1
|
Wang Y, Guan PP, Yu X, Guo YS, Zhang YJ, Wang ZY, Wang P. COX-2 metabolic products, the prostaglandin I 2 and F 2α, mediate the effects of TNF-α and Zn 2+ in stimulating the phosphorylation of Tau. Oncotarget 2017; 8:99296-99311. [PMID: 29245902 PMCID: PMC5725093 DOI: 10.18632/oncotarget.21853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Although the roles of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) in regulating amyloid precursor protein (APP) cleavage and β-amyloid protein (Aβ) production have been the subjects of numerous investigations, their effects on tau phosphorylation have been largely overlooked. Using human TauP301S transgenic (Tg) mice as in vivo model, our results demonstrated that PGI2 and PGF2α mediated the effects of tumor necrosis factor α (TNF-α) and Zinc ions (Zn2+) on upregulating the phosphorylation of tau via the PI3-K/AKT, ERK1/2 and JNK/c-Jun signaling pathways. Specifically, we initially found that high level of Zn2+ upregulates the expression of COX-2 via stimulating the activity of TNF-α in a zinc transporter 3 (ZnT3)-dependent mechanism. COX-2 upregulation then stimulates the phosphorylation of tau at both Ser 202 and Ser 400/Thr 403/Ser 404 via PGI2 and F2α treatment either in i.c.v.-injected mice or in n2a cells. Using n2a cells as in vitro model, we further revealed critical roles for the PI3-K/AKT, ERK1/2 and JNK/c-Jun pathways in mediating the effects of PGI2 and F2α in the phosphorylation of tau. Finally, NS398 treatment delayed the onset of cognitive decline in TauP301S Tg mice according to the nest construction or limb clasping test.
Collapse
Affiliation(s)
- Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China.,Department of Tissue Culture, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yan-Su Guo
- Key laboratory of Hebei Neurology, Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Cardiocerebrovascular Disease, Hebei Medical University, Shijiazhuang, P.R. China
| | - Ying-Jie Zhang
- College of Biology, Hunan University, Changsha, P.R. China.,Shenzhen Institute, Hunan University, Shenzhen, P.R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| |
Collapse
|
2
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
3
|
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 2014; 11:159-70. [DOI: 10.1038/nrrheum.2014.209] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Sun X, Ruan YC, Guo J, Chen H, Tsang LL, Zhang X, Jiang X, Chan HC. Regulation of miR-101/miR-199a-3p by the epithelial sodium channel during embryo implantation: involvement of CREB phosphorylation. Reproduction 2014; 148:559-68. [PMID: 25187622 DOI: 10.1530/rep-14-0386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In our previous study, we have demonstrated that the epithelial sodium channel (ENaC) mediates the embryo-derived signals leading to the activation of CREB and upregulation of cyclooxygenase type 2 (COX2) required for embryo implantation. This study aims to investigate whether microRNAs (miRNAs) are involved in the ENaC-induced upregulation of COX2 during embryo implantation. The results show that the levels of miR-101 and miR-199a-3p, two COX2 targeting miRNAs, are reduced by ENaC activation, and increased by ENaC inhibition or knock-down of ENaC subunit (ENaCα) in human endometrial surface epithelial (HES) cells or in mouse uteri during implantation. Phosphorylation of CREB is induced by the activation of ENaC, and blocked by ENaC inhibition or knockdown in HES cells. Knockdown of ENaCα or CREB in HES cells or in mouse uterus in vivo results in increases in miR-101 and miR-199a-3p, accompanied with decreases in COX2 protein levels and reduction in implantation rate. The downregulation of COX2 caused by knockdown of ENaC or CREB can be recovered by the inhibitors of miR-101 or miR-199a-3p in HES cells. These results reveal a novel molecular mechanism modulating COX2 expression during embryo implantation via ENaC-dependent CREB activation and COX2-targeting miRNAs.
Collapse
Affiliation(s)
- Xiao Sun
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ye Chun Ruan
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinghui Guo
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui Chen
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lai Ling Tsang
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaohu Zhang
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaohua Jiang
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Matta C, Mobasheri A, Gergely P, Zákány R. Ser/Thr-phosphoprotein phosphatases in chondrogenesis: neglected components of a two-player game. Cell Signal 2014; 26:2175-85. [PMID: 25007994 DOI: 10.1016/j.cellsig.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation plays a determining role in the regulation of chondrogenesis in vitro. While signalling pathways governed by protein kinases including PKA, PKC, and mitogen-activated protein kinases (MAPK) have been mapped in great details, published data relating to the specific role of phosphoprotein phosphatases (PPs) in differentiating chondroprogenitor cells or in mature chondrocytes is relatively sparse. This review discusses the known functions of Ser/Thr-specific PPs in the molecular signalling pathways of chondrogenesis. PPs are clearly equally important as protein kinases to counterbalance the effect of reversible protein phosphorylation. Of the main Ser/Thr PPs, some of the functions of PP1, PP2A and PP2B have been characterised in the context of chondrogenesis. While PP1 and PP2A appear to negatively regulate chondrogenic differentiation and maintenance of chondrocyte phenotype, calcineurin is an important stimulatory mediator during chondrogenesis but becomes inhibitory in mature chondrocytes. Furthermore, PPs are implicated to be mediators during the pathogenesis of osteoarthritis that makes them potential therapeutic targets to be exploited in the close future. Among the many yet unexplored targets of PPs, modulation of plasma membrane ion channel function and participation in mechanotransduction pathways are emerging novel aspects of signalling during chondrogenesis that should be further elucidated. Besides the regulation of cellular ion homeostasis, other potentially significant novel roles for PPs during the regulation of in vitro chondrogenesis are discussed.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom.
| | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| |
Collapse
|
6
|
Su SC, Tanimoto K, Tanne Y, Kunimatsu R, Hirose N, Mitsuyoshi T, Okamoto Y, Tanne K. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthritis Cartilage 2014; 22:845-51. [PMID: 24721459 DOI: 10.1016/j.joca.2014.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Excessive mechanical stress is considered a major cause of temporomandibular joint osteoarthritis (TMJ-OA). High magnitude cyclic tensile strain (CTS) up-regulates pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in chondrocytes, while selective cyclooxygenase (COX)-2 inhibition has been shown to be beneficial to cytokine-induced cartilage damage. However, the effect of selective COX-2 inhibitors on mechanically stimulated chondrocytes remains unclear. This study evaluated the effect of celecoxib, a selective COX-2 inhibitor, on extracellular matrix (ECM) metabolism of mandibular condylar chondrocytes under CTS. METHODS Porcine mandibular chondrocytes were subjected to CTS of 0.5 Hz, 10% elongation with celecoxib for 24 h. The gene expressions of COX-2, MMPs, aggrecanase (ADAMTS), type II collagen and aggrecan were examined by real-time PCR. Also, prostaglandin E2 (PGE2) concentrations were determined using enzyme immunoassay kit. The levels of MMP and transcription factor NF-κB were measured by western blot while MMP activity was determined by casein zymography. RESULTS The presence of celecoxib normalized the release of PGE2 and diminished the CTS-induced COX-2, MMP-1, MMP-3, MMP-9 and ADAMTS-5 gene expressions while recovered the downregulated type II collagen and aggrecan gene expressions. Concurrently, celecoxib showed inhibition of NF-κB and suppression of MMP production and activity. CONCLUSIONS Celecoxib exerts protective effects on mandibular condylar chondrocytes under CTS stimulation by diminishing degradation and restoring synthesis of ECM.
Collapse
Affiliation(s)
- S C Su
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - K Tanimoto
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Y Tanne
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - R Kunimatsu
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - N Hirose
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - T Mitsuyoshi
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Y Okamoto
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - K Tanne
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
7
|
Potential targets for colorectal cancer prevention. Int J Mol Sci 2013; 14:17279-303. [PMID: 23975167 PMCID: PMC3794728 DOI: 10.3390/ijms140917279] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022] Open
Abstract
The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2), nuclear factor kappa B (NF-κB), survivin and insulin-like growth factor-I (IGF-I). Clinical trials of COX-2 inhibitors have provided the “proof of principle” that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.
