1
|
Bakhashab S, Ahmed F, Schulten HJ, Ahmed FW, Glanville M, Al-Qahtani MH, Weaver JU. Proangiogenic Effect of Metformin in Endothelial Cells Is via Upregulation of VEGFR1/2 and Their Signaling under Hyperglycemia-Hypoxia. Int J Mol Sci 2018; 19:ijms19010293. [PMID: 29351188 PMCID: PMC5796238 DOI: 10.3390/ijms19010293] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of morbidity/mortality worldwide. Metformin is the first therapy offering cardioprotection in type 2 diabetes and non-diabetic animals with unknown mechanism. We have shown that metformin improves angiogenesis via affecting expression of growth factors/angiogenic inhibitors in CD34+ cells under hyperglycemia-hypoxia. Now we studied the direct effect of physiological dose of metformin on human umbilical vein endothelial cells (HUVEC) under conditions mimicking hypoxia-hyperglycemia. HUVEC migration and apoptosis were studied after induction with euglycemia or hyperglycemia and/or CoCl2 induced hypoxia in the presence or absence of metformin. HUVEC mRNA was assayed by whole transcript microarrays. Genes were confirmed by qRT-PCR, proteins by western blot, ELISA or flow cytometry. Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Therefore, metformin’s dual effect in hyperglycemia-chemical hypoxia is mediated by direct effect on VEGFR1/R2 leading to activation of cell migration through MMP16 and ROCK1 upregulation, and inhibition of apoptosis by increase in phospho-ERK1/2 and FABP4, components of VEGF signaling cascades.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah P.O. Box 80218, Saudi Arabia.
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Farid Ahmed
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Hans-Juergen Schulten
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Fahad W Ahmed
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK.
| | - Michael Glanville
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| | - Mohammed H Al-Qahtani
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Jolanta U Weaver
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK.
- Cardiovascular Research Centre, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Kim M, Alapan Y, Adhikari A, Little JA, Gurkan UA. Hypoxia-enhanced adhesion of red blood cells in microscale flow. Microcirculation 2017; 24:10.1111/micc.12374. [PMID: 28387057 PMCID: PMC5679205 DOI: 10.1111/micc.12374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The advancement of microfluidic technology has facilitated the simulation of physiological conditions of the microcirculation, such as oxygen tension, fluid flow, and shear stress in these devices. Here, we present a micro-gas exchanger integrated with microfluidics to study RBC adhesion under hypoxic flow conditions mimicking postcapillary venules. METHODS We simulated a range of physiological conditions and explored RBC adhesion to endothelial or subendothelial components (FN or LN). Blood samples were injected into microchannels at normoxic or hypoxic physiological flow conditions. Quantitative evaluation of RBC adhesion was performed on 35 subjects with homozygous SCD. RESULTS Significant heterogeneity in RBC adherence response to hypoxia was seen among SCD patients. RBCs from a HEA population showed a significantly greater increase in adhesion compared to RBCs from a HNA population, for both FN and LN. CONCLUSIONS The approach presented here enabled the control of oxygen tension in blood during microscale flow and the quantification of RBC adhesion in a cost-efficient and patient-specific manner. We identified a unique patient population in which RBCs showed enhanced adhesion in hypoxia in vitro. Clinical correlates suggest a more severe clinical phenotype in this subgroup.
Collapse
Affiliation(s)
- Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anima Adhikari
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Watamoto T, Egusa H, Sawase T, Yatani H. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms. Front Microbiol 2015; 6:1453. [PMID: 26733987 PMCID: PMC4686731 DOI: 10.3389/fmicb.2015.01453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC(1280TM)) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis.
Collapse
Affiliation(s)
- Takao Watamoto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry Sendai, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry Suita, Japan
| |
Collapse
|
4
|
Lance EI, Casella JF, Everett AD, Barron-Casella E. Proteomic and biomarker studies and neurological complications of pediatric sickle cell disease. Proteomics Clin Appl 2014; 8:813-27. [PMID: 25290359 DOI: 10.1002/prca.201400069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 09/30/2014] [Indexed: 01/27/2023]
Abstract
Biomarker analysis and proteomic discovery in pediatric sickle cell disease has the potential to lead to important discoveries and improve care. The aim of this review article is to describe proteomic and biomarker articles involving neurological and developmental complications in this population. A systematic review was conducted to identify relevant research publications. Articles were selected for children under the age of 21 years with the most common subtypes of sickle cell disease. Included articles focused on growth factors (platelet-derived growth factor), intra and extracellular brain proteins (glial fibrillary acidic protein, brain-derived neurotrophic factor), and inflammatory and coagulation markers (interleukin-1β, l-selectin, thrombospondin-1, erythrocyte, and platelet-derived microparticles). Positive findings include increases in plasma brain-derived neurotrophic factor and platelet-derived growth factor with elevated transcranial Dopplers velocities, increases in platelet-derived growth factor isoform AA with overt stroke, and increases in glial fibrillary acidic protein with acute brain injury. These promising potential neuro-biomarkers provide insight into pathophysiologic processes and clinical events, but their clinical utility is yet to be established. Additional proteomics research is needed, including broad-based proteomic discovery of plasma constituents and blood cell proteins, as well as urine and cerebrospinal fluid components, before, during and after neurological and developmental complications.
