1
|
Funasaka N, Suzuki M, Hosono M, Shindo H, Kawamura K, Inamori D, Yoshioka M. Blubber biopsy in common bottlenose dolphins using a novel biopsy puncher: Evaluation of the impact on living individuals and possibility of applications in cetacean research. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:499-508. [PMID: 38436117 DOI: 10.1002/jez.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Biopsy has recently become a preferred protocol for sampling the skin and blubber of many cetacean species, although it is desirable to collect as minimally invasive as possible. Here, the effect of biopsy sampling on the captive common bottlenose dolphins was evaluated by analyzing the process of wound healing and changes in hematological and blood biochemical parameters after biopsy using a puncher developed to collect up to the inner layer of the dolphin blubber. Results showed that the wounds caused by biopsy were closed in as early as 1 day and completely covered with the epidermis within 5-11 days. Blood fibrinogen, which generally increases due to a wound-induced inflammatory response or activation of the coagulation system, was significantly elevated after the biopsy indicating ongoing tissue repair, while other parameters did not exhibit significant differences. Furthermore, histological observation and RNA extraction of samples were performed to investigate the versatility of this method to cetacean research. Histological examination revealed three distinct layers of the blubber in the biopsy samples. Moreover, total RNA extracted from biopsy samples exhibited sufficient quality and quantity for gene expression analyses. Overall, the puncher utilized in our study represents a valuable and minimally invasive tool for investigating various aspects of small cetacean studies.
Collapse
Affiliation(s)
- Noriko Funasaka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Miwa Suzuki
- Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | | | - Hideaki Shindo
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, Japan
| | - Keiko Kawamura
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, Japan
| | | | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
2
|
Noren SR. Building Cetacean Locomotor Muscles throughout Ontogeny to Support High-Performance Swimming into Adulthood. Integr Comp Biol 2023; 63:785-795. [PMID: 36990644 DOI: 10.1093/icb/icad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The demands on the locomotor muscles at birth are different for cetaceans than terrestrial mammals. Cetacean muscles do not need to support postural costs as the neonate transitions from the womb because water's buoyant force supports body weight. Rather, neonatal cetacean muscles must sustain locomotion under hypoxic conditions as the neonate accompanies its mother swimming underwater. Despite disparate demands at birth, cetaceans like terrestrial mammals require postnatal development to attain mature musculature. Neonatal cetaceans have a low proportion of muscle mass, and their locomotor muscles have lower mitochondrial density, myoglobin content (Mb), and buffering capacity than those found in the adult locomotor muscle. For example, the locomotor muscle of the neonatal bottlenose dolphin has only 10 and 65% of the Mb and buffering capacity, respectively, found in the adult locomotor muscle. The maturation period required to achieve mature Mb and buffering capacity in the locomotor muscle varies across cetacean species from 0.75 to 4 and 1.17 to 3.4 years, respectively. The truncated nursing interval of harbor porpoises and sub-ice travel of beluga whales may be drivers for faster muscle maturation in these species. Despite these postnatal changes in the locomotor muscle, ontogenetic changes in locomotor muscle fiber type seem to be rare in cetaceans. Regardless, the underdeveloped aerobic and anaerobic capacities of the locomotor muscle of immature dolphins result in diminished thrusting capability and swim performance. Size-specific stroke amplitudes (23-26% of body length) of 0-3-month-old dolphins are significantly smaller than those of >10-month-olds (29-30% of body length), and 0-1-month-olds only achieve 37 and 52% of the mean and maximum swim speed of adults, respectively. Until swim performance improves with muscle maturation, young cetaceans are precluded from achieving their pod's swim speeds, which could have demographic consequences when fleeing anthropogenic disturbances.