Collapse
|
8
|
Wang P, Guan PP, Guo C, Zhu F, Konstantopoulos K, Wang ZY. Fluid shear stress-induced osteoarthritis: roles of cyclooxygenase-2 and its metabolic products in inducing the expression of proinflammatory cytokines and matrix metalloproteinases. FASEB J 2013; 27:4664-77. [PMID: 23964078 DOI: 10.1096/fj.13-234542] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanical overloading of cartilage is involved in the pathophysiology of osteoarthritis (OA) by both biochemical and mechanical pathways. The application of fluid shear stress to chondrocytes recapitulates the earmarks of OA, as evidenced by the release of proinflammatory cytokines (PICs), matrix metalloproteinases (MMPs), and apoptotic factors. Dysregulations or mutations in these genes might directly cause OA in addition to determining the stage at which OA becomes apparent, the joint sites involved, and the severity of the disease and how rapidly it progresses. However, the underlying mechanisms remain unknown. In this review, we propose that the dysregulation of cyclooxygenase-2 (COX-2) is associated with fluid shear stress-induced OA via its metabolic products at different stages of the disease. Indeed, high fluid shear stress rapidly induces the production of PICs and MMPs via COX-2-derived prostaglandin (PG)E2 at the early stage of OA. In contrast, prolonged shear exposure (>12 h) aggravates the condition by concurrently up-regulating the expression of proapoptotic genes and down-regulating the expression of antiapoptotic genes in a 15-deoxy-Δ (12,14)-prostaglandin J2 (15d-PGJ2)-dependent manner at the late stage of disease. These observations may help to resolve long-standing questions in OA progression and provide insight for development of strategies to treat and combat OA.
Collapse
Affiliation(s)
- Pu Wang
- 1Z.-Y.W., College of Life and Health Sciences, Northeastern University, Shenyang, 110004, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Che X, Liu J, Huang H, Mi X, Xia Q, Li J, Zhang D, Ke Q, Gao J, Huang C. p27 suppresses cyclooxygenase-2 expression by inhibiting p38β and p38δ-mediated CREB phosphorylation upon arsenite exposure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2083-91. [PMID: 23639288 DOI: 10.1016/j.bbamcr.2013.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
p27 is a cyclin-dependent kinase (CDK) inhibitor that suppresses a cell's transition from G0 to S phase, therefore acting as a tumor suppressor. Our most recent studies demonstrate that upon arsenite exposure, p27 suppresses Hsp27 and Hsp70 expressions through the JNK2/c-Jun- and HSF-1-dependent pathways, suggesting a novel molecular mechanism underlying the tumor suppressive function of p27 in a CDK-independent manner. We found that p27-deficiency (p27-/-) resulted in the elevation of cyclooxygenase-2 (COX-2) expression at transcriptional level, whereas the introduction of p27 brought back COX-2 expression to a level similar to that of p27+/+ cells, suggesting that p27 exhibits an inhibitory effect on COX-2 expression. Further studies identified that p27 inhibition of COX-2 expression was specifically due to phosphorylation of transcription factor cAMP response element binding (CREB) phosphorylation mediated by p38β and p38δ. These results demonstrate a novel mechanism underlying tumor suppression effect of p27 and will contribute to the understanding of the overall mechanism of p27 tumor suppression in a CDK-independent manner.
Collapse
Affiliation(s)
- Xun Che
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013; 191:7-37. [PMID: 22893198 DOI: 10.1007/978-3-642-30331-9_2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3'UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, KS 66106, USA.
| | | | | | | |
Collapse
|
11
|
Yi Lau GT, Leung LK. The dietary flavonoid apigenin blocks phorbol 12-myristate 13-acetate-induced COX-2 transcriptional activity in breast cell lines. Food Chem Toxicol 2010; 48:3022-7. [DOI: 10.1016/j.fct.2010.07.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/12/2010] [Accepted: 07/29/2010] [Indexed: 11/29/2022]
|
12
|
Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett 2010; 295:7-16. [PMID: 20381235 DOI: 10.1016/j.canlet.2010.03.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 12/20/2022]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risks for esophageal, gastric and colon cancers as well as other solid tumors. The antitumor effect of NSAIDs is mediated through cyclooxygenase-2 (COX-2)-dependent and -independent regulation of oncogenic and tumor-suppressive pathways. Recent discoveries have shed new light on the regulation of COX-2 at the molecular level in these cancers. Moreover, prostaglandin E(2) (PGE(2)), a COX-2-derived eicosanoid, has been found to affect numerous tumorigenic processes. In this connection, PGE(2) activates multiple intracellular signaling pathways, including (1) transactivation of epidermal growth factor receptor (EGFR); (2) protein kinase C-dependent, EGFR-independent activation of extracellular signal-regulated kinase (ERK) and the transcription factors activator protein-1 and c-Myc; (3) G-protein-mediated activation of beta-catenin/TCF-dependent transcription. Activation of these signaling pathways by PGE(2) is mediated by EP receptors whose inhibitors suppress gastrointestinal carcinogenesis. Taken together, COX-2 expression is dysregulated in many types of cancer and COX-2-derived PGE(2) elicits multiple oncogenic signals to promote carcinogenesis. Targeting PGE(2) signaling by EP receptor antagonists holds promise for the development of targeted therapy for the treatment of cancer.
Collapse
|
13
|
Inhibitory effect of 3-caffeoyl-4-dicaffeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Chem Biol Interact 2010; 183:397-404. [DOI: 10.1016/j.cbi.2009.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 01/05/2023]
|
14
|
Flaherty MP, Guo Y, Tiwari S, Rezazadeh A, Hunt G, Sanganalmath SK, Tang XL, Bolli R, Dawn B. The role of TNF-alpha receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol 2008; 45:735-41. [PMID: 18824172 DOI: 10.1016/j.yjmcc.2008.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 08/28/2008] [Accepted: 08/30/2008] [Indexed: 11/25/2022]
Abstract
The specific role of TNF-alpha receptors I (TNFR-I, p55) and II (TNFR-II, p75) in myocardial ischemic injury remains unclear. Using genetically engineered mice, we examined the relative effects of TNF-alpha signaling via p55 and p75 in acute myocardial ischemia/reperfusion injury under basal conditions and in late preconditioning (PC). Wild-type (WT) (C57BL/6 and B6,129) mice and mice lacking TNF-alpha (TNF-alpha(-/-)), p55 (p55(-/-)), p75 (p75(-/-)), or both receptors (p55(-/-)/p75(-/-)) underwent 30 min of coronary occlusion and 24 h of reperfusion with or without six cycles of 4-min coronary occlusion/4-min reperfusion (O/R) 24 h earlier (ischemic PC). Six cycles of O/R reduced infarct size 24 h later in WT mice, indicating a late PC effect. This late PC-induced infarct-sparing effect was abolished not only in TNF-alpha(-/-) and p55(-/-)/p75(-/-) mice, but also in p55(-/-) and p75(-/-) mice, indicating that TNF-alpha signaling via both p55 and p75 is necessary for the development of protection. In nonpreconditioned TNF-alpha(-/-), p55(-/-)/p75(-/-), and p75(-/-) mice, infarct size was similar to strain-matched WT mice. In contrast, infarct size in nonpreconditioned p55(-/-) mice was reduced compared with nonpreconditioned WT mice. We conclude that (i) unopposed p75 signaling (in the absence of p55) reduces infarct size following acute ischemia/reperfusion injury in naive myocardium, whereas unopposed p55 signaling (in the absence of p75) has no effect; and (ii) the development of the infarct-sparing effects of the late phase of PC requires nonredundant signaling via both p55 and p75 receptors. These findings reveal a fundamental, heretofore unrecognized, difference between the two TNF-alpha receptors in the setting of myocardial ischemia/reperfusion injury: that is, both p55 and p75 are necessary for the development of protection during late PC, but only signaling via p75 is protective in nonpreconditioned myocardium.
Collapse
Affiliation(s)
- Michael P Flaherty
- Division of Cardiovascular Medicine and the Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu Y, Liu H, Li J. Expression of p63 and cyclooxygenase-2 and their correlation in skin tumors. ACTA ACUST UNITED AC 2008; 27:206-8. [PMID: 17497299 DOI: 10.1007/s11596-007-0227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Indexed: 10/23/2022]
Abstract
To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.
Collapse
Affiliation(s)
- Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | |
Collapse
|
16
|
Healy ZR, Zhu F, Stull JD, Konstantopoulos K. Elucidation of the signaling network of COX-2 induction in sheared chondrocytes: COX-2 is induced via a Rac/MEKK1/MKK7/JNK2/c-Jun-C/EBPβ-dependent pathway. Am J Physiol Cell Physiol 2008; 294:C1146-57. [DOI: 10.1152/ajpcell.00542.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shear stress is a pathophysiologically relevant mechanical signal in cartilage biology and tissue engineering. Cyclooxygenase-2 (COX-2) is a pivotal proinflammatory enzyme, which is induced by mechanical loading-derived shear stress in chondrocytes. In the present study, we investigated the transcriptional machinery and signaling pathway regulating shear-induced COX-2 expression in human chondrocytic cells. Deletion and mutation analyses of the human cox-2 promoter reveal that the CCAAT/enhancer-binding protein (C/EBP) and activator protein-1 (AP-1) predominantly contribute to the shear-induced cox-2 promoter activity. Supershift assays disclose that C/EBPβ, but not C/EBPα or C/EBPδ, binds to the C/EBP site, whereas c-Jun binds to AP-1. Individual gene knockdown experiments demonstrate the direct regulation of C/EBPβ expression by c-Jun, and the critical roles of both c-Jun and C/EBPβ in shear-induced COX-2 synthesis. Our studies also indicate that Rac and, to a lesser extent, Cdc42 transactivate MEKK1, which is, in turn, responsible for activation of mitogen-activated protein kinase kinase 7 (MKK7). MKK7 regulates c-Jun NH2-terminal kinase 2 activation, which, in turn, triggers the phosphorylation of c-Jun that controls shear-mediated COX-2 upregulation in chondrocytes. Reconstructing the signaling network regulating shear-induced COX-2 expression and inflammation may provide insights to optimize conditions for culturing artificial cartilage in bioreactors and for developing therapeutic interventions for arthritic disorders.