Collapse
Affiliation(s)
- Eboni I Lance
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Division of Hematology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
5
|
Reference genes for expression studies in hypoxia and hyperglycemia models in human umbilical vein endothelial cells. G3-GENES GENOMES GENETICS 2014; 4:2159-65. [PMID: 25193495 PMCID: PMC4232541 DOI: 10.1534/g3.114.013102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human umbilical vein endothelial cell (HUVEC)-based gene expression studies performed under hypoxia and/or hyperglycemia show huge potential for modeling endothelial cell response in cardiovascular disease and diabetes. However, such studies require reference genes that are stable across the whole range of experimental conditions. These reference genes have not been comprehensively defined to date. We applied human genome-wide microarrays and quantitative real-time PCR (qRT-PCR) on RNA obtained from primary HUVEC cultures that were incubated for 24 hr either in euglycemic or in hyperglycemic conditions and then subjected to short-term CoCl2-induced hypoxia for 1, 3, or 12 hr. Using whole-transcript arrays, we selected 10 commonly used reference genes with no significant expression variation across eight different conditions. These genes were ranked using NormFinder software according to their stability values. Consequently, five genes were selected for validation by qRT-PCR. These were ribosomal protein large P0 (RPLP0), transferrin receptor (TFRC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), and β-actin (ACTB). All five genes displayed stable expression under hyperglycemia. However, only RPLP0 and TFRC genes were stable under hypoxia up to 12 hr. Under hyperglycemia combined with hypoxia up to 12 hr, the expression of RPLP0, TFRC, GUSB, and ACTB genes remained unchanged. Our findings strongly confirm that RPLP0 and TFRC are the most suitable reference genes for HUVEC gene expression experiments subjected to hypoxia and/or hyperglycemia for the given experimental conditions. We provide further evidence that even commonly known references genes require experimental validation for all conditions involved.
Collapse
|
6
|
Ninomiya JT, Kuzma SA, Schnettler TJ, Krolikowski JG, Struve JA, Weihrauch D. Metal ions activate vascular endothelial cells and increase lymphocyte chemotaxis and binding. J Orthop Res 2013; 31:1484-91. [PMID: 23629852 PMCID: PMC3957232 DOI: 10.1002/jor.22377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 04/04/2013] [Indexed: 02/04/2023]
Abstract
Metal on metal articulations in hip arthroplasty offer advantages, including lower volumetric wear compared to conventional metalonpolyethylene bearings, and increased resistance to dislocation. Reports described early failures, with histologic features similar to a Type IV immune response. Mechanisms by which metal wear products cause this reaction are not completely understood. We hypothesized a mechanism through direct activation of endothelial cells (ECs) by metal ions, resulting in both vasculitis and accumulation of lymphocytes without prior immune sensitization. Effects of metal ions were evaluated using human ECs in culture. Alterations in chemotactic proteins IL8 and MCP1 were assessed, as was upregulation of the adhesion molecule ICAM-1 and lymphocyte binding to ECs. Cobalt increased secretion of IL8 and MCP1 significantly, and upregulated the expression of ICAM-1 in ECs compared to stimulation by chromium and controls. Binding of lymphocytes to ECs and transEC migration were both significantly increased by cobalt but not chromium. These findings suggest that cobalt contributes more to the activation of ECs and lymphocyte binding than chromium without an allergic response. Some of the adverse tissue reactions to implants with components made of cobalt-chromium-molybdenium alloys may be due in part to activation of the endothelium by metal ions.
