved efficiency of treatment with less drug, very low or insignificant toxicity and prolonged in vivo release rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
20
|
Marinelli L, Cacciatore I, Eusepi P, Di Biase G, Morroni G, Cirioni O, Giacometti A, Di Stefano A. Viscoelastic behaviour of hyaluronic acid formulations containing carvacrol prodrugs with antibacterial properties. Int J Pharm 2020; 582:119306. [PMID: 32276092 DOI: 10.1016/j.ijpharm.2020.119306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
In this paper, we report the development and viscoelastic properties of hyaluronic acid formulations (HA5, HA30, and HA60, containing 0.5, 3, and 6% HA, respectively) loaded with carvacrol prodrugs (WSCPS) with antibacterial properties. Notably, antimicrobial studies revealed that WSCP1-2 in both HA5 and HA30 formulations showed the best minimum inhibitory concentration (MIC) values against Enterococcus faecium (128 mg/L) and Enterococcus faecalis (256 mg/L) compared to those of carvacrol alone or in formulations with HA. Moreover, rheological analyses showed that HA30 composites exhibited a semi-solid consistency, while HA5 formulations possessed a fluid consistency. Considering these data, HA30 is a useful formulation which guarantees a good percentage of prodrug release (e.g., 30 and 60% for WSCP1 and 2, respectively) as well as a texture suitable for topical administration to treat wounds and/or skin infections.
Collapse
Affiliation(s)
- Lisa Marinelli
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy.
| | - Ivana Cacciatore
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| | - Piera Eusepi
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| | - Giuseppe Di Biase
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, via Tronto 10/A, 60020 Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, via Tronto 10/A, 60020 Ancona, Italy
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, via Tronto 10/A, 60020 Ancona, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
21
|
Chhabra R, Peshattiwar V, Pant T, Deshpande A, Modi D, Sathaye S, Tibrewala A, Dyawanapelly S, Jain R, Dandekar P. In Vivo Studies of 3D Starch–Gelatin Scaffolds for Full-Thickness Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:2920-2929. [DOI: 10.1021/acsabm.9b01139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roha Chhabra
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Vaibhavi Peshattiwar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Tejal Pant
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Aparna Deshpande
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute For Research In Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Anil Tibrewala
- Consultant Plastic and Cosmetic Surgeon, P.D. Hinduja National Hospital and Medical Research Centre, Veer Sawarkar Marg, Asavari, Shivaji Park, Mumbai 400016, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
22
|
Khaleghi M, Ahmadi E, Khodabandeh Shahraki M, Aliakbari F, Morshedi D. Temperature-dependent formulation of a hydrogel based on Hyaluronic acid-polydimethylsiloxane for biomedical applications. Heliyon 2020; 6:e03494. [PMID: 32258450 PMCID: PMC7096762 DOI: 10.1016/j.heliyon.2020.e03494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Hyaluronic acid (HA), as a safe biomaterial with minimal immunogenicity, is being employed in a broad range of medical applications. Since unmodified HA has a high potential for biodegradation in the physiological condition, herein, an HA-based cross-linked hydrogel was formulated using polydimethylsiloxane-diglycidyl ether terminated (PDMS-DG) via epoxide-OH reaction. The formation of HA-PDMS hydrogel was confirmed using FTIR, NMR, and FESEM. Temperature demonstrated a critical role in the physicochemical properties of the final products. Gel-37, which formed at 37 °C, had a higher modification degree (MD) and more stability against hyaluronidase and oxidative stress than the hydrogel formulated at 25 °C (Gel-25). In addition, the swelling ratio, roughness, and porous network topology of Gel-25 and Gel-37 were different. The rheology measurement indicated that HA-PDMS hydrogel had a stable viscoelastic character. The hydrogel was also biocompatible, non-cytotoxic, and considerably stable during 7-months storage. Overall, various determined parameters confirmed that HA-PDMS hydrogel is worth using in different medical applications. Keywords: Hyaluronic acid; Polydimethylsiloxane-diglycidyl ether terminated; Hydrogels; Long-term stability; Viscoelastic behavior; Biocompatibility.