Collapse
|
17
|
Mancini A, Jovanovic DV, He QW, Di Battista JA. Site-specific proteolysis of cyclooxygenase-2: A putative step in inflammatory prostaglandin E2 biosynthesis. J Cell Biochem 2007; 101:425-41. [PMID: 17177291 DOI: 10.1002/jcb.21191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in inflammatory prostanoid biosynthesis. Transcriptional, post-transcriptional, and post-translational covalent modifications have been defined as important levels of regulation for COX-2 gene expression. Here, we describe a novel regulatory mechanism in primary human cells involving regulated, sequence-specific proteolysis of COX-2 that correlates with its catalytic activity and ultimately, the biosynthesis of prostaglandin E(2) (PGE(2)). Proinflammatory cytokines induced COX-2 expression and its proteolysis into stable immunoreactive fragments of 66, 42-44, 34-36, and 28 kDa. Increased COX-2 activity (PGE(2) release) was observed coincident with the timing and degree of COX-2 proteolysis with correlation analysis confirming a linear relationship (R(2) = 0.941). Inhibition of induced COX-2 activity with non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors also abrogated cleavage. To determine if NSAID inhibition of proteolysis was related to drug-binding-induced conformational changes in COX-2, we assayed COX-inactive NSAID derivatives that fail to bind COX-2. Interestingly, these compounds suppressed COX-2 activity and cleavage in a correlated manner, thus suggesting that the observed NSAID-induced inhibition of COX-2 cleavage occurred through COX-independent mechanisms, presumably through the inhibition of proteases involved in COX-2 processing. Corroborating this observation, COX-2 cleavage and activity were mutually suppressed by calpain/cathepsin protease inhibitors. Our data suggest that the nascent intracellular form of COX-2 may undergo limited proteolysis to attain full catalytic capacity.
Collapse
Affiliation(s)
- Arturo Mancini
- Department of Anatomy and Cell Biology, McGill University, Montreal, (QC), Canada
| | | | | | | |
Collapse
|
18
|
Zhang S, Patel HH, Murray F, Remillard CV, Schach C, Thistlethwaite PA, Insel PA, Yuan JXJ. Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 2006; 292:L1202-10. [PMID: 17189322 DOI: 10.1152/ajplung.00214.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pulmonary vascular remodeling due to overgrowth of pulmonary artery smooth muscle cells (PASMC) is a major cause for the elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Increased cytosolic Ca(2+) concentration, resulting from enhanced capacitative Ca(2+) entry (CCE) and upregulated transient receptor potential (TRP) channel expression, is involved in stimulating PASMC proliferation. The current study was designed to determine the impact of cAMP, a second messenger that we hypothesized would blunt aspects of PASMC activity, as a possible contributor to IPAH pathophysiology. Short-term (30 min) pretreatment with forskolin (FSK; 10 muM), a direct activator of adenylyl cyclase, in combination with the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine (IBMX; 200 muM), attenuated CCE in PASMC from normal subjects, patients without pulmonary hypertension (NPH), and patients with IPAH. The FSK-mediated CCE inhibition was independent of protein kinase A (PKA), because the PKA inhibitor H89 negligibly affected the decrease in CCE produced by cAMP. By contrast, longer (4 h) treatment with FSK (with IBMX) attenuated CCE in normal and NPH PASMC but enhanced CCE in IPAH PASMC. This enhancement of CCE was abolished by PKA inhibition and associated with an upregulation of TRPC3. In addition, cAMP increased TRPC1 mRNA expression in IPAH (but not in normal or NPH) PASMC, an effect blunted by H89. Furthermore, iloprost, a prostacyclin analog that increases cAMP, downregulated TRPC3 expression in IPAH PASMC and FSK-mediated cAMP increase inhibited IPAH PASMC proliferation. Although a rapid rise in cellular cAMP decreases CCE by a PKA-independent mechanism, sustained cAMP increase inhibits CCE in normal and NPH PASMC but increases CCE via a PKA-dependent pathway in IPAH PASMC. The divergent effect of cAMP on CCE parallels effects on TRPC expression. The results suggest that the combined use of a PKA inhibitor and cAMP-elevating drugs may provide a novel approach for treatment of IPAH.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093-0725, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
de Groot DJA, de Vries EGE, Groen HJM, de Jong S. Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. Crit Rev Oncol Hematol 2006; 61:52-69. [PMID: 16945549 DOI: 10.1016/j.critrevonc.2006.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 11/20/2022] Open
Abstract
Most solid tumors express the cyclooxygenase-2 (COX-2) protein, a target of NSAIDs. COX-2 overexpression in tumorsis considered a predictor of more advanced stage disease and of worse prognosis in a number of studies investigating solid malignancies. Therefore, NSAIDs are evaluated as anti-cancer drugs. NSAIDs inhibit proliferation, invasiveness of tumors, and angiogenesis and overcome apoptosis resistance in a COX-2 dependent and independent manner. This review will focus on the rationale behind NSAIDs, including selective COX-2 inhibitors, in combination with conventional chemotherapeutic drugs or novel molecular targeted drugs. Studies investigating anti-cancer effects of NSAIDs on cell lines and xenograft models have shown modulation of the Akt, NF-kappaB, tyrosine kinase and the death receptor-mediated apoptosis pathways. COX-2 expression in tumors is not yet used as biomarker in the clinic. Despite the increased risk on cardiovascular toxicity induced by selective COX-2 inhibitors, several ongoing clinical trials are still investigating the therapeutic benefits of NSAIDs in oncology. The anti-tumor effects in these trials balanced with the side effects data will define the precise role of selective COX-2 inhibitors in the treatment of cancer patients.
Collapse
Affiliation(s)
- D J A de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Rannou F, François M, Corvol MT, Berenbaum F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 2005; 73:29-36. [PMID: 16087381 DOI: 10.1016/j.jbspin.2004.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 12/27/2004] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a connective tissue disease characterized by destruction of the joint cartilage and subsequently of the underlying bone. Cartilage destruction is due to proteolysis by enzymes called metalloproteinases (MMPs), whose production and expression are regulated by numerous local mediators such as cytokines, growth factors, prostaglandins, oxygen species, and neuropeptides. MMP activation is largely due to a stimulatory effect of cytokines including IL-1beta and TNFalpha. When these cytokines bind to their membrane receptor, they set off signaling cascades, with activation of TGFbeta-activating kinase (TAK-1), of NF-kappaB by Ikappa-B kinase, of mitogen-activated protein kinases (MAP kinases), and finally of activator protein-1 (AP-1). Tissue inhibitors of MMPs (TIMPs) specifically inhibit MMPs. The interrelations between joint inflammation and joint destruction remain poorly understood. Experimental data suggest that IL-1 may be involved chiefly in joint destruction and TNF in joint inflammation. However, TNF antagonists are potent inhibitors of joint destruction in clinical practice. These results suggest that the mediators function as a network and that inhibition of a single mediator can affect the entire web. Insights gained into the innermost mechanisms of cartilage breakdown in patients with RA have led to major therapeutic breakthroughs. Thus, TNF antagonists have proved highly effective in RA. Future progress will no doubt stem from new knowledge about the extracellular mediators and intracellular signaling pathways that lead to the production and activation of enzymes responsible for cartilage degradation.