Collapse
Affiliation(s)
- James T. Ninomiya
- Department of Orthopaedic Surgery, Medical College of Wisconsin, PO Box 26099, West Wisconsin Avenue, Milwaukee, Wisconsin, 53226
| | - Scott A. Kuzma
- Department of Orthopaedic Surgery, Medical College of Wisconsin, PO Box 26099, West Wisconsin Avenue, Milwaukee, Wisconsin, 53226
| | - Timothy J. Schnettler
- Department of Orthopaedic Surgery, Medical College of Wisconsin, PO Box 26099, West Wisconsin Avenue, Milwaukee, Wisconsin, 53226
| | - John G. Krolikowski
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janine A. Struve
- Department of Orthopaedic Surgery, Medical College of Wisconsin, PO Box 26099, West Wisconsin Avenue, Milwaukee, Wisconsin, 53226
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Rakshit T, Mukhopadhyay R. Tuning band gap of holoferritin by metal core reconstitution with Cu, Co, and Mn. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9681-9686. [PMID: 21755951 DOI: 10.1021/la202045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Utility of ferritin in molecular electronics, especially in single molecule electronics based devices, has recently been proposed, since the iron core of holoferritin is semiconducting in nature. However, the practical aspects, e.g., how its electronic properties can be varied/tuned, need to be better addressed. In this direction, we have performed direct tunneling experiments using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) on several metal core reconstituted ferritins, where the reconstitution has been carried out using biocompatible metals like copper, cobalt, and manganese that are found naturally in the human body. We show, for the first time, that, by metal core reconstitution of the ferritin protein, the band gap of the protein can be tuned to different values (here, within the range 1.17-0.00 eV, considering iron-containing holoferritin and apoferritin as well). From the respective current-voltage curves and the well-defined band gaps, clear distinction can be made among the five different ferritins indicating that the metal core has direct contribution in the observed electrical conductivities of ferritins. It is further revealed that the electrical conductivities of the reconstituted ferritins are of the same order as that for the free metal conductivities, meaning that the relative changes in the free metal conductivities are reflected in the contributions of the metals in protein shell-confinement (i.e., the ∼8 nm core of ferritin). This finding could lead to a strategy for fine-tuning ferritin band gap by preselecting a metal on the basis of the free metal conductivity values.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | |
Collapse
|
8
|
Medina-Torres CE, Mason SL, Floyd RV, Harris PA, Mobasheri A. Hypoxia and a hypoxia mimetic up-regulate matrix metalloproteinase 2 and 9 in equine laminar keratinocytes. Vet J 2011; 190:e54-e59. [PMID: 21459025 DOI: 10.1016/j.tvjl.2011.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/15/2022]
Abstract
The aim of this study was to determine if hypoxia and the hypoxia mimetic cobalt chloride regulate the activity of matrix metalloproteinase (MMP)-2 and -9 in cultures of equine hoof keratinocytes. These effects were assessed in primary cultures of laminar keratinocytes using gelatin zymography. Incubation of keratinocytes with cobalt chloride significantly increased the levels of active MMP-2 compared to untreated controls. Hypoxia significantly increased the expression of active MMP-2 and -9 in keratinocyte cultures. This up-regulation was observed after 6h and peaked at 24h. The study findings provide novel evidence of a potential link between hypoxia within the hoof and up-regulation of MMPs which may in turn result in damage to the lamellar basement membrane.
Collapse
Affiliation(s)
- Carlos E Medina-Torres
- School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZJ, UK
| | - Sarah L Mason
- School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZJ, UK
| | - Rachel V Floyd
- School of Biomedical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Pat A Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Ali Mobasheri
- School of Veterinary Science and Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| |
Collapse
|
9
|
Sackstein R. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunol Rev 2009; 230:51-74. [PMID: 19594629 DOI: 10.1111/j.1600-065x.2009.00792.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Negash S, Narasimhan SR, Zhou W, Liu J, Wei FL, Tian J, Raj JU. Role of cGMP-dependent protein kinase in regulation of pulmonary vascular smooth muscle cell adhesion and migration: effect of hypoxia. Am J Physiol Heart Circ Physiol 2009; 297:H304-12. [PMID: 19411288 DOI: 10.1152/ajpheart.00077.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to prolonged hypoxia can result in pulmonary vascular remodeling and pulmonary hypertension. Hypoxia induces pulmonary vascular smooth muscle cell (PVSMC) proliferation and vascular remodeling by affecting cell adhesion and migration and secretion of extracellular matrix proteins. We previously showed that acute hypoxia decreases cGMP-dependent protein kinase (PKG) activity in PVSMC and that PKG plays a role in maintaining the differentiated contractile phenotype in normoxia. In this study, we investigated the effect of hypoxia on PVSMC adhesion and migration and the role of PKG in these functions. Ovine fetal pulmonary artery SMC were incubated in normoxia (Po(2) approximately 100 Torr) or hypoxia (Po(2) approximately 30-40 Torr) or treated with the PKG inhibitor DT-3 for 24 h in normoxia. To further study the role of PKG in the modulation of adhesion and migration, PVSMC were transiently transfected with a full-length PKG1alpha [PKG-green fluorescent protein (GFP)] or a dominant-negative construct (G1alphaR-GFP). Cell adhesion to extracellular matrix proteins was determined, and integrin-mediated adhesion was assessed by alpha/beta-integrin-mediated cell adhesion array. Exposure to hypoxia (24 h) and pharmacological inhibition of PKG1 by DT-3 significantly promoted adhesion mediated by alpha(4)-, beta(1)-, and alpha(5)beta(1)-integrins to fibronectin, laminin, and tenacin and also resulted in increased cell migration. Likewise, inhibition of PKG by expression of a dominant-negative PKG1alpha construct increased cell adhesion and migration, comparable to that induced by hypoxia. Dynamic actin reorganization associated with integrin-mediated cell adhesion is partly regulated by the actin-binding protein cofilin, the (Ser3) phosphorylation of which inhibits its actin-severing activity. We found that increased PKG expression and activity is associated with decreased cofilin (Ser3) phosphorylation, implying a role for PKG in the modulation of cofilin activity and actin dynamics. Together, these findings identify cGMP/PKG1 signaling as central to the functional differences between PVSMC exposed to normoxia versus hypoxia.