Collapse
Affiliation(s)
- Maryam Khaleghi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Ebrahim Ahmadi
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Mahvash Khodabandeh Shahraki
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farhang Aliakbari
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
23
|
Rodríguez López ADL, Lee MR, Ortiz BJ, Gastfriend BD, Whitehead R, Lynn DM, Palecek SP. Preventing S. aureus biofilm formation on titanium surfaces by the release of antimicrobial β-peptides from polyelectrolyte multilayers. Acta Biomater 2019; 93:50-62. [PMID: 30831325 PMCID: PMC6693497 DOI: 10.1016/j.actbio.2019.02.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023]
Abstract
Staphylococcus aureus infections represent the major cause of titanium based-orthopaedic implant failure. Current treatments for S. aureus infections involve the systemic delivery of antibiotics and additional surgeries, increasing health-care costs and affecting patient's quality of life. As a step toward the development of new strategies that can prevent these infections, we build upon previous work demonstrating that the colonization of catheters by the fungal pathogen Candida albicans can be prevented by coating them with thin polymer multilayers composed of chitosan (CH) and hyaluronic acid (HA) designed to release a β-amino acid-based peptidomimetic of antimicrobial peptides (AMPs). We demonstrate here that this β-peptide is also potent against S. aureus (MBPC = 4 μg/mL) and characterize its selectivity toward S. aureus biofilms. We demonstrate further that β-peptide-containing CH/HA thin-films can be fabricated on the surfaces of rough planar titanium substrates in ways that allow mammalian cell attachment and permit the long-term release of β-peptide. β-Peptide loading on CH/HA thin-films was then adjusted to achieve release of β-peptide quantities that selectively prevent S. aureus biofilms on titanium substrates in vitro for up to 24 days and remained antimicrobial after being challenged sequentially five times with S. aureus inocula, while causing no significant MC3T3-E1 preosteoblast cytotoxicity compared to uncoated and film-coated controls lacking β-peptide. We conclude that these β-peptide-containing films offer a novel and promising localized delivery approach for preventing orthopaedic implant infections. The facile fabrication and loading of β-peptide-containing films reported here provides opportunities for coating other medical devices prone to biofilm-associated infections. STATEMENT OF SIGNIFICANCE: Titanium (Ti) and its alloys are used widely in orthopaedic devices due to their mechanical strength and long-term biocompatibility. However, these devices are susceptible to bacterial colonization and the subsequent formation of biofilms. Here we report a chitosan and hyaluronic acid polyelectrolyte multilayer-based approach for the localized delivery of helical, cationic, globally amphiphilic β-peptide mimetics of antimicrobial peptides to inhibit S. aureus colonization and biofilm formation. Our results reveal that controlled release of this β-peptide can selectively kill S. aureus cells without exhibiting toxicity toward MC3T3-E1 preosteoblast cells. Further development of this polymer-based coating could result in new strategies for preventing orthopaedic implant-related infections, improving outcomes of these titanium implants.
Collapse
Affiliation(s)
- Angélica de L Rodríguez López
- Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin- Madison, Madison, WI 53706, USA
| | - Myung-Ryul Lee
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA
| | - Benjamín J Ortiz
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA
| | - Riley Whitehead
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA
| | - David M Lynn
- Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin- Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA; Department of Chemistry, 1101 University Avenue, University of Wisconsin- Madison, Madison, WI 53706, USA.
| | - Sean P Palecek
- Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin- Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA.