Collapse
|
21
|
Rannou F, François M, Corvol MT, Berenbaum F. Dégradation du cartilage et polyarthrite rhumatoïde. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.rhum.2004.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Takada Y, Bhardwaj A, Potdar P, Aggarwal BB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 2005; 23:9247-58. [PMID: 15489888 DOI: 10.1038/sj.onc.1208169] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin have been shown to suppress transcription factor NF-kappaB, which controls the expression of genes such as cyclooxygenase (COX)-2 and cyclin D1, leading to inhibition of proliferation of tumor cells. There is no systematic study as to how these drugs differ in their ability to suppress NF-kappaB activation and NF-kappaB-regulated gene expression or cell proliferation. In the present study, we investigated the effect of almost a dozen different commonly used NSAIDs on tumor necrosis factor (TNF)-induced NF-kappaB activation and NF-kappaB-regulated gene products, and on cell proliferation. Dexamethasone, an anti-inflammatory steroid, was included for comparison with NSAIDs. As indicated by DNA binding, none of the drugs alone activated NF-kappaB. All compounds inhibited TNF-induced NF-kappaB activation, but with highly variable efficacy. The 50% inhibitory concentration required was 5.67, 3.49, 3.03, 1.25, 0.94, 0.60, 0.38, 0.084, 0.043, 0.027, 0.024, and 0.010 mM for aspirin, ibuprofen, sulindac, phenylbutazone, naproxen, indomethacin, diclofenac, resveratrol, curcumin, dexamethasone, celecoxib, and tamoxifen, respectively. All drugs inhibited IkappaBalpha kinase and suppressed IkappaBalpha degradation and NF-kappaB-regulated reporter gene expression. They also suppressed NF-kappaB-regulated COX-2 and cyclin D1 protein expression in a dose-dependent manner. All compounds inhibited the proliferation of tumor cells, with 50% inhibitory concentrations of 6.09, 1.12, 0.65, 0.49, 1.01, 0.19, 0.36, 0.012, 0.016, 0.047, 0.013, and 0.008 mM for aspirin, ibuprofen, sulindac, phenylbutazone, naproxen, indomethacin, diclofenac, resveratrol, curcumin, dexamethasone, celecoxib, and tamoxifen, respectively. Overall these results indicate that aspirin and ibuprofen are least potent, while resveratrol, curcumin, celecoxib, and tamoxifen are the most potent anti-inflammatory and antiproliferative agents of those we studied.
Collapse
Affiliation(s)
- Yasunari Takada
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Jimenez JL, Iñiguez MA, Muñoz-Fernández MA, Fresno M. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes. Cell Signal 2005; 16:1363-73. [PMID: 15381252 DOI: 10.1016/j.cellsig.2004.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/02/2004] [Accepted: 04/04/2004] [Indexed: 01/19/2023]
Abstract
Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.
Collapse
Affiliation(s)
- José L Jimenez
- Laboratorio de Inmunología, Hospital Universitario Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Surh YJ, Kundu JK. Signal transduction network leading to COX-2 Induction: a road map in search of cancer chemopreventives. Arch Pharm Res 2005; 28:1-15. [PMID: 15742801 DOI: 10.1007/bf02975128] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is still a major global health concern even after an everlasting strive in conquering this dread disease. Emphasis is now given to chemoprevention to reduce the risk of cancer and also to improve the quality of life among cancer afflicted individuals. Recent progress in molecular biology of cancer has identified key components of the cellular signaling network, whose functional abnormality results in undesired alterations in cellular homeostasis, creating a cellular microenvironment that favors premalignant and malignant transformation. Multiple lines of evidence suggest an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to cancer. In response to oxidative/pro-inflammatory stimuli, turning on unusual signaling arrays mediated through diverse classes of kinases and transcription factors results in aberrant expression of COX-2. Population-based as well as laboratory studies have explored a broad spectrum of chemopreventive agents including selective COX-2 inhibitors and a wide variety of anti-inflammatory phytochemicals, which have been shown to target cellular signaling molecules as underlying mechanisms of chemoprevention. Thus, unraveling signaling pathways regulating aberrant COX-2 expression and targeted blocking of one or more components of those signal cascades may be exploited in searching chemopreventive agents in the future.
Collapse
Affiliation(s)
- Young-Joon Surh
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | | |
Collapse
|
25
|
Abstract
Protein kinases, particularly mitogen-activated protein kinases and receptor-tyrosine kinases play crucial roles in mammalian cellular metabolism by regulating intracellular signaling pathways that control proliferation, differentiation, cytokine gene induction and cytokine responsiveness, matrix metalloproteinase gene expression, mechanical transduction, as well as programmed cell death (apoptosis). Many of these pathways are also important components of cartilage homeostasis because alterations in intracellular signaling pathways appear to play a prominent role in chondrocyte dysfunction that is part of osteoarthritis pathogenesis and disease progression. Several mitogen-activated protein kinases and receptor-tyrosine kinases have been characterized as participating in chondrocyte signaling pathways. They are c-Jun-amino-terminal protein kinase, p38 kinase, extracellular signal-regulated protein kinase, and Ror2. Janus kinases and signal transducers and activators of transcription factors (Janus kinase/signal transducers and activators of transcription pathway) are also implicated in modulating the chondrogenic phenotype. Mitogen-activated protein kinase activation is required for their role as phosphorylating enzymes. Activation results from mitogen-activated protein kinase phosphorylation carried out by at least seven upstream kinases known as mitogen-activated protein kinase kinases. Additional upstream kinases (for example, MKKKKs and MKKKs) often require low molecular weight GTP-binding proteins to mediate the mitogen-activated protein-kinase kinases cascade. Identifying the functions of mitogen-activated protein kinases in normal and aging cartilage and the extent to which mitogen-activated protein kinases may be altered in osteoarthritis cartilage and synovium will be critical for developing novel therapies for osteoarthritis management.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The pathophysiology of osteoarthritis is the result of an imbalance between anabolic and catabolic pathways. This imbalance is the result of the activation of joint cells by inflammatory mediators, matrix components, and mechanical stress. All these mediators act through specific receptors that transmit the signals to the nucleus to activate the transcription of matrix metalloproteinases and inflammatory genes. Targeting these signaling pathways in osteoarthritis is considered a novel approach to modulate this imbalance. RECENT FINDINGS Although many signaling pathways are necessary for physiologic cell life, it is now well established that a few are more specifically induced in an inflammatory environment. In osteoarthritis, the nuclear factor-kappaB and mitogen-activated protein kinase pathways have been shown to play a predominant role in the expression of metalloproteinases and inflammatory genes and proteins. Also involved in the activation of osteoarthritic cells are other molecules interacting with one or several signaling pathways, such as nitric oxide, peroxisome proliferator-activated receptor-gamma ligands, or C/EBP transcriptional factors. Based on this knowledge, specific inhibitors for some of these signaling pathways have been designed and include p38 mitogen-activated protein kinase or nuclear factor-kappaB inhibitors. Experimental studies evaluating cartilage degradation in arthritis models are promising, although fewer have been done specifically in osteoarthritis models. SUMMARY Targeting signaling pathways in osteoarthritis did not seem feasible a few years ago because of the complexity of the multiple intracellular pathways, mainly physiologic, defined by a high degree of redundancy and cross-talk. However, important advances in the knowledge of chondrocyte and synoviocyte signaling in osteoarthritis have been achieved in recent years and suggest that inhibitors of specific signaling pathways could shortly provide effective treatments for this disease.
Collapse
Affiliation(s)
- Francis Berenbaum
- University Pierre & Marie Curie and Department of Rheumatology, UFR Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|
27
|
Ackerman WE, Rovin BH, Kniss DA. Epidermal growth factor and interleukin-1beta utilize divergent signaling pathways to synergistically upregulate cyclooxygenase-2 gene expression in human amnion-derived WISH cells. Biol Reprod 2004; 71:2079-86. [PMID: 15329330 PMCID: PMC1389598 DOI: 10.1095/biolreprod.104.030841] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In human parturition, uterotonic prostaglandins (PGs) arise predominantly via increased expression of cyclooxygenase-2 (COX-2 [also known as prostaglandin synthase 2]) within intrauterine tissues. Interleukin-1 (IL-1) and epidermal growth factor (EGF), both inducers of COX-2 transcription, are among numerous factors that accumulate within amniotic fluid with advancing gestation. It was previously demonstrated that EGF could potentiate IL-1beta-driven PGE(2) production in amnion and amnion-derived (WISH) cells. To define the mechanism for this observation, we hypothesized that EGF and IL-1beta might exhibit synergism in regulating COX-2 gene expression. In WISH cells, combined treatment with EGF and IL-1beta resulted in a greater-than-additive increase in COX-2 mRNA relative to challenge with either agent independently. Augmentation of IL-1beta-induced transactivation by EGF was not observed in cells harboring reporter plasmids bearing nuclear factor-kappa B (NFkappaB) regulatory elements alone, but was evident when a fragment (-891/ +9) of the COX-2 gene 5'-promoter was present. Both agents transiently activated intermediates of multiple signaling pathways potentially involved in the regulation of COX-2 gene expression. The 26 S proteasome inhibitor, MG-132, selectively abrogated IL-1beta-driven NFkappaB activation and COX-2 mRNA expression. Only pharmacologic blockade of the p38 mitogen-activated protein kinase eliminated COX-2 expression following EGF stimulation. We conclude that EGF and IL-1beta appear to signal through different signaling cascades leading to COX-2 gene expression. IL-1beta employs the NFkappaB pathway predominantly, while the spectrum of EGF signaling is broader and includes p38 kinase. The synergism observed between IL-1beta and EGF does not rely on augmented NFkappaB function, but rather, occurs through differential use of independent response elements within the COX-2 promoter.