Collapse
Affiliation(s)
- S R Noren
- Institute of Marine Sciences, University of California Santa Cruz Center for Ocean Health, 115 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
3
|
Noren SR, Schwarz L, Robeck TR. Topographic Variations in Mobilization of Blubber in Relation to Changes in Body Mass in Short-Finned Pilot Whales ( Globicephala macrorhynchus). Physiol Biochem Zool 2021; 94:228-240. [PMID: 34010119 DOI: 10.1086/714637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractFat-level measurements used to indicate individual body condition and fitness are useful only when taken at a region along the body where fat responds to variations in caloric intake. Investigations to identify appropriate species-specific regions are limited, especially for cetaceans that have a specialized fat (blubber) that serves as an energy reserve and provides insulation. Over 18 mo, body mass of six pilot whales varied (range: 50-172 kg), and although caloric intake increased when water temperatures were lower, generally the best-fitting state-space model for length-adjusted mass was based on a single factor, caloric intake. After correcting for body length (range: 330-447 cm), the slope for blubber thickness and "blubber ring" thickness (average blubber thickness along a girth) in relation to body mass was positive and had a P value of <0.10 at six of 16 blubber measurement sites and one of five girth measurement sites, respectively. The slope for body girth (a reflection of changes in underlying blubber thickness) in relation to body mass was positive and had a lower P value ([Formula: see text]) at three of five girth measurement sites. Results indicate that blubber from the anterior insertion of the pectoral fins to the posterior insertion of the dorsal fin is the most metabolically active region. This region includes the midflank site, a location where blubber thickness measurements have historically been taken to monitor cetacean body condition. Conversely, blubber in the peduncle region was comparatively inert. These findings must be considered when measuring blubber thickness and body width (i.e., photogrammetry) to monitor the condition of free-ranging cetaceans.
Collapse
|
4
|
Luziga C, Miyata H, Nagahisa H, Oji T, Wada N. Muscle fibre distribution in forelimb, hindlimb and trunk muscles in three bat species: The little Japanese horseshoe, greater horseshoe and Egyptian fruit. Anat Histol Embryol 2021; 50:685-693. [PMID: 33783854 DOI: 10.1111/ahe.12670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
This study characterised muscle fibres in trunk, forelimb and hindlimb muscles of three bat species: little Japanese horseshoe (Rhinolophus cornutus), greater horseshoe (Rhinolophus ferrumequinum) and Egyptian fruit (Rousettus aegyptiacus). Twenty-seven muscles from trunk, forelimb and hindlimb were dissected, weighed and analysed by immunohistochemistry and sodium didecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and determined their cross-sectional areas (CSA). Results showed that Type IIa and Type IIa/x made the highest proportion of total muscle mass. Moderate proportion was formed by Type IIb. Type I and IIx appeared at very low levels in all bats. Type IIb was the only fibre type detected in patagial muscles in wing membrane of greater horseshoe while other fibre types were not observed. Type I muscle fibres were very few and appeared infrequently in fifteen muscles of Egyptian fruit and in only one muscle in each, greater horseshoe and little Japanese horseshoe. Type IIx was also detected in three muscles in greater horseshoe and only one muscle in Egyptian fruit but none in little Japanese horseshoe. The highest average CSA μm2 was detected in Type IIb and values were 734.2μm2 for LHB; 1537.9μm2 for GHB and 1,720.9μm2 for EFB. Lowest and undetermined values were observed for Type I and IIx. These data demonstrate that Type IIa, IIa/x and IIb form significant proportion of adult bat muscle mass and Type IIb is the largest fibre type. The distribution pattern is suggestive of specialised functions of the fibres in relation to orientation and speed of bats during flight.
Collapse
Affiliation(s)
- Claudius Luziga
- Department of Veterinary Anatomy and Pathology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Hirofumi Miyata
- Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi, Japan
| | - Hiroshi Nagahisa
- Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi, Japan
| | - Takashi Oji
- The United Veterinary Graduated School, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Wada
- Department of System Physiology, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
5
|
Robinson KJ, Ternes K, Hazon N, Wells RS, Janik VM. Bottlenose dolphin calves have multi-year elevations of plasma oxytocin compared to all other age classes. Gen Comp Endocrinol 2020; 286:113323. [PMID: 31733207 DOI: 10.1016/j.ygcen.2019.113323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Providing for infants nutritionally via lactation is one of the hallmarks of mammalian reproduction, and infants without motivated mothers providing for them are unlikely to survive. Mothers must maintain regular contact with infants both spatially and temporally while utilising their environment to forage, avoid threats and find shelter. However, mothers can only do this and maximise their reproductive success with some degree of co-operation from infants, despite their developing physical and cognitive capabilities. The neuropeptide hormone oxytocin (OT) triggers proximity-seeking behaviour and acts in a positive feedback loop across mother-infant bonds, stimulating appropriate pro-social behaviour across the pair. However, data on infant OT levels is lacking, and it is unclear how important infants are in maintaining mother-infant associations. The bottlenose dolphin (Tursiops truncatus) is a mammalian species that is fully physically mobile at birth and has multi-year, but individually variable, lactation periods. We investigated OT concentrations in mother-infant pairs of wild individuals compared to other age and reproductive classes. An ELISA to detect OT in dolphin plasma was successfully validated with extracted plasma. We highlight a statistical method for testing for parallelism that could be applied to other ELISA validation studies. OT concentrations were consistently elevated in calves up to at least 4 years of age with lactating mothers (12.1 ± 0.9 pg/ml), while all mothers (4.5 ± 0.4 pg/ml) had OT concentrations comparable to non-lactating individuals (5.9 ± 0.5 pg/ml). Concentrations within infants were individually variable, and may reflect the strength of the bond with their mother. The OT system likely provides a physiological mechanism for motivating infants to perform behaviours that prevent long-term separation from their mothers during this crucial time in their life history. Elevated infant OT has also been linked to energetic and developmental advantages which may lead to greater survival rates. Environmental or anthropogenic disturbances to OT release can occur during bond formation or can disrupt the communication methods used to reinforce these bonds via OT elevation. Variation in OT expression in infants, and its behavioural and physiological consequences, may explain differences in reproductive success despite appropriate maternal behaviour expression.