Collapse
Affiliation(s)
- S Negash
- Division of Neonatology, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Antonios D, Ade N, Kerdine-Römer S, Assaf-Vandecasteele H, Larangé A, Azouri H, Pallardy M. Metallic haptens induce differential phenotype of human dendritic cells through activation of mitogen-activated protein kinase and NF-κB pathways. Toxicol In Vitro 2009; 23:227-34. [DOI: 10.1016/j.tiv.2008.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/30/2008] [Accepted: 11/30/2008] [Indexed: 10/21/2022]
|
12
|
Jones J, Berkhoff S, Weich E, Engl T, Wedel S, Relja B, Jonas D, ABlaheta R. Transient down-regulation of beta1 integrin subtypes on kidney carcinoma cells is induced by mechanical contact with endothelial cell membranes. J Cell Mol Med 2007; 11:826-38. [PMID: 17760843 PMCID: PMC3823260 DOI: 10.1111/j.1582-4934.2007.00071.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adhesion molecules of the integrin beta1 family are thought to be involved in the malignant progression renal cell carcinoma (RCC). Still, it is not clear how they contribute to this process. Since the hematogenous phase of tumour dissemination is the rate-limiting step in the metastatic process, we explored beta1 integrin alterations on several RCC cell lines (A498, Caki1, KTC26) before and after contacting vascular endothelium in a tumour-endothelium (HUVEC) co-culture assay. Notably, alpha2, alpha3 and alpha5 integrins became down-regulated immediately after the tumour cells attached to HUVEC, followed by re-expression shortly thereafter. Integrin down-regulation on RCC cells was caused by direct contact with endothelial cells, since the isolated endothelial membrane fragments but not the cell culture supernatant contributed to the observed effects. Integrin loss was accompanied by a reduced focal adhesion kinase (FAK) expression, FAK activity and diminished binding of tumour cells to matrix proteins. Furthermore, intracellular signalling proteins RCC cells were altered in the presence of HUVEC membrane fragments, in particular 14-3-3 epsilon, ERK2, PKCdelta, PKCepsilon and RACK1, which are involved in regulating tumour cell motility. We, therefore, speculate that contact of RCC cells with the vascular endothelium converts integrin-dependent adhesion to integrin-independent cell movement. The process of dynamic integrin regulation may be an important part in tumour cell migration strategy, switching the cells from being adhesive to becoming motile and invasive.
Collapse
Affiliation(s)
- Jon Jones
- *Correspondence to: Dr Roman BLAHETA J.W.Goethe-Universitätsklinik Klinik für Urologie und Kinderurologie Interdisziplinäres Forschungs- und Laborgebäude Chirurgische Forschung, Haus 25, Zi 204, Theodor-Stern-Kai 7 D-60590 Frankfurt am Main, Germany. Tel.:00 49-69-63 01-71 09 Fax:00 49-69-63 01-71 08 E-mail:
| | | | | | | | | | | | | | - Roman ABlaheta
- *Correspondence to: Dr Roman BLAHETA J.W.Goethe-Universitätsklinik Klinik für Urologie und Kinderurologie Interdisziplinäres Forschungs- und Laborgebäude Chirurgische Forschung, Haus 25, Zi 204, Theodor-Stern-Kai 7 D-60590 Frankfurt am Main, Germany. Tel.:00 49-69-63 01-71 09 Fax:00 49-69-63 01-71 08 E-mail:
| |
Collapse
|
13
|
Yang YT, Ju TC, Yang DI. Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cells. J Neurochem 2005; 93:513-25. [PMID: 15836611 DOI: 10.1111/j.1471-4159.2005.03032.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compromised mitochondrial function in neurons and glia has been observed in several neurodegenerative disorders, including Huntington's disease and Alzheimer's disease. Chemical/hypoxic preconditioning may afford protection against subsequently more severe oxidative damages. In this study, we tested whether induction of hypoxia inducible factor-1 (HIF-1) may exert cytoprotective effects against mitochondrial dysfunction caused by 3-nitropropionic acid (3-NP) in glial cells. Preconditioning of C6 astroglial cells with cobalt chloride, mimosine (MIM), and desferrioxamine (DFO), all of which known to activate HIF-1, significantly attenuated cytotoxicity induced by 3-NP, an irreversible inhibitor of mitochondrial complex II, and antimycin A, a mitochondrial complex III inhibitor. Application of cadmium chloride capable of neutralizing cobalt-induced HIF-1 activation, HIF-specific oligodeoxynucleotide (ODN) decoy, and antisense phosphorothioate ODN against HIF-1alpha abolished the protective effect mediated by preconditioning with cobalt chloride. Preloading of C6 cells with SN50, PD98059, or SB202190, the respective inhibitor of nuclear factor-kappaB (NF-kappaB), p44/p42 extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK), failed to affect the protection afforded by cobalt preconditioning. Taken together, these results suggest that HIF-1 induction secondary to preconditioning with cobalt chloride or iron chelators may mediate the protective effects against metabolic insult induced by the mitochondrial inhibitor 3-NP in C6 astroglial cells.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Institute of Neuroscience, Tzu Chi University, Hualien, Taiwan
| | | | | |
Collapse
|
14
|
Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, Jendrossek V, Ishii S, Shimizu T, Waidmann M, Hessler G, Huber SM, Lang F, Wieder T. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 2005; 118:1233-43. [PMID: 15741229 DOI: 10.1242/jcs.01730] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osmotic erythrocyte shrinkage leads to activation of cation channels with subsequent Ca2+ entry and stimulates a sphingomyelinase with subsequent formation of ceramide. Ca2+ and ceramide then activate a scramblase leading to breakdown of phosphatidylserine asymmetry of the cell membrane. The mediators accounting for activation of erythrocyte sphingomyelinase and phosphatidylserine exposure remained elusive. The study demonstrates that platelet-activating factor (PAF) is released from erythrocytes upon hyperosmotic cell shrinkage. The experiments further disclose the presence of PAF receptors in erythrocytes and show that PAF stimulates the breakdown of sphingomyelin and the release of ceramide from erythrocytes at isotonic conditions. PAF further triggers cell shrinkage (decrease of forward scatter) and phosphatidylserine exposure (annexin binding) of erythrocytes. The stimulation of annexin-binding is blunted by a genetic knockout of PAF receptors, by the PAF receptor antagonist ABT491 or by inhibition of sphingomyelinase with urea. In conclusion, PAF activates an erythrocyte sphingomyelinase and the then formed ceramide leads to the activation of scramblase with subsequent phosphatidylserine exposure.
Collapse
Affiliation(s)
- Philipp A Lang
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Peters K, Schmidt H, Unger RE, Kamp G, Pröls F, Berger BJ, Kirkpatrick CJ. Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Mol Cell Biochem 2005; 270:157-66. [PMID: 15792365 DOI: 10.1007/s11010-005-4504-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Divalent cobalt ions (Co2+) induce the expression of hypoxia responsive genes and are often used in cell biology to mimic hypoxia. In this in vitro study we compared the effects of hypoxia and Co2+ on human endothelial cells and examined processes that are stimulated in hypoxia in vivo (proliferation and angiogenesis). We analyzed the expression of the hypoxia-inducible factor-1alpha (HIF-1alpha) under different hypoxic conditions (3% and nearly 0% O2) and Co2+ -concentrations (0.01-0.7 mM). As in hypoxia, the amount of HIF-1alpha protein was enhanced by exposure to Co2+ (did not correlate with mRNA amount). however, contrary to the results of hypoxia, in vitro-angiogenesis was inhibited after exposure to even low Co2+-concentrations (> or =0.01 mM). This led to the conclusion that although hypoxia signaling after Co2+ -exposure took place, further yet unknown Co2+ -induced event(s) must have occurred.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Pathology, Johannes Gutenberg-University, Langenbeckstr. 1, 55101 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Corley KM, Taylor CJ, Lilly B. Hypoxia-inducible factor 1α modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. J Cell Biochem 2005; 96:971-85. [PMID: 16149050 DOI: 10.1002/jcb.20559] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hypoxia promotes angiogenesis by modulating the transcriptional regulator hypoxia-inducible factor 1alpha (HIF-1alpha). HIF-1alpha is a master regulator of the hypoxic response, and its proangiogenic activities include, but are not limited to, regulation of vascular endothelial growth factor (VEGF). The remodeling of the vasculature during angiogenesis requires an initial destabilization step, which facilitates endothelial sprouting, followed by vessel growth, and restabilization through investment of smooth muscle cells. The complex dynamics of hypoxia-induced angiogenesis prompted us to investigate what aspects of this multi-step process are regulated by HIF-1alpha. To do so, we analyzed the molecular properties of aortic and coronary artery smooth muscle cells in response to forced expression of HIF-1alpha, and by treatment with cobalt chloride, which mimics hypoxia. Our results demonstrate that HIF-1alpha causes a marked reduction in the ability of smooth muscle cells to migrate and adhere to extracellular matrices. Analysis of focal adhesion proteins showed no significant difference in expression or localization of vinculin or focal adhesion kinase (FAK). However, investigation of FAK phosphorylation, a critical mediator of adhesion and migration, revealed tyrosine phosphorylation of FAK is diminished in the presence of HIF-1alpha and cobalt chloride. These results indicate that during hypoxia-induced vessel remodeling, HIF-1alpha functions to dampen adhesion and migration of smooth muscle cells by modulating FAK activity. We suggest that HIF-1alpha expression in smooth muscle cells may augment vessel sprouting by loosening smooth muscle cell attachments to the basement membrane and endothelial cells.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Aorta/cytology
- Aorta/metabolism
- Aorta/pathology
- Blotting, Western
- Cattle
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- Cobalt/pharmacology
- DNA, Complementary/metabolism
- Endothelium, Vascular/metabolism
- Focal Adhesion Protein-Tyrosine Kinases/metabolism
- Humans
- Hypoxia
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Immunoblotting
- Immunoprecipitation
- Luciferases/metabolism
- Microscopy, Fluorescence
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Neovascularization, Pathologic
- Phosphorylation
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Tyrosine/chemistry
- Vascular Endothelial Growth Factor A/metabolism
- Wound Healing
Collapse