Collapse
Affiliation(s)
- William E. Ackerman
- Department of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), and
| | - Brad H. Rovin
- Department of Internal Medicine (Division of Nephrology and Dorothy M. Davis Heart and Lung Research Institute), The Ohio State University, College of Medicine and Public Health, Columbus, Ohio 43210
| | - Douglas A. Kniss
- Department of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), and
- Correspondence: Douglas A. Kniss, Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, 5th Floor Means Hall, 1654 Upham Drive, Columbus, OH 43210. FAX: 614 293 5728; e-mail:
| |
Collapse
|
28
|
Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum 2004; 33:155-67. [PMID: 14671726 DOI: 10.1016/s0049-0172(03)00134-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To provide an overview on: 1) the expression of cyclooxygenase (COX)-2 in articular tissues; 2) the role of prostaglandin E2 (PGE2) in these tissue functions; and 3) clinical trials with COX-2-selective nonsteroidal anti-inflammatory drugs (NSAIDs) (coxibs). METHODS MEDLINE search was performed using the key words "cyclooxygenase," "prostaglandin," "osteoarthritis" (OA), and "rheumatoid arthritis" (RA). Selected publications related to clinical trials with coxibs also are included. RESULTS COX-2 is upregulated in inflamed joint tissues and is responsible for elevated PGE2 production. The overexpression of COX-2 is likely induced by proinflammatory mediators such as interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF) alpha. However, the exact molecular mechanisms through which the expression of COX-2 is regulated remain to be elucidated. Several studies suggest that PGE2 is involved in inflammation, apoptosis, angiogenesis, and possibly structural changes that characterize arthritic diseases. NSAIDs are prescribed for the treatment of OA and RA and provide effective relief from symptoms; however, serious gastrointestinal complications occur with their use. The clinical efficacy of NSAIDs is primarily related to the inhibition of COX-2, whereas much of the toxicity is related to COX-1 inhibition. Selective COX-2 inhibitors (coxibs) that spare COX-1 at therapeutic doses are more effective than placebo and as effective as other NSAIDs for relief of symptoms of OA and RA, and have significantly improved gastrointestinal safety and tolerability. However, some studies showed that COX-2-selective inhibitors still have classic NSAID complications. CONCLUSIONS Overexpression of COX-2 protein in articular tissues is a characteristic feature of arthritic diseases. However, the molecular mechanisms involved in the regulation of COX-2 expression and activity are still unclear. Elucidating the mechanisms of COX-2 expression and PGE2 production and action will help identify novel and more selective potential drug targets in the treatment of arthritic diseases.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Quebec, Canada
| | | | | |
Collapse
|
29
|
Lindstrom T, Bennett P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins Leukot Essent Fatty Acids 2004; 70:115-35. [PMID: 14683688 DOI: 10.1016/j.plefa.2003.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous studies over the years have demonstrated changes in prostaglandin (PG) levels in intrauterine tissues in association with labour, and PG administration has long been used to induce delivery. While it is now widely accepted that PGs play a major role in human parturition, the complex regulation of their levels is still being elucidated, with the focus on the transcriptional control of the enzymes responsible for the various steps in PG biosynthesis and catabolism.
Collapse
Affiliation(s)
- Tamsin Lindstrom
- Faculty of Medicine, Institute of Reproductive and Developmental Biology, Parturition Research Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
30
|
Mifflin RC, Saada JI, Di Mari JF, Valentich JD, Adegboyega PA, Powell DW. Aspirin-Mediated COX-2 Transcript Stabilization via Sustained p38 Activation in Human Intestinal Myofibroblasts. Mol Pharmacol 2004; 65:470-8. [PMID: 14742690 DOI: 10.1124/mol.65.2.470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acetylsalicylic acid (aspirin) is a cyclooxygenase (COX) inhibitor, yet some of its therapeutic effects are thought to derive from mechanisms unrelated to prostaglandin synthesis inhibition. In human intestinal myofibroblasts, aspirin, at therapeutic doses, had the unexpected effect of inducing prolonged COX-2 expression. This induction was especially pronounced when cells were treated with interleukin-1alpha (IL-1) plus aspirin for 24 h. Sodium salicylate, a poor COX inhibitor, likewise enhanced IL-1-mediated COX-2 gene expression whereas 5-aminosalicylic acid (5-ASA) or indomethacin had no effect. The COX-2 transcriptional rate, measured by nuclear runoff analysis and heterogeneous nuclear RNA reverse transcription-polymerase chain reaction, was only modestly elevated by aspirin treatment. In contrast, aspirin treatment dramatically stabilized the COX-2 message. The COX-2 mRNA half-life in IL-1 treated cells was 1 h and was increased in excess of 5 h in IL-1 + aspirin-treated cells. Phosphorylation of p38 MAPK was enhanced in aspirin-treated cells (but not in cells treated with 5-ASA or indomethacin) for up to 24 h after treatment. Inhibition of p38 activity negated aspirin-mediated COX-2 mRNA stabilization and the resultant increase in COX-2 mRNA and protein levels. The modest transcriptional response seen in aspirin treated cells was also abolished by p38 inhibition. We conclude that aspirin enhances COX-2 expression via sustained activation of p38, which results in prolonged stabilization of the COX-2 message and a slightly elevated transcription rate. Aspirin also enhanced steady-state mRNA levels of other IL-1 modulated genes (IL-1beta, IL-6, groalpha, and TNFalpha) that are likewise regulated at the level of message stability via p38 activation.
Collapse
Affiliation(s)
- Randy C Mifflin
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas 77555-1058, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Surh YJ, Na HK, Lee SS. Transcription factors and mitogen-activated protein kinases as molecular targets for chemoprevention with anti-inflammatory phytochemicals. Biofactors 2004; 21:103-8. [PMID: 15630178 DOI: 10.1002/biof.552210119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemoprevention refers to the use of nontoxic chemical substances to inhibit, reverse, or retard tumorigenesis. Numerous compounds derived from edible plants have been reported to interfere with a specific stage of the carcinogenic process. Some anti-inflammatory phytochemicals with cyclooxygenase-2 inhibitory activity have been found to exert chemopreventive properties by targeting intracellular signaling molecules (recently reviewed by Y.-J. Surh, Nature Reviews Cancer, 3: 768-780, 2003). These include mitogen-activated protein kinases and transcription factors, such as NF-kappaB and AP-1.
Collapse
Affiliation(s)
- Young-Joon Surh
- College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea.
| | | | | |
Collapse
|
32
|
Abulencia JP, Gaspard R, Healy ZR, Gaarde WA, Quackenbush J, Konstantopoulos K. Shear-induced cyclooxygenase-2 via a JNK2/c-Jun-dependent pathway regulates prostaglandin receptor expression in chondrocytic cells. J Biol Chem 2003; 278:28388-94. [PMID: 12743126 DOI: 10.1074/jbc.m301378200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using cDNA microarrays coupled with bioinformatics tools, we elucidated a signaling cascade regulating cyclooxygenase-2 (COX-2), a pivotal pro-inflammatory enzyme expressed in rheumatic and osteoarthritic, but not normal, cartilage. Exposure of T/C-28a2 chondrocytic cells to fluid shear results in co-regulation of c-Jun N-terminal kinase2 (JNK2), c-Jun, and COX-2 as well as concomitant downstream expression of prostaglandin receptors EP2 and EP3a1. JNK2 transcript inhibition abrogated shear-induced COX-2, EP2, and EP3a1 mRNA up-regulation as well as c-Jun phosphorylation. Functional knock-out experiments using an antisense c-Jun oligonucleotide revealed the abolition of shear-induced COX-2, EP2, and EP3a1, but not JNK2, transcripts. Moreover, inhibition of COX-2 activity eliminated mRNA upregulation of EP2 and EP3a1 induced by shear. Hence, a biochemical pathway exists wherein fluid shear activates COX-2, via a JNK2/c-Jun-dependent pathway, which in turn elicits downstream EP2 and EP3a1 mRNA synthesis.
Collapse
Affiliation(s)
- James P Abulencia
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
33
|
Colgan SP, Taylor CT, Narravula S, Synnestvedt K, Blume ED. Endothelial COX-2 induction by hypoxia liberates 6-keto-PGF1 alpha, a potent epithelial secretagogue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:107-12. [PMID: 12664572 DOI: 10.1007/978-1-4615-0193-0_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Sean P Colgan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Boston, MA
| | | | | | | | | |
Collapse
|
34
|
Huh YH, Kim SH, Kim SJ, Chun JS. Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J Biol Chem 2003; 278:9691-7. [PMID: 12493746 DOI: 10.1074/jbc.m211360200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.