| |
Collapse
|
24
|
Lee JE, Abuzar SM, Seo Y, Han H, Jeon Y, Park EJ, Baik SH, Hwang SJ. Oxaliplatin-loaded chemically cross-linked hydrogels for prevention of postoperative abdominal adhesion and colorectal cancer therapy. Int J Pharm 2019; 565:50-58. [DOI: 10.1016/j.ijpharm.2019.04.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/05/2023]
|
25
|
Mondal MIH, Haque MO. Cellulosic Hydrogels: A Greener Solution of Sustainability. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Séon-Lutz M, Couffin AC, Vignoud S, Schlatter G, Hébraud A. Electrospinning in water and in situ crosslinking of hyaluronic acid / cyclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr Polym 2018; 207:276-287. [PMID: 30600010 DOI: 10.1016/j.carbpol.2018.11.085] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Hyaluronic acid (HA) is widely investigated due to its high potential for wound dressing applications. The fabrication of biomimetic HA-based scaffolds by electrospinning is thus extensively studied. However, HA is often dissolved in toxic organic solvents to allow the efficient production of electrospun nanofibers. Indeed, although HA is soluble in water, its ionic nature leading to long-range electrostatic interactions and the presence of counter ions induce a dramatic increase of the viscosity of aqueous HA solutions without insuring enough chain entanglements necessary for a stable and efficient electrospinning. In this study, biocompatible insoluble HA-based nanofibers were fabricated by electrospinning in pure water. To this end, poly(vinyl alcohol) (PVA) was added as a carrier polymer and it was found that the addition of hydroxypropyl-βcyclodextrin (HPβCD) stabilized the process of electrospinning and led to the efficient formation of uniform nanofibrous scaffolds. An in situ crosslinking process of the scaffolds is also proposed, insuring a whole fabrication process without any toxicity. Furthermore, the beneficial presence of HPβCD in the HA-based scaffolds paves the way for wound dressing applications with controlled drug encapsulation-release properties. As a proof of concept, naproxen (NAP), a non-steroidal anti-inflammatory drug was chosen as a model drug. NAP was impregnated into the scaffolds either in aqueous solution or under supercritical CO2. The resulting functional scaffolds showed a regular drug release profile along several days without losing the fibrous structure. This study proposes a simple approach to form stable HA-based nanofibrous scaffolds embedding HPβCD using water as the only solvent, enabling the development of safe functional wound dressings.
Collapse
Affiliation(s)
- Morgane Séon-Lutz
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Anne-Claude Couffin
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Séverine Vignoud
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Anne Hébraud
- ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
27
|
Li H, Xue Y, Jia B, Bai Y, Zuo Y, Wang S, Zhao Y, Yang W, Tang H. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.102] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Hernández-Vargas G, Ponce-Ponce de León CA, González-Valdez J, Iqbal HMN. “Smart” Polymers: Physicochemical Characteristics and Applications in Bio-Separation Strategies. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1356332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gustavo Hernández-Vargas
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| | | | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| |
Collapse
|
29
|
Zhuo F, Liu X, Gao Q, Wang Y, Hu K, Cai Q. Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:1-7. [DOI: 10.1016/j.msec.2017.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 11/29/2022]
|
30
|
Aduba DC, Yang H. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials. Bioengineering (Basel) 2017; 4:bioengineering4010001. [PMID: 28952482 PMCID: PMC5590441 DOI: 10.3390/bioengineering4010001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 01/09/2023] Open
Abstract
Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide's naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development.
Collapse
Affiliation(s)
- Donald C Aduba
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
31
|
Xuejun X, Netti PA, Ambrosio L, Nicolais L, Sannino A. Preparation and Characterization of a Hydrogel from Low-Molecular Weight Hyaluronic Acid. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504041608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A relatively low-molecular weight sample of hyaluronic acid (HA) was chemically modified by means of a cross-linking reaction with water-soluble carbodiimide and L-lysine methyl ester to form a chemical hydrogel. FT-IR analysis performed on the precursors and on the cross-linked hydrogel indicated the formation of ester bonds between different HA molecules that led to an intermolecular cross-linking. Hydrogel swelling kinetics as well as equilibrium sorption properties were evaluated. A swelling ratio of 250 was observed after immersion in distilled water for 7 h. Rheological measurements by means of a plate–plate rheometer of the cross-linked sample showed non-Newtonian and pseudoplastic behavior, while the uncross-linked HA showed Newtonian behavior and a viscous characteristic. Morphological analysis of these microstructures by scanning electron microscopy indicated that the freeze-dried crosslinked hydrogel presents a more closed-pore structure and higher density of pores than the freeze-dried original HA.