Collapse
Affiliation(s)
- Kelly J Robinson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK.
| | - Kerstin Ternes
- Zoo Duisburg, Mülheimer Straße 273, 47058 Duisburg, Germany
| | - Neil Hazon
- Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Vincent M Janik
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
6
|
Kroeger JP, McLellan WA, Arthur LH, Velten BP, Singleton EM, Kinsey ST, Pabst DA. Locomotor muscle morphology of three species of pelagic delphinids. J Morphol 2020; 281:170-182. [DOI: 10.1002/jmor.21089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Jacqueline P. Kroeger
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - William A. McLellan
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Logan H. Arthur
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Brandy P. Velten
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Emily M. Singleton
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Stephen T. Kinsey
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - D. Ann Pabst
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| |
Collapse
|
7
|
Histological Variation in Blubber Morphology of the Endangered East Asian Finless Porpoise ( Neophocaena asiaeorientalis sunameri) with Ontogeny and Reproductive States. Zool Stud 2019; 58:e42. [PMID: 31966343 DOI: 10.6620/zs.2019.58-42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023]
Abstract
The highly lipid-rich blubber in the hypodermis is a specialized structure that functions in thermoregulation, energy storage, buoyancy control, locomotion, and streamlining the body shape in marine mammals. The key objective of this study was to investigate blubber development in the East Asian Finless Porpoise (Neophocaena asiaeorientalis sunameri) across the ontogenetic (fetuses, calves, and adults) and reproductive states (adults, pregnant, and lactating). Blubber samples were collected from East Asian Finless Porpoises (EAFP) that were accidentally caught in the fishing nets in the Bohai/Yellow Sea from late April to mid May of 2015. The mean blubber depth was significantly thinner in fetuses across the ontogenetic groups and significantly thicker in pregnant and lactating vs. adult females across the reproductive states. Across the four regions in each group, we did not find significant variations in blubber depth. However, the correlations between body length and weight vs. blubber depth was significant. Histological observation identified three layers of stratified blubber with a significantly smaller adipocyte cell size in fetuses and a significantly higher area ratio of structural fiber in the middle and inner layers across the ontogenetic groups. Across the reproductive states, we did not observe a statistically significant difference in the adipocyte cell size or area ratio of the structural fiber. Our results suggest that prenatal blubber growth is characterized by an increase in the adipocyte cell count, while postnatal growth is the result of an increase in cell size. They also indicate that ontogeny can affect blubber depths and cellular measurements in the EAFP.