Collapse
Affiliation(s)
- Yun-Hyun Huh
- Department of Life Science, National Research Laboratory, Kwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | |
Collapse
|
35
|
Janelle ME, Gravel A, Gosselin J, Tremblay MJ, Flamand L. Activation of monocyte cyclooxygenase-2 gene expression by human herpesvirus 6. Role for cyclic AMP-responsive element-binding protein and activator protein-1. J Biol Chem 2002; 277:30665-74. [PMID: 12068008 DOI: 10.1074/jbc.m203041200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is an arachidonic acid metabolite mainly produced by activated monocytes/macrophages (Mo/Mphi) that display broad immunomodulatory activities. Several viruses capable of infecting Mo/Mphi modulate PGE(2) synthesis in a way that favors the infection processes and the spread of virions. In the present work, we studied the effect of human herpesvirus 6 (HHV-6) infection of Mo/Mphi on PGE(2) synthesis. Our results indicate that HHV-6 induces COX-2 gene expression and PGE(2) synthesis within a few hours of infection. We mapped the different promoter elements associated with COX-2 gene activation by HHV-6 to two cis-acting elements: a cyclic AMP-responsive element and an activator protein-1 element. HHV-6 immediate-early protein 2 was identified as a modulator of COX-2 gene expression in Mo/Mphi. Finally, addition of PGE(2) to HHV-6-infected peripheral blood mononuclear cells cultures was found to increase significantly viral replication. Overall, these results further contribute to the immunomodulatory properties of HHV-6 and highlight a potential role for eicosanoids in the replication process of this virus.
Collapse
Affiliation(s)
- Marie-Eve Janelle
- Laboratory of Virology and Laboratory of Viral Immunology, Rheumatology, and Immunology Research Center, CHUL Research Center and Faculty of Medicine, Laval University, Quebec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
36
|
Tanabe T, Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 2002; 68-69:95-114. [PMID: 12432912 DOI: 10.1016/s0090-6980(02)00024-2] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cyclooxygenase (COX, prostaglandin endoperoxide synthase) is a key enzyme in prostaglandin biosynthesis. Two isoforms of COX, COX-1 and COX-2, have been identified by molecular biological methods. The amino acid sequence homology between COX-1 and COX-2 is about 60% for the human enzymes. COX-1 is constitutively expressed in most tissues and cells in animal species. The COX-1 promoter region lacks a canonical TATA or CAAT box and is GC-rich. These features are consistent with those of a housekeeping gene. On the other hand, COX-2 is an inducible enzyme and is induced by various cytokines and mitogenic factors. The induction of COX-2 is suppressed by dexamethasone and PGJ2. There are many consensus cis-elements in the 5'-flanking region to regulate the expression of COX-2. Among them, a CRE, an NF-kappaB site, a NF-IL6 motif and an E-box, regulate transcription independently or synergistically. Most of the transcriptional signaling pathways require activation of the mitogen-activated protein kinase (MAPK) cascade. Moreover, MAPK signaling pathways are involved in regulating COX-2 gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Tadashi Tanabe
- Department of Pharmacology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | |
Collapse
|
37
|
Kalajdzic T, Faour WH, He QW, Fahmi H, Martel-Pelletier J, Pelletier JP, Di Battista JA. Nimesulide, a preferential cyclooxygenase 2 inhibitor, suppresses peroxisome proliferator-activated receptor induction of cyclooxygenase 2 gene expression in human synovial fibroblasts: evidence for receptor antagonism. ARTHRITIS AND RHEUMATISM 2002; 46:494-506. [PMID: 11840453 DOI: 10.1002/art.10055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To characterize the inhibitory effects of therapeutic concentrations of the nonsteroidal antiinflammatory drug nimesulide (NIM) on peroxisome proliferator-activated receptor (PPAR)-induced cyclooxygenase 2 (COX-2) gene expression in human synovial fibroblasts (HSFs) from patients with osteoarthritis (OA) and to define the intracellular mechanisms mediating the response. METHODS PPARalpha and PPARgamma messenger RNA (mRNA) expression and protein synthesis in OA HSFs were measured by reverse transcription-polymerase chain reaction and electrophoretic mobility shift assay, respectively. Experiments investigating endogenous and overexpressed PPARalpha and PPARgamma activation of COX-2 mRNA and protein were conducted by incubating nontransfected and transfected cells with increasing concentrations of cognate ligands WY-14,643 (alpha agonist), ciglitasone (gamma agonist), and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) in the absence or presence of NIM and NS-398 (1 microM). COX-2 mRNA and protein were measured by Northern and Western blotting procedures, respectively. Receptor activation studies were evaluated by cotransfecting pSG5-Gal 4 DNA binding domain (DBD)-PPARalpha ligand binding domain (LBD) or pSG5-Gal 4 DBD-PPARgamma LBD chimeric constructs with a 5x Gal 4 enhancer site tk-tataa-luciferase reporter under ligand stimulation in the presence or absence of increasing concentrations of NIM. Gene transactivation analyses were conducted by treating cells overexpressing cytomegalovirus (CMV)-PPARalpha or CMV-PPARgamma expression constructs with either a PPAR response element (PPRE)-luciferase construct containing 3 DR1 acyl-coenzyme A (acyl-CoA) oxidase gene response elements or human COX-2 promoter constructs with WY-14,643, ciglitasone, and 15d-PGJ(2) in the presence or absence of increasing concentrations of NIM. RESULTS Human synovial cells expressed functional PPAR isoforms, PPARalpha and PPARgamma. Neither receptor agonists nor antagonists modulated the intracellular protein levels of PPAR. PPARalpha and, especially, PPARgamma mediated the induction of COX-2 gene expression by receptor agonists. Stimulation of COX-2 mRNA expression and protein synthesis by 15d-PGJ(2) appeared to occur through a receptor-independent process. NIM inhibited PPAR agonist stimulation of COX-2 expression and synthesis in a dose-dependent manner in both nontransfected cells and cells overexpressing both receptor isoforms. NIM potently abrogated basal and ligand-stimulated PPRE(3X) DR1 acyl-CoA oxidase-driven luciferase activity and also human PPRE-containing COX-2 promoter activity. CONCLUSION PPAR-mediated induction of COX-2 expression and synthesis in human OA synovial fibroblasts is inhibited by therapeutic concentrations of NIM through the functional antagonism of ligand-dependent receptor activation, with the resultant suppression of PPAR-dependent transactivation of target genes (e.g., COX-2).
Collapse
Affiliation(s)
- Tanja Kalajdzic
- Unité de recherche en arthrose, University of Montreal, Montreal, Quebec H2L 4M1, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Stockton RA, Jacobson BS. Modulation of cell-substrate adhesion by arachidonic acid: lipoxygenase regulates cell spreading and ERK1/2-inducible cyclooxygenase regulates cell migration in NIH-3T3 fibroblasts. Mol Biol Cell 2001; 12:1937-56. [PMID: 11451994 PMCID: PMC55641 DOI: 10.1091/mbc.12.7.1937] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adhesion of cells to an extracellular matrix is characterized by several discrete morphological and functional stages beginning with cell-substrate attachment, followed by cell spreading, migration, and immobilization. We find that although arachidonic acid release is rate-limiting in the overall process of adhesion, its oxidation by lipoxygenase and cyclooxygenases regulates, respectively, the cell spreading and cell migration stages. During the adhesion of NIH-3T3 cells to fibronectin, two functionally and kinetically distinct phases of arachidonic acid release take place. An initial transient arachidonate release occurs during cell attachment to fibronectin, and is sufficient to signal the cell spreading stage after its oxidation by 5-lipoxygenase to leukotrienes. A later sustained arachidonate release occurs during and after spreading, and signals the subsequent migration stage through its oxidation to prostaglandins by newly synthesized cyclooxygenase-2. In signaling migration, constitutively expressed cyclooxygenase-1 appears to contribute approximately 25% of prostaglandins synthesized compared with the inducible cyclooxygenase-2. Both the second sustained arachidonate release, and cyclooxygenase-2 protein induction and synthesis, appear to be regulated by the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK)1/2. The initial cell attachment-induced transient arachidonic acid release that signals spreading through lipoxygenase oxidation is not sensitive to ERK1/2 inhibition by PD98059, whereas PD98059 produces both a reduction in the larger second arachidonate release and a blockade of induced cyclooxygenase-2 protein expression with concomitant reduction of prostaglandin synthesis. The second arachidonate release, and cyclooxygenase-2 expression and activity, both appear to be required for cell migration but not for the preceding stages of attachment and spreading. These data suggest a bifurcation in the arachidonic acid adhesion-signaling pathway, wherein lipoxygenase oxidation generates leukotriene metabolites regulating the spreading stage of cell adhesion, whereas ERK 1/2-induced cyclooxygenase synthesis results in oxidation of a later release, generating prostaglandin metabolites regulating the later migration stage.