Collapse
Affiliation(s)
| | - P. A. Netti
- Department of Materials and Production Engineering, University of Naples, ‘‘Federico II’’, P.le Tecchio 80 – 80125 Naples, Italy
| | | | - L. Nicolais
- Institute of Composite and Biomedical Materials, National Research Council, P.le Tecchio 80 – 80125 Naples, Italy
| | - A. Sannino
- Department of Innovation Engineering, University of Lecce, via Monteroni – 73100 Lecce, Italy
| |
Collapse
|
32
|
Yeh MK, Liang YM, Hu CS, Cheng KM, Hung YW, Young JJ, Hong PD. Studies on a novel gelatin sponge: preparation and characterization of cross-linked gelatin scaffolds using 2-chloro-1-methylpyridinium iodide as a zero-length cross-linker. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 23:973-90. [PMID: 21549037 DOI: 10.1163/092050611x568430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We prepared a novel porous gelatin (GEL) sponge which was cross-linked (CL) with a zero-length crosslinker of 2-chloro-1-methylpyridinium iodide (CMPI), and compared CPMI with 1-ethyl-3,3-dimethylaminoproplycarbodiimide (EDC). The ninhydrin assay indicated that the CMPI-CL-GEL sponge had a higher degree of cross-linking than the EDC-CL-GEL sponge at cross-linking saturation. In contrast, the EDC-CL-GEL sponge demonstrated poor water uptake and a much slower enzymatic degradation rate than the CMPI-CL-GEL sponge. Scanning electron microscopy (SEM) images of the gelatin sponge fabricated using a gradient frozen-lyophilization method showed uniformly distributed and interconnected pores. Human 3T3 fibroblasts were successfully seeded onto the scaffolds, and cell proliferation was sustained on all CL-GEL sponges. CMPI-CL-GEL sponges demonstrated significantly increased cell numbers after day 1, and cell numbers steadily rose from day 1 to 12. Meanwhile, the CMPI-CL-GEL sponge had a higher cell number than the EDC-CL-GEL sponge (P < 0.05) by day 4. In vitro studies with 3T3 fibroblasts demonstrated an increased cell viability for those cells grown on sponges cross-linked with CMPI compared to those cross-linked with EDC. SEM images revealed attachment and spreading of cells, the CMPI-CL-GEL sponges had more cells that had elongated, migrated, and formed interconnected networks with neighboring cells.
Collapse
Affiliation(s)
- Ming-Kung Yeh
- a Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia, Taipei 237, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
33
|
Mahmoud AA, Salama AH. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci 2015; 83:155-65. [PMID: 26733072 DOI: 10.1016/j.ejps.2015.12.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 01/28/2023]
Abstract
Biomaterial scaffolds are versatile tools as drug carrier for treatment of wounds. A series of norfloxacin-loaded scaffolds were synthesized for treatment of wounds by combining collagen with two different types of chitosan using freeze-drying technique. Subsequently, scaffolds were screened in terms of morphology, water absorption and retention capacity, biodegradation, ex-vivo bioadhesive strength, in-vitro drug release biological compatibility, X-ray diffractometry, differential scanning calorimetry as well as in-vivo evaluation. The results indicate that the scaffold mechanical strength is dependent on the type of used chitosan. The prepared scaffolds contained interconnected porous architecture. The scaffolds had high water uptake and retention capacity with extended biodegradation rate. Scaffolds prepared with chitosan HCl showed superior bioadhesive strength compared to those prepared with low molecular weight chitosan. All scaffolds showed almost 100% drug release within 24h. As identified by the terahertz pulsed imaging measurements, there is single scaffold area with the same concentration. After 28 days of wound dressing with selected norfoloxacin-loaded or unloaded collagen/chitosan scaffolds in Albino rats, it was found that the tissue regeneration time was fast compared to non-treated wounds. Furthermore, the drug-loaded scaffolds showed normal structure of an intact epidermal layer as well as the underlying dermis as revealed by histopathological studies. The obtained results suggest that the investigated norfloxacin-loaded collagen/chitosan scaffold is a potential candidate for skin regeneration application.