Affiliation(s)
- Katina M Corley
- Vascular Biology Center and Department of Obstetrics and Gynecology, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
18
|
Crawford JH, Chacko BK, Kevil CG, Patel RP. The red blood cell and vascular function in health and disease. Antioxid Redox Signal 2004; 6:992-9. [PMID: 15548896 DOI: 10.1089/ars.2004.6.992] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitric oxide (NO) is widely accepted as a central regulator of vascular tone and a vast array of other cardiovascular signaling mechanisms. An emerging player in these mechanisms is hemoglobin (Hb), an erythrocytic protein that serves as the archetypical model for an allosteric protein. Specifically, red blood cells (RBC) are suggested to be integral in matching blood flow to tissue oxygen demands. The mechanisms proposed involve the ability of Hb to sense changes in oxygen concentrations and coupling this process to modulating vascular NO levels. The molecular basis of these mechanisms remains under investigation, but is clearly diverse and discussed in this article from the basis of the blood flow responses to hypoxia. Another emerging theme in RBC biology is the role of these cells during inflammatory disease in which disease processes promote the interaction of vascular NO and the RBC. This is exemplified in hemolytic diseases, in which released Hb has drastic affects on vascular homeostasis mechanisms. Additionally, it is becoming evident that RBC express numerous molecules that mediate interactions with the extracellular matrix and cellular mediators of inflammation. The functional implications for such interactions remain unclear but highlight potential roles of the RBC in modulating inflammatory disease.
Collapse
Affiliation(s)
- Jack H Crawford
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
19
|
Zennadi R, Hines PC, De Castro LM, Cartron JP, Parise LV, Telen MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood 2004; 104:3774-81. [PMID: 15308566 DOI: 10.1182/blood-2004-01-0042] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The possible role of physiologic stress hormones in enhancing adhesion of sickle erythrocytes (SS RBCs) to endothelial cells (ECs) in sickle cell disease (SCD) has not been previously explored. We have now found that up-regulation of intracellular cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) by epinephrine significantly increased sickle but not normal erythrocyte adhesion to both primary and immortalized ECs. Inhibition of serine/threonine phosphatases also enhanced sickle erythrocyte adhesion at least partially through a PKA-dependent mechanism. Adhesion was mediated through LW (intercellular adhesion molecule-4 [ICAM-4], CD242) blood group glycoprotein, and immunoprecipitation studies showed that LW on sickle but not on normal erythrocytes undergoes increased PKA-dependent serine phosphorylation as a result of activation. The major counter receptor for LW was identified as the alphavbeta3 integrin on ECs. These data suggest that adrenergic hormones such as epinephrine may initiate or exacerbate vaso-occlusion and thus contribute to the association of vaso-occlusive events with physiologic stress.
Collapse
Affiliation(s)
- Rahima Zennadi
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
20
|
Huang MK, Choi YJ, Houde R, Lee JW, Lee B, Zhao X. Effects of Lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens. Poult Sci 2004; 83:788-95. [PMID: 15141837 DOI: 10.1093/ps/83.5.788] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accumulated lines of evidence indicate that inactivated probiotics could have beneficial effects similar to those of live probiotics. Two strains of disrupted, cobalt-enriched, lactic acid bacteria (Lactobacillus acidophilus and Lactobacillus casei) and a disrupted fungal mycelium (Scytalidium acidophilum) were spray-mixed onto a mash basal feed, in 2 concentrations, prior to pelleting. The effects of these probiotics on production performance and immune response in broiler chickens were investigated. The production parameters, including BW, feed intake (FI), BW gain (BWG), and feed conversion ratio (FCR), were monitored weekly during a 6-wk trial. The immune response was evaluated by immunizing the birds with the antigen keyhole limpet hemocyanin (KLH) followed by a serological assay to measure blood IgA and IgG titers. Some of the production parameters were significantly improved by low L. casei (LCL; for BW and BWG), high L. acidophilus (LAH; for BW and BWG), and high fungal (FH; for BW, BWG, and FI) in comparison with the nonadditive control (NC-). However, these 3 treatments (LCL, LAH, and FH) did not enhance the measured immune responses. Instead, the titers of serum KLH-specific IgA in high L. casei (LCH) and low L. acidophilus (LAL) were significantly higher than those of NC-, 10 d after immunization. None of the probiotic treatments increased the titer of KLH-specific IgG in blood. Our results indicate that disrupted and cobalt-enriched L. acidophilus or L. casei was able to enhance production performance of broiler chickens. The fungal mycelium, S. acidophilum, when used at a high concentration, also demonstrated its potential for the first time to be used as a probiotic. In addition, the optimal concentration for administering probiotics is strain dependent. A higher dose does not always result in a better performance.