Collapse
|
8
|
Ichikawa H, Matsuo T, Higurashi Y, Nagahisa H, Miyata H, Sugiura T, Wada N. Characteristics of Muscle Fiber-Type Distribution in Moles. Anat Rec (Hoboken) 2018; 302:1010-1023. [PMID: 30376699 DOI: 10.1002/ar.24008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
Abstract
Moles are a strictly fossorial Soricomorpha species and possess a suite of specialized adaptations to subterranean life. However, the contractile function of skeletal muscles in moles remains unclear. We compared muscle fiber-type distribution in two mole species (the large Japanese mole and lesser Japanese mole) with that in four other Soricomorpha species that are semi-fossorial, terrestrial, or semi-aquatic (the Japanese shrew-mole, house shrew, Japanese white-toothed shrew, and Japanese water shrew). For a single species, the fiber-type distribution in up to 38 muscles was assessed using immunohistochemical staining and/or gel electrophoresis. We found that slow and fatigue-resistant Type I fibers were absent in almost all muscles of all species studied. Although, the two methods of determining the fiber type did not give identical results, they both revealed that fast Type IIb fibers were absent in mole muscles. The fiber-type distribution was similar among different anatomical regions in the moles. This study demonstrated that the skeletal muscles of moles have a homogenous fiber-type distribution compared with that in Soricomorpha species that are not strictly fossorial. Mole muscles are composed of Type IIa fibers alone or a combination of Type IIa and relatively fast Type IIx fibers. The homogenous fiber-type distribution in mole muscles may be an adaptation to structurally simple subterranean environments, where there is no need to support body weight with the limbs, or to move at high speeds to pursue prey or to escape from predators. Anat Rec, 302:1010-1023, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroshi Ichikawa
- Division of Basic Veterinary Sciences, the United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Taiki Matsuo
- Division of Basic Veterinary Sciences, the United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Yasuo Higurashi
- Laboratory of System Physiology, Division of Basic Veterinary Sciences, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Hiroshi Nagahisa
- Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Takao Sugiura
- Department of Health and Sports Sciences, Faculty of Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8513, Japan
| | - Naomi Wada
- Laboratory of System Physiology, Division of Basic Veterinary Sciences, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| |
Collapse
|
9
|
Karniski C, Krzyszczyk E, Mann J. Senescence impacts reproduction and maternal investment in bottlenose dolphins. Proc Biol Sci 2018; 285:20181123. [PMID: 30051841 PMCID: PMC6083244 DOI: 10.1098/rspb.2018.1123] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023] Open
Abstract
Reproductive senescence is evident across many mammalian species. An emerging perspective considers components of reproductive senescence as evolutionarily distinct phenomena: fertility senescence and maternal-effect senescence. While fertility senescence is regarded as the ageing of reproductive physiology, maternal-effect senescence pertains to the declining capacity to provision and rear surviving offspring due to age. Both contribute to reproductive failure in utero making it difficult to differentiate between the two prenatally in the wild. We investigated both components in a long-lived mammal with prolonged maternal care through three parameters: calf survival, interbirth interval (IBI) and lactation period. We provide clear evidence for reproductive senescence in a wild population of bottlenose dolphins (Tursiops aduncus) using 34+ years of longitudinal data on 229 adult females and 562 calves. Calf survival decreased with maternal age, and calves with older mothers had lower survival than predicted by birth order, suggesting maternal-effect senescence. Both lactation period and IBIs increased with maternal age, and IBIs increased regardless of calf mortality, indicating interactions between fertility and maternal-effect senescence. Of calves that survived to weaning, last-born calves weaned later than earlier-born calves, evidence of terminal investment, a mitigating strategy given reduced reproductive value caused by either components of reproductive senescence.
Collapse
Affiliation(s)
- Caitlin Karniski
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Ewa Krzyszczyk
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Experimental Measurement of Dolphin Thrust Generated during a Tail Stand Using DPIV. FLUIDS 2018. [DOI: 10.3390/fluids3020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Variation in Guiana dolphin parental care according to calf age class. Acta Ethol 2018. [DOI: 10.1007/s10211-018-0289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Morrison R, Reiss D. Precocious development of self-awareness in dolphins. PLoS One 2018; 13:e0189813. [PMID: 29320499 PMCID: PMC5761843 DOI: 10.1371/journal.pone.0189813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
Mirror-self recognition (MSR) is a behavioral indicator of self-awareness in young children and only a few other species, including the great apes, dolphins, elephants and magpies. The emergence of self-awareness in children typically occurs during the second year and has been correlated with sensorimotor development and growing social and self-awareness. Comparative studies of MSR in chimpanzees report that the onset of this ability occurs between 2 years 4 months and 3 years 9 months of age. Studies of wild and captive bottlenose dolphins (Tursiops truncatus) have reported precocious sensorimotor and social awareness during the first weeks of life, but no comparative MSR research has been conducted with this species. We exposed two young bottlenose dolphins to an underwater mirror and analyzed video recordings of their behavioral responses over a 3-year period. Here we report that both dolphins exhibited MSR, indicated by self-directed behavior at the mirror, at ages earlier than generally reported for children and at ages much earlier than reported for chimpanzees. The early onset of MSR in young dolphins occurs in parallel with their advanced sensorimotor development, complex and reciprocal social interactions, and growing social awareness. Both dolphins passed subsequent mark tests at ages comparable with children. Thus, our findings indicate that dolphins exhibit self-awareness at a mirror at a younger age than previously reported for children or other species tested.