Collapse
Affiliation(s)
- Azza A Mahmoud
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Alaa H Salama
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
34
|
Masruchin N, Park BD. Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils. ACTA ACUST UNITED AC 2015. [DOI: 10.5658/wood.2015.43.5.613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Isık S, Taşkapılıoğlu MÖ, Atalay FO, Dogan S. Effects of cross-linked high-molecular-weight hyaluronic acid on epidural fibrosis: experimental study. J Neurosurg Spine 2015; 22:94-100. [PMID: 25396261 DOI: 10.3171/2014.10.spine131147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Epidural fibrosis is nonphysiological scar formation, usually at the site of neurosurgical access into the spinal canal, in the intimate vicinity of and around the origin of the radicular sheath. The formation of dense fibrous tissue causes lumbar and radicular pain. In addition to radicular symptoms, the formation of scar tissue may cause problems during reoperation. The authors aimed to investigate the effects of cross-linked high-molecular-weight hyaluronic acid (HA), an HA derivative known as HA gel, on the prevention of epidural fibrosis by using histopathological and biochemical parameters. METHODS Fifty-six adult female Sprague-Dawley rats were evaluated. The rats were divided into 4 groups. Rats in the sham group (n = 14) underwent laminectomy and discectomy and received no treatment; rats in the control group (n = 14) underwent laminectomy and discectomy and received 0.9% NaCl treatment in the surgical area; rats in the HA group (n = 14) received HA treatment at the surgical area after laminectomy and discectomy; and rats in the HA gel group (n = 14) underwent laminectomy and discectomy in addition to receiving treatment with cross-linked high-molecular-weight HA in the surgical area. All rats were decapitated after 4 weeks, and the specimens were evaluated histopathologically and biochemically. The results were statistically compared using the Mann-Whitney U-test. RESULTS Compared with the sham and control groups, the HA and HA gel groups showed significantly lower fibroblast cell density and tissue hydroxyproline concentrations (p < 0.05). There was statistically significant lower dural adhesion and foreign-body reaction between the control and HA gel groups (p < 0.05). Granulation tissue and epidural fibrosis were significantly lower in the HA and HA gel groups compared with the sham group (p < 0.05). There were no significant differences in any histopathological parameters or biochemical values between Groups 3 and 4 (p > 0.05). CONCLUSIONS Cross-linked high-molecular-weight HA had positive effects on the prevention of epidural fibrosis and the reduction of fibrotic tissue density. The efficacy of this agent should also be verified in further experimental and clinical studies.
Collapse
Affiliation(s)
- Semra Isık
- Department of Neurosurgery, Uludag University Medical School, Bursa, Turkey
| | | | | | | |
Collapse
|
36
|
Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1607-14. [PMID: 25641220 PMCID: PMC4476973 DOI: 10.1002/adma.201405076] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 05/20/2023]
Abstract
A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.