Collapse
Affiliation(s)
- R A Stockton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
39
|
Chen W, Tang Q, Gonzales MS, Bowden GT. Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 2001; 20:3921-6. [PMID: 11439356 DOI: 10.1038/sj.onc.1204530] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 04/03/2001] [Accepted: 04/09/2001] [Indexed: 11/09/2022]
Abstract
The roles of p38 MAP kinases and ERK in UVB induced cox-2 gene expression were studied in a human keratinocyte cell line, HaCaT. UVB significantly increased cox-2 gene expression at both protein and mRNA levels. As we reported previously, p38 and ERK were significantly activated after UVB irradiation in HaCaT cells. In addition, treating the cells with p38 inhibitor SB202190 or MEK inhibitor PD98059 specifically inhibited UVB induced p38 or ERK activation, respectively. In this study, we further examined the roles of p38 and ERK in UVB induced cox-2 gene expression in HaCaT cells. We found that SB202190 strongly inhibited UVB induced COX-2 protein expression at different time points and various UVB doses. Furthermore, SB202190 markedly inhibited UVB induced cox-2 mRNA. Our data indicated that ERK did not play a role in UVB induced cox-2 gene expression in human keratinocytes since suppression of ERK did not significantly alter UVB induced increase of COX-2 protein and mRNA. These results suggested, for the first time, that activation of p38 is required for UVB induced cox-2 gene expression in human keratinocytes. Since cox-2 expression plays an important role in UV carcinogenesis, p38 could be a potential molecular target for chemoprevention of skin cancer.
Collapse
Affiliation(s)
- W Chen
- Department of Radiation Oncology, Arizona Cancer Center, College of Medicine, University of Arizona, Tucson, Arizona, AZ 85724, USA
| | | | | | | |
Collapse
|
40
|
Guo YS, Hellmich MR, Wen XD, Townsend CM. Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 2001; 276:22941-7. [PMID: 11292836 DOI: 10.1074/jbc.m101801200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Colorectal carcinogenesis is a complex, multistep process involving genetic alterations and progressive changes in signaling pathways regulating intestinal epithelial cell proliferation, differentiation, and apoptosis. Although cyclooxygenase-2 (COX-2), gastrin-releasing peptide (GRP), and its receptor, GRP-R, are not normally expressed by the epithelial cells lining the human colon, the levels of all three proteins are aberrantly overexpressed in premalignant adenomatous polyps and colorectal carcinomas of humans. Overexpression of these proteins is associated with altered epithelial cell growth, adhesion, and tumor cell invasiveness, both in vitro and in vivo; however, a mechanistic link between GRP-R-mediated signaling pathways and increased COX-2 overexpression has not been established. We report that bombesin, a homolog of GRP, potently stimulates the expression of COX-2 mRNA and protein as well as the release of prostaglandin E(2) from a rat intestinal epithelial cell line engineered to express GRP-R. Bombesin stimulation of COX-2 expression requires an increase in [Ca(2+)](i), activation of extracellular signal-regulated kinase (ERK)-1 and -2 and p38(MAPK), and increased activation and expression of the transcription factors Elk-1, ATF-2, c-Fos, and c-Jun. These data suggest that the expression of GRP-R in intestinal epithelial cells may play a role in carcinogenesis by stimulating COX-2 overexpression through an activator protein-1-dependent pathway.
Collapse
Affiliation(s)
- Y S Guo
- Departments of Surgery and Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
41
|
Fahmi H, He Y, Zhang M, Martel-Pelletier J, Pelletier JP, Di Battista JA. Nimesulide reduces interleukin-1beta-induced cyclooxygenase-2 gene expression in human synovial fibroblasts. Osteoarthritis Cartilage 2001; 9:332-40. [PMID: 11399097 DOI: 10.1053/joca.2000.0393] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the effects of nimesulide (NIM) on basal and induced cyclo-oxygenase-2 (COX-2) gene expression in human synovial fibroblasts (HSF) and to define the intracellular mechanisms that mediate the changes in COX-2 expression and synthesis in response to the drug. DESIGN HSF were incubated with NIM and NS-398 (0, 0.03, 0.3, 3 microg/ml) in the absence or presence of the COX-2 inducers interleukin-1beta (IL-1beta) or endotoxin (LPS). Treated cells were analysed for COX-2 mRNA and protein by Northern and Western blotting analysis, respectively. Putative transcriptional, post-transcriptional, and signaling effects of NIM on basal and induced-COX-2 expression were investigated by human COX-2 promoter studies, calcium studies, reactive oxygen species (ROS) evaluations, electrophoretic mobility shift analysis (EMSA) and half-life studies of COX-2 mRNA. RESULTS NIM inhibited IL-1beta-induced COX-2 expression and protein at sub and therapeutic concentrations (0.03-0.3 microg/ml) while the non-specific NSAID, naproxen, did not. Both drugs suppressed PGE2 release by about 95%. NIM had no effect on (1) IL-1beta-induced increases in NF-kappaB or c/EBP signaling, or (2) human COX-2 promoter activity. Stability of induced COX-2 mRNA was unaffected by NIM treatments. Pre-treatment of cells with O(2)radical scavengers (e.g. PDTC) or with Ca(++)channel blockers (e.g. verapamil) had a modest effect on IL-1beta-induced COX-2 expression. NIM blocked ionomycin+thapsigargin and H(2)O(2)-induced increases in COX-2 protein synthesis. CONCLUSION NIM inhibits cytokine-induced COX-2 expression and protein at sub and therapeutic concentrations. At least part of this activity may be the result of NIM inhibition of calcium and/or free radical generation induced by cytokines.
Collapse
Affiliation(s)
- H Fahmi
- Osteoarthritis Research Unit, Centre hospitalier de l'Université de Montréal (CHUM), Hôpital Notre-Dame, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Berenbaum F. Proinflammatory cytokines, prostaglandins, and the chondrocyte: mechanisms of intracellular activation. Joint Bone Spine 2001; 67:561-4. [PMID: 11195324 DOI: 10.1016/s1297-319x(00)00212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F Berenbaum
- Department of rheumatology and UPRES-A CNRS 7079, Pierre and Marie Curie University, Paris VI, hopital Saint-Antoine, France.
| |
Collapse
|
43
|
Ogasawara A, Arakawa T, Kaneda T, Takuma T, Sato T, Kaneko H, Kumegawa M, Hakeda Y. Fluid shear stress-induced cyclooxygenase-2 expression is mediated by C/EBP beta, cAMP-response element-binding protein, and AP-1 in osteoblastic MC3T3-E1 cells. J Biol Chem 2001; 276:7048-54. [PMID: 11092885 DOI: 10.1074/jbc.m008070200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical loading is crucial for maintenance of bone integrity and architecture, and prostaglandins are an important mediator of mechanosensing. Cyclooxygenase-2 (COX-2), an inducible isoform of prostaglandin G/H synthase, is induced by mechanical loading-derived fluid shear stress in bone-forming cells such as osteoblasts and osteocytes. In this study, we investigated transcription factor and transcriptional regulatory elements responsible for the shear stress-induced COX-2 expression in osteoblastic MC3T3-E1 cells. When the cells were transfected with luciferase-reporter plasmids including the 5'-flanking region of the murine cox-2 gene, the fluid shear stress increased the luciferase activities, consistent with the induction of COX-2 mRNA and protein expression. Deletion analysis of the promoter region revealed that the shear stress-induced luciferase responses were regulated by two regions, -172 to -100 base pair (bp) and -79 to -46 bp, of the cox-2 promoter, in which putative cis-elements of C/EBP beta, AP-1, cAMP-response element-binding protein (CREB), and E box are included. Mutation of sites of C/EBP beta, AP-1, and/or cAMP-response element decreased the shear stress-induced luciferase activities, whereas mutation of the E box did not affect the responses. In an electrophoretic mobility shift assay, shear stress enhanced nuclear extract binding to double-stranded oligonucleotide probes containing C/EBP beta and AP-1-binding motifs, and the bands of the complexes were supershifted by the addition of antibody specific for each regulator. Although the binding activity of CREB toward its probe was unaffected by shear stress, the phosphorylation of CREB was enhanced by the stress. These data suggest that C/EBP beta, AP-1, and CREB play crucial roles in the shear stress-induced cox-2 expression in osteoblasts.