Collapse
Affiliation(s)
- M K Huang
- Department of Animal Science, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | | | |
Collapse
|
21
|
Fradette C, Souich PD. Hypoxia-inducible factor-1 and activator protein-1 modulate the upregulation of CYP3A6 induced by hypoxia. Br J Pharmacol 2003; 140:1146-54. [PMID: 14559859 PMCID: PMC1574128 DOI: 10.1038/sj.bjp.0705543] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
1. Moderate hypoxia in vivo and serum from rabbits subjected to moderate hypoxia (SHYPO) in vitro reduce CYP1A1 and 1A2 p450 isoforms and upregulate CYP3A6. The aim of this project was to investigate the signal transduction pathways implicated in the upregulation of CYP3A6 expression by hypoxia. 2. Hypoxia in vivo and SHYPO in vitro increased the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and c-jun, as well as CYP3A6. By electrophoresis mobility shift assay, it was shown that HIF-1 and activator protein-1 (AP-1) bind to CYP3A6 oligonucleotide probe after exposure to hypoxia in vivo and SHYPO in vitro. The effects of hypoxia in vivo or SHYPO in vitro were reproduced by CoCl2 and lead acetate, activators of HIF-1 and AP-1, respectively. 2. PD98059, a p42/44 MAPK inhibitor, prevented the increase of CYP3A6 and c-jun, but did not impede the increase of HIF-1alpha and binding to CYP3A6 oligonucleotide probe. Genistein, an inhibitor of protein tyrosine kinases (PTKs), prevented the increase in HIF-1alpha, c-jun and CYP3A6, as well as HIF-1 and AP-1 binding to CYP3A6 oligonucleotide probe. Moreover, hypoxia in vivo induced constitutive androstane receptor (CAR) as well as CAR binding to the CYP3A6 oligonucleotide probe, but not the pregnane X receptor. 4. In conclusion, hypoxia in vivo and SHYPO induce the expression of CYP3A6. The in vitro induction of CYP3A6 by SHYPO is PTK- and p42/44 MAPK-dependent. The present data support the hypothesis that HIF-1 and AP-1 are part of the signalling pathway leading to CYP3A6 induction by hypoxia.
Collapse
Affiliation(s)
- Caroline Fradette
- Department of Pharmacology, Faculty of Medicine, University of Montréal, PO Box 6128, Stat. Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Patrick du Souich
- Department of Pharmacology, Faculty of Medicine, University of Montréal, PO Box 6128, Stat. Centre-Ville, Montréal, Québec, Canada H3C 3J7
- Author for correspondence:
| |
Collapse
|
22
|
Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 2003; 23:953-64. [PMID: 12689916 DOI: 10.1161/01.atv.0000071347.69358.d9] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies of platelet endothelial cell adhesion molecule-1 (PECAM-1 [CD31])-deficient mice have revealed that this molecule plays an important role in controlling the activation and survival of cells on which it is expressed. In this review, we focus on the complex cytoplasmic domain of PECAM-1 and describe what is presently known about its structure, posttranslational modifications, and binding partners. In addition, we summarize findings that implicate PECAM-1 as an inhibitor of cellular activation via protein tyrosine kinase-dependent signaling pathways, an activator of integrins, and a suppressor of cell death via pathways that depend on damage to the mitochondria. The challenge of future research will be to bridge our understanding of the functional and biochemical properties of PECAM-1 by establishing mechanistic links between signals transduced by the PECAM-1 cytoplasmic domain and discrete cellular responses.
Collapse
Affiliation(s)
- Peter J Newman
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, PO Box 2178, 638 N. 18th St, Milwaukee, Wis 53201, USA.
| | | |
Collapse
|
23
|
Haynes J, Obiako B. Activated polymorphonuclear cells increase sickle red blood cell retention in lung: role of phospholipids. Am J Physiol Heart Circ Physiol 2002; 282:H122-30. [PMID: 11748055 DOI: 10.1152/ajpheart.2002.282.1.h122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates the role of the activated polymorphonuclear cell (APMN) products on sickle red blood cell (SRBC) retention/adherence in the pulmonary circulation. Isolated rat lungs were perfused with (51)Cr-labeled normal RBCs (NRBC) or SRBCs (10% hematocrit) suspensions +/- PMNs. Specific activities of lung and perfusate were measured and retention (the number of SRBC/g lung) was calculated. SRBC retention was 3.5 times greater than NRBC retention. PMN activation was required to increase SRBC retention. Supernatants from APMN increased SRBC retention, which suggested soluble products such as oxidants, PAF, and/or leukotriene (LTB(4)) are involved. Heat inactivation of PMN NADPH oxidase had no effect on retention. Whereas neither platelet-activating factor (PAF) nor LTB(4) (secreted by APMN) increased SRBC retention, PAF+LTB(4) did. The PAF antagonist, WEB-2170, attenuated SRBC retention mediated by PAF+LTB(4) and APMNs. Similarly, zileuton (5-lipoxygenase inhibitor) attenuated APMN-mediated SRBC retention. We conclude the concomitant release of PAF and LTB(4) from APMN is involved in the initiation of microvascular occlusion by SRBCs in the perfused rat lung.