Collapse
Affiliation(s)
- Alexandra L. Rutz
- Institute for BioNanotechnology in Medicine, Chicago, IL 60611, USA. Department of Biomedical Engineering, Evanston, IL 60208, USA
| | - Kelly E. Hyland
- Department of Materials Science and Engineering, Evanston, IL 60208, USA. Institute for BioNanotechnology in Medicine, Chicago, IL 60611, USA
| | - Adam E. Jakus
- Department of Materials Science and Engineering, Evanston, IL 60208, USA. Institute for BioNanotechnology in Medicine, Chicago, IL 60611, USA
| | - Wesley R. Burghardt
- Department of Materials Science and Engineering, Evanston, IL 60208, USA. Department of Chemical and Biological Engineering Evanston, IL 60208, USA
| | - Ramille N. Shah
- Department of Materials Science and Engineering, Evanston, IL 60208, USA. Department of Surgery - Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Institute for BioNanotechnology in Medicine, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Caridade SG, Monge C, Almodóvar J, Guillot R, Lavaud J, Josserand V, Coll JL, Mano JF, Picart C. Myoconductive and osteoinductive free-standing polysaccharide membranes. Acta Biomater 2015; 15:139-49. [PMID: 25575853 DOI: 10.1016/j.actbio.2014.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/26/2014] [Accepted: 12/30/2014] [Indexed: 01/18/2023]
Abstract
Free-standing (FS) membranes have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we studied the potential of free-standing membranes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration of a thick membrane suitable for both muscle and bone formation. Our aim was to produce well-defined ∼50 μm thick polysaccharide membranes that could be easily manipulated, were mechanically resistant, and would enable both myogenesis and osteogenesis in vitro and in vivo. The membranes were chemically crosslinked to improve their mechanical properties. Crosslinking chemistry was followed via Fourier transform infrared spectroscopy and the mechanical properties of the membranes were assessed using dynamic mechanical analysis. The loading and release of the potent osteoinductive growth factor bone morphogenetic protein 2 (BMP-2) inside and outside of the FS membrane was followed by fluorescence spectroscopy in a physiological buffer over 1 month. The myogenic and osteogenic potentials of the membranes in vitro were assessed using BMP-2-responsive skeletal myoblasts. Finally, their osteoinductive properties in vivo were studied in a preliminary experiment using a mouse ectopic model. Our results showed that the more crosslinked FS membranes enabled a more efficient myoblast differentiation in myotubes. In addition, we showed that a tunable amount of BMP-2 can be loaded into and subsequently released from the membranes, depending on the crosslinking degree and the initial BMP-2 concentration in solution. Only the more crosslinked membranes were found to be osteoinductive in vivo. These polysaccharide-based membranes have strong potential as a periosteum-mimetic scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Sofia G Caridade
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Jorge Almodóvar
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Raphael Guillot
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Jonathan Lavaud
- Institute Albert Bonniot, INSERM U823, ERL CNRS3148, Grenoble, France
| | | | - Jean-Luc Coll
- Institute Albert Bonniot, INSERM U823, ERL CNRS3148, Grenoble, France
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Catherine Picart
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France.
| |
Collapse
|
38
|
Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr Polym 2015; 119:142-8. [DOI: 10.1016/j.carbpol.2014.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/27/2014] [Accepted: 11/21/2014] [Indexed: 11/19/2022]
|
39
|
Naghavi Alhosseini S, Moztarzadeh F, Kargozar S, Dodel M, Tahriri M. Development of Polyvinyl Alcohol Fibrous Biodegradable Scaffolds for Nerve Tissue Engineering Applications:In VitroStudy. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.977893] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Chen YH, Li J, Hao YB, Qi JX, Dong NG, Wu CL, Wang Q. Preparation and characterization of composite hydrogels based on crosslinked hyaluronic acid and sodium alginate. J Appl Polym Sci 2015. [DOI: 10.1002/app.41898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yong-Hao Chen
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science; Beijing 100093 China
| | - Jun Li
- Beijing Institute of Landscape Architecture; Beijing 100102 China