Collapse
Affiliation(s)
- A Ogasawara
- Department of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The prostaglandin endoperoxide H synthases-1 and 2 (PGHS-1 and PGHS-2; also cyclooxygenases-1 and 2, COX-1 and COX-2) catalyze the committed step in prostaglandin synthesis. PGHS-1 and 2 are of particular interest because they are the major targets of nonsteroidal anti-inflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2 inhibitors. Inhibition of the PGHSs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of these enzymes relate mechanistically to cyclooxygenase and peroxidase catalysis, and how differences in the structure of PGHS-2 confer on this isozyme differential sensitivity to COX-2 inhibitors. We further examine the evidence for independent signaling by PGHS-1 and PGHS-2, and the complex mechanisms for regulation of PGHS-2 gene expression.
Collapse
Affiliation(s)
- W L Smith
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
45
|
Reboul P, Pelletier JP, Tardif G, Benderdour M, Ranger P, Bottaro DP, Martel-Pelletier J. Hepatocyte growth factor induction of collagenase 3 production in human osteoarthritic cartilage: involvement of the stress-activated protein kinase/c-Jun N-terminal kinase pathway and a sensitive p38 mitogen-activated protein kinase inhibitor cascade. ARTHRITIS AND RHEUMATISM 2001; 44:73-84. [PMID: 11212179 DOI: 10.1002/1529-0131(200101)44:1<73::aid-anr11>3.0.co;2-e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) involves both a decreased reparative process and an increased degradative phenomenon. Several cytokines and growth factors are known to facilitate the repair of articular cartilage defects. The hepatocyte growth factor (HGF) present in OA cartilage is suggested to be involved in the cartilage repair process as well as in matrix remodeling and chondrocyte migration, leading to partial reconstruction of articular cartilage. Since cell migration is often correlated with metalloprotease activity, the effect of HGF on collagenase 3 production was studied because of its possible implication in OA cartilage remodeling. METHODS We examined HGF-stimulated collagenase 3 production in human OA chondrocytes by Western and Northern blotting. Furthermore, we explored the intracellular signaling pathways through which HGF induced collagenase 3 production. RESULTS This study showed that HGF stimulated collagenase 3 production in human OA chondrocytes at the transcriptional level, and this induction was mediated by activation of the stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) pathway, but not the p38 mitogen-activated protein kinase (MAPK). The p44/42 MAPKs were also phosphorylated and the use of their specific inhibitor (PD 98059) did not affect HGF-induced collagenase 3 production in OA chondrocytes. Induced collagenase 3 production via the SAPK/JNK pathway was mediated, at least in part, by the TRE site in the promoter, and in the activator protein 1 complex, c-Jun, JunD, and Fra-1 were activated. Surprisingly, further experiments revealed that the specific p38 MAPK inhibitor SB 202190 also inhibited collagenase 3 production early in the HGF-induced process. The 50% inhibitory concentration was as low as 50 nM, which is unlikely to be related to p38 MAPK inhibition (which is usually in the microM range), suggesting the involvement of another kinase sensitive to SB 202190. CONCLUSION This is the first study to show that HGF has the ability to induce both the expression and synthesis of collagenase 3 in OA chondrocytes. The effect is mediated by kinase cascades involving SAPK/JNK and another, unidentified kinase. This study provides novel information implicating a role for HGF in the pathophysiology of OA through its effect on the production of collagenase 3, which is an enzyme that is possibly involved in OA cartilage remodeling.
Collapse
Affiliation(s)
- P Reboul
- Unité de Recherche en Arthrose, H pital Notre-Dame, Centre Hospitalier de l'Université de Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Origuchi T, Migita K, Nakashima T, Honda S, Yamasaki S, Hida A, Kawakami A, Aoyagi T, Kawabe Y, Eguchi K. Regulation of cyclooxygenase-2 expression in human osteoblastic cells by N-acetylcysteine. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 136:390-4. [PMID: 11079466 DOI: 10.1067/mlc.2000.110369] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyclooxygenase (COX) plays a pivotal role in the inflammatory process of inflammatory arthropathies. Inflammatory cytokines induce COX-2 expression in osteoblasts of inflamed joints, followed by osteoclast activation. The inhibition of COX-2 expression could help prevent prostaglandin E2 secretion, followed by osteoclast activation for bone destruction and resorption. We examined whether the antioxidant N-acetylcysteine (NAC) inhibited COX-2 expression induced in the human osteoblastic cell line MG63 by interleukin-1beta (IL-1beta). According to Western blot and reverse transcription-polymerase chain reaction (RT-PCR) test results, NAC inhibited IL-1beta-induced COX-2 expression in protein and messenger RNA. We also demonstrated immunohistochemically that NAC inhibited NFkappaB nuclear translocation. These results suggested that NAC inhibited both COX-2 expression and NFkappaB nuclear translocation in MG63, which in turn indicated that NAC could inhibit the inflammatory process involved in bone resorption by regulating COX-2 expression at the level of transcription.
Collapse
Affiliation(s)
- T Origuchi
- School of Allied Medical Sciences, Nagasaki University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cytokines pro-inflammatoires, prostaglandines et chondrocyte : mécanismes d’activation intracellulaire. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1169-8330(00)00025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Slice LW, Bui L, Mak C, Walsh JH. Differential regulation of COX-2 transcription by Ras- and Rho-family of GTPases. Biochem Biophys Res Commun 2000; 276:406-10. [PMID: 11027488 DOI: 10.1006/bbrc.2000.3487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclooxygenase-2 (Cox-2) gene expression which is rapidly induced by cytokines, growth factors and tumor promoters, is important for inflammation, angiogenesis, and is markedly enhanced in various cancer cells. Many of these factors initiate signaling through Ras- and Rho-family small GTPases. Here, we investigated the ability of Ras, Rac, Rho, and Cdc42Hs to differentially regulate transcription from the murine COX-2 promoter in NIH 3T3 cells. Over-expression of constitutively active mutants of Ras, Rac, Rho, but not Cdc42Hs induced transcription from the COX-2 promoter. Transactivation by Rac and Rho required cis-acting elements located between -80 and -40 of the COX-2 promoter whereas deletion of this region enhanced transactivation by Ras. A CRE/ATF element located at -56 was critical for Ras- and Rac-induced transactivation of the COX-2 promoter, but was not required for transactivation by Rho. This demonstrates Rho-dependent transactivation of the COX-2 promoter through novel trans-acting elements and suggests that, in NIH 3T3 cells, signaling by small GTPases that result in COX-2 expression is not through a sequential pathway from Cdc42 to Rac to Rho, but rather through independent, parallel signaling pathways.
Collapse
Affiliation(s)
- L W Slice
- Division of Digestive Diseases, CURE, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
49
|
Okada Y, Voznesensky O, Herschman H, Harrison J, Pilbeam C. Identification of multiple cis-acting elements mediating the induction of prostaglandin G/H synthase-2 by phorbol ester in murine osteoblastic cells. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000801)78:2<197::aid-jcb3>3.0.co;2-c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Jovanovic DV, Martel-Pelletier J, Di Battista JA, Mineau F, Jolicoeur FC, Benderdour M, Pelletier JP. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: a possible role in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2000; 43:1134-44. [PMID: 10817568 DOI: 10.1002/1529-0131(200005)43:5<1134::aid-anr24>3.0.co;2-#] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine the cellular mechanisms by which the proinflammatory cytokine interleukin-17 (IL-17) induces the synthesis of 92-kd gelatinase (matrix metalloproteinase 9 [MMP-9]) by human monocyte/ macrophages in primary culture. METHODS IL-17-stimulated human monocytes isolated from the peripheral blood of healthy donors were cultured in the presence of antiinflammatory cytokines, neutralizing antibodies against IL-1beta, tumor necrosis factor alpha (TNFalpha), or IL-1 receptor antagonist, and with protein kinase inhibitors of diverse specificity. MMP measurements were performed using specific enzyme-linked immunosorbent assays, while the expression of specific messenger RNA was determined by Northern blotting. Detection of phosphorylated proteins and specific transcriptional factors was performed by Western blotting and by gel retardation experiments, respectively. RESULTS Biologically active IL-17 was detected in the synovial fluid of patients with rheumatoid arthritis. IL-17-induced MMP-9 production in human monocyte/ macrophages was dependent on endogenous prostaglandin E2 synthesis and related to autocrine stimulation by TNFalpha, but was IL-1beta independent. This activation involves both p42/44 and p38 kinases and nuclear factor kappaB. IL-17-inducible activator protein 1 and signal transducer and activator of transcription 1/3 may transactivate the MMP-9 promoter. CONCLUSION IL-17 may contribute to an unbalanced production of proinflammatory cytokines and MMP-9 in diseased articular joint tissues by interacting with the macrophages in the rheumatoid synovium.
Collapse
Affiliation(s)
- D V Jovanovic
- Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|