Collapse
Affiliation(s)
- Johnson Haynes
- Pulmonary and Critical Care Division, Departments of Medicine and Physiology, Medical Center, University of South Alabama College of Medicine, 2451 Fillingim St., Mobile, AL 36688, USA.
| | | |
Collapse
|
24
|
Boarder MR, White PJ, Roberts JR, Webb TE. Regulation of vascular endothelial cells and vascular smooth muscle cells by multiple P2Y receptor subtypes. Drug Dev Res 2001. [DOI: 10.1002/ddr.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Tanji K, Imaizumi T, Matsumiya T, Itaya H, Fujimoto K, Cui X, Toki T, Ito E, Yoshida H, Wakabayashi K, Satoh K. Desferrioxamine, an iron chelator, upregulates cyclooxygenase-2 expression and prostaglandin production in a human macrophage cell line. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:227-35. [PMID: 11239825 DOI: 10.1016/s1388-1981(01)00089-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostaglandins (PGs) play regulatory roles in a variety of physiological and pathological processes, including the immune response, cytoprotection and inflammation. Desferrioxamine (DFX), an iron chelator, is known to reduce free radical-mediated cell injury and to upregulate certain inflammatory mediators. We investigated the effects of DFX on the production of PGs and the expression of cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of PGs, using a human macrophage cell line, U937. Our results showed that COX-2 expression and PGE(2) production are upregulated by DFX treatment and that this upregulation is dependent on both COX-2 promoter activity and alteration of mRNA stability. COX-2 promoter activity may be, at least in part, mediated by activation of the extracellular signal-regulated kinase pathway. These findings suggest that iron metabolism may regulate inflammatory processes by modulating PGs as well as other inflammatory mediators.
Collapse
Affiliation(s)
- K Tanji
- Department of Molecular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bussolati B, Biancone L, Cassoni P, Russo S, Rola-Pleszczynski M, Montrucchio G, Camussi G. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1713-25. [PMID: 11073830 PMCID: PMC1885724 DOI: 10.1016/s0002-9440(10)64808-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelet-activating factor (PAF), a phospholipid mediator of inflammation, is present in breast cancer tissue and correlates with microvessel density. In the present study, we investigated the biological significance of PAF synthesized within breast cancer. In vitro, we observed the production of PAF by two estrogen-dependent (MCF7 and T-47D) and an estrogen-independent (MDA-MB231) breast cancer cell lines after stimulation with vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, tumor necrosis factor, thrombin but not with estrogen, progesterone, and oxytocin. The sensitivity to agonist stimulation and the amount of PAF synthesized as cell-associated or released varied in different cell lines, being higher in MDA-MB231 cells, which are known to be highly invasive. We further demonstrate, by reverse transcriptase-polymerase chain reaction and cytofluorimetry, that all of the breast cancer cells express the PAF receptor and respond to PAF stimulation in terms of proliferation. Moreover, in MDA-MB231 cells PAF elicited cell motility. In vivo, two structurally different PAF receptor antagonists WEB 2170 and CV 3988 significantly reduced the formation of new vessels in a tumor induced by subcutaneous implantation of MDA-MB231 cells into SCID mice. In conclusion, these results suggest that PAF, produced and released by breast cancer cells, can contribute to tumor development by enhancing cell motility and proliferation and by stimulating the angiogenic response.
Collapse
Affiliation(s)
- B Bussolati
- Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Ilan N, Cheung L, Pinter E, Madri JA. Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 2000; 275:21435-43. [PMID: 10801826 DOI: 10.1074/jbc.m001857200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-endothelial cell adhesion molecule (PECAM)-1 is a 130-kDa glycoprotein commonly used as an endothelium-specific marker. Evidence to date suggests that PECAM-1 is more than just an endothelial cell marker but is intimately involved in signal transduction pathways. This is mediated in part by phosphorylation of specific tyrosine residues within the ITAM domain of PECAM-1 and by recruitment of adapter and signaling molecules. Recently we demonstrated that PECAM-1/beta-catenin association functions to regulate beta-catenin localization and, moreover, to modulate beta-catenin tyrosine phosphorylation levels. Here we show that: 1) not only beta-catenin, but also gamma-catenin is associated with PECAM-1 in vitro and in vivo; 2) PKC enzyme directly phosphorylates purified PECAM-1; 3) PKC-derived PECAM-1 serine/threonine phosphorylation inversely correlates with gamma-catenin association; 4) PECAM-1 recruits gamma-catenin to cell-cell junctions in transfected SW480 cells; and 5) gamma-catenin may recruit PECAM-1 into an insoluble cytoskeletal fraction. These data further support the concept that PECAM-1 functions as a binder and modulator of catenins and provides a molecular mechanism for previously reported PECAM-1/cytoskeleton interactions.
Collapse
Affiliation(s)
- N Ilan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
29
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|