Collapse
Affiliation(s)
- Rachel Morrison
- Department of Psychology, The Graduate Center of The City University of New York, New York, NY, United States of America
| | - Diana Reiss
- Department of Psychology, The Graduate Center of The City University of New York, New York, NY, United States of America
- Department of Psychology, Hunter College of The City University of New York, New York, NY, United States of America
| |
Collapse
|
13
|
Thometz NM, Dearolf JL, Dunkin RC, Noren DP, Holt MM, Sims OC, Cathey BC, Williams TM. Comparative physiology of vocal musculature in two odontocetes, the bottlenose dolphin (Tursiops truncatus) and the harbor porpoise (Phocoena phocoena). J Comp Physiol B 2017; 188:177-193. [PMID: 28569355 DOI: 10.1007/s00360-017-1106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
The mechanism by which odontocetes produce sound is unique among mammals. To gain insight into the physiological properties that support sound production in toothed whales, we examined myoglobin content ([Mb]), non-bicarbonate buffering capacity (β), fiber-type profiles, and myosin heavy chain expression of vocal musculature in two odontocetes: the bottlenose dolphin (Tursiops truncatus; n = 4) and the harbor porpoise (Phocoena phocoena; n = 5). Both species use the same anatomical structures to produce sound, but differ markedly in their vocal repertoires. Tursiops produce both broadband clicks and tonal whistles, while Phocoena only produce higher frequency clicks. Specific muscles examined in this study included: (1) the nasal musculature around the phonic lips on the right (RNM) and left (LNM) sides of the head, (2) the palatopharyngeal sphincter (PPS), which surrounds the larynx and aids in pressurizing cranial air spaces, and (3) the genioglossus complex (GGC), a group of muscles positioned ventrally within the head. Overall, vocal muscles had significantly lower [Mb] and β than locomotor muscles from the same species. The PPS was predominately composed of small diameter slow-twitch fibers. Fiber-type and myosin heavy chain analyses revealed that the GGC was comprised largely of fast-twitch fibers (Tursiops: 88.6%, Phocoena: 79.7%) and had the highest β of all vocal muscles. Notably, there was a significant difference in [Mb] between the RNM and LNM in Tursiops, but not Phocoena. Our results reveal shared physiological characteristics of individual vocal muscles across species that enhance our understanding of key functional roles, as well as species-specific differences which appear to reflect differences in vocal capacities.
Collapse
Affiliation(s)
- Nicole M Thometz
- Department of Biology, University of San Francisco, 2130 Fulton St, San Francisco, CA, 94117, USA. .,Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA.
| | - Jennifer L Dearolf
- Biology Department, Hendrix College, 1600 Washington Ave., Conway, AR, 72032, USA
| | - Robin C Dunkin
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Olivia C Sims
- Biology Department, Hendrix College, 1600 Washington Ave., Conway, AR, 72032, USA
| | - Brandon C Cathey
- Biology Department, Hendrix College, 1600 Washington Ave., Conway, AR, 72032, USA
| | - Terrie M Williams
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| |
Collapse
|
14
|
Thean T, Kardjilov N, Asher RJ. Inner ear development in cetaceans. J Anat 2016; 230:249-261. [PMID: 27995620 DOI: 10.1111/joa.12548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/04/2023] Open
Abstract
Cetaceans face the challenge of maintaining equilibrium underwater and obtaining sensory input within a dense, low-visibility medium. The cetacean ear represents a key innovation that marked their evolution from terrestrial artiodactyls to among the most fully aquatic mammals in existence. Using micro-CT and histological data, we document shape and size changes in the cetacean inner ear during ontogeny, and demonstrate that, as a proportion of gestation time, the cetacean inner ear is precocial in its growth compared with that of suid artiodactyls. Cetacean inner ears begin ossifying and reach near-adult shape as early as at 32% of the gestation period, and near-adult dimensions as early as at 27% newborn total length. Our earliest embryos with measurable inner ears (13% newborn length) exhibit a flattened cochlea (i.e. smaller distance from cochlear apex to round window) compared with later and adult stages. Inner ears of