| | - Yan-Bin Hao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science; Beijing 100093 China
| | - Jian-Xun Qi
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science; Beijing 100093 China
| | - Ning-Guang Dong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science; Beijing 100093 China
| | - Chun-Lin Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science; Beijing 100093 China
| | - Qiang Wang
- Institute of Agrofood Science and Technology, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| |
Collapse
|
41
|
Quan R, Zheng X, Xu S, Zhang L, Yang D. Gelatin-chondroitin-6-sulfate-hyaluronic acid scaffold seeded with vascular endothelial growth factor 165 modified hair follicle stem cells as a three-dimensional skin substitute. Stem Cell Res Ther 2014; 5:118. [PMID: 25331352 PMCID: PMC4535258 DOI: 10.1186/scrt508] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION In the field of skin tissue engineering, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) stents are a suitable bio skin substitute. The purpose was to investigate the effect of genetically-modified hair follicle stem cells (HFSCs), combined with Gel-C6S-HA scaffolds, on the vascularization of tissue-engineered skin. METHODS Three-dimensional (3D) Gel-C6S-HA scaffolds were prepared by freeze-drying. Vascular endothelial growth factor (VEGF) 165 gene-modified rat HFSCs (rHFSCs) were inoculated into the scaffolds and cultured for 7 days. Two bilateral full-thickness skin defects were created on the back of 18 Sprague-Dawley rats. Rats were randomly divided into four groups: Group A, HFSCs transduced with VEGF165 seeded onto Gel-C6S-HA scaffolds; Group B, HFSCs transduced with empty vector seeded onto Gel-C6S-HA scaffolds; Group C, Gel-C6S-HA scaffold only; Group D, Vaseline gauze dressing. These compositions were implanted onto the defects and harvested at 7, 14 and 21 days. Wound healing was assessed and compared among groups according to hematoxylin-eosin staining, CD31 expression, alpha smooth muscle actin (α-SMA) and major histocompatibility complex class I (MHC-I) immunohistochemistry, and microvessel density (MVD) count, to evaluate the new blood vessels. RESULTS SEM revealed the Gel-C6S-HA scaffold was spongy and 3D, with an average pore diameter of 133.23 ± 43.36 μm. Cells seeded on scaffolds showed good adherent growth after 7 days culture. No significant difference in rHFSC morphology, adherence and proliferative capacity was found before and after transfection (P >0.05). After 14 and 21 days, the highest rate of wound healing was observed in Group A (P <0.05). Histological and immunological examination showed that after 21 days, MVD also reached a maximum in Group A (P <0.05). Therefore, the number of new blood vessels formed within the skin substitutes was greatest in Group A, followed by Group B. In Group C, only trace amounts of mature subcutaneous blood vessels were observed, and few subcutaneous tissue cells migrated into the scaffolds. CONCLUSIONS Tissue-engineered skin constructs, using 3D Gel-C6S-HA scaffolds seeded with VEGF165-modified rHFSCs, resulted in promotion of angiogenesis during wound healing and facilitation of vascularization in skin substitutes. This may be a novel approach for tissue-engineered skin substitutes.
Collapse
|
42
|
Lan S, Jou I, Wu P, Wu C, Chen S. Investigation into the safety of perineural application of 1,4‐butanediol diglycidyl ether‐crosslinked hyaluronan in a rat model. J Biomed Mater Res B Appl Biomater 2014; 103:718-26. [DOI: 10.1002/jbm.b.33251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 05/25/2014] [Accepted: 06/20/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Sheng‐Min Lan
- Institute of Clinical MedicineNational Cheng Kung University No.1, University Road, Tainan 70101 Taiwan
| | - I‐Ming Jou
- Department of OrthopaedicsCollege of Medicine, National Cheng‐Kung University Tainan70428 Taiwan
| | - Po‐Ting Wu
- Department of OrthopaedicsCollege of Medicine, National Cheng‐Kung University Tainan70428 Taiwan
| | - Cheng‐Yi Wu
- Department of OrthopaedicsChia Yi Christian Hospital Chia Yi Taiwan
| | - Sung‐Ching Chen
- R&D DivisionDirection Maxigen Biotech Inc., Wugu District New Taipei City248 Taiwan
| |
Collapse
|
43
|
Zhang J, Ma X, Fan D, Zhu C, Deng J, Hui J, Ma P. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:547-54. [PMID: 25175249 DOI: 10.1016/j.msec.2014.07.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/30/2022]
Abstract
Injectable hydrogel plays an important role in soft tissue filling and repair. We report an injectable hydrogel based on hyaluronic acid (HA) and human-like collagen (HLC), both with favorable biocompatibility and biodegradability. These two types of biomacromolecules were crosslinked with 1,4-butanediol diglycidyl ether to form a three-dimensional network. The redundant crosslinker was removed by dialysis and distillation. An HA-based hydrogel prepared by the same method was used as a control. The cytocompatibility was studied with a Cell Counting Kit-8 (CCK-8) test. Carbazole colorimetry was used to analyze the in vitro degradation rate. The histocompatibility was evaluated by hematoxylin and eosin (H&E) staining analysis and immunohistochemical analysis. The CCK-8 assay demonstrated that the HA/HLC hydrogel was less cytotoxic than the HA-based hydrogel and could promote baby hamster kidney cell (BHK) proliferation. The cell adhesion indicated that BHK could grow well on the surface of the materials and maintain good cell viability. The in vitro degradation test showed that the HA/HLC hydrogel had a longer degradation time and an excellent antienzyme ability. In vivo injection showed that there was little inflammatory response to HA/HLC after 1, 2, and 4 weeks. Therefore, the HA/HLC hydrogel is a promising biomaterial for soft tissue filling and repair.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
44
|
Park J, Gerber MH, Babensee JE. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J Biomed Mater Res A 2014; 103:170-84. [PMID: 24616366 DOI: 10.1002/jbm.a.35150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022]
Abstract
Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.
Collapse
Affiliation(s)
- Jaehyung Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia, 30332
| | | | | |
Collapse
|
45
|
Szente L, Puskás I, Csabai K, Fenyvesi É. Supramolecular Proteoglycan Aggregate Mimics: Cyclodextrin-Assisted Biodegradable Polymer Assemblies for Electrostatic-Driven Drug Delivery. Chem Asian J 2014; 9:1365-72. [DOI: 10.1002/asia.201301391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/14/2013] [Indexed: 11/09/2022]
|
46
|
Lai JY. Interrelationship between cross-linking structure, molecular stability, and cytocompatibility of amniotic membranes cross-linked with glutaraldehyde of varying concentrations. RSC Adv 2014. [DOI: 10.1039/c4ra01930j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemical cross-linker concentration has a marked influence on the interrelationship between cross-linking structure, molecular stability, and cytocompatibility of a glutaraldehyde-treated amniotic membrane for a limbal stem cell niche.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302, Republic of China
| |
Collapse
|
47
|
De Santis S, Diociaiuti M, Cametti C, Masci G. Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors. Carbohydr Polym 2014; 101:96-103. [DOI: 10.1016/j.carbpol.2013.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/25/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
48
|
Rajan M, Raj V, Al-Arfaj AA, Murugan A. Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles. Int J Pharm 2013; 453:514-22. [DOI: 10.1016/j.ijpharm.2013.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/08/2013] [Accepted: 06/12/2013] [Indexed: 11/24/2022]
|
49
|
Kirk JF, Ritter G, Finger I, Sankar D, Reddy JD, Talton JD, Nataraj C, Narisawa S, Millán JL, Cobb RR. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing. BIOMATTER 2013; 3:25633. [PMID: 23896569 PMCID: PMC3866196 DOI: 10.4161/biom.25633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE™. The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE™, has the potential for use in chronic wound healing.
Collapse
Affiliation(s)
- James F Kirk
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| | - Gregg Ritter
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| | - Isaac Finger
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| | - Dhyana Sankar
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| | - Joseph D Reddy
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| | - James D Talton
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| | | | - Sonoko Narisawa
- Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | | | - Ronald R Cobb
- Research and Development Department; Nanotherapeutics, Inc.; Alachua, FL USA
| |
Collapse
|
50
|
La Gatta A, Schiraldi C, Papa A, D’Agostino A, Cammarota M, De Rosa A, De Rosa M. Hyaluronan scaffolds via diglycidyl ether crosslinking: Toward improvements in composition and performance. Carbohydr Polym 2013; 96:536-44. [DOI: 10.1016/j.carbpol.2013.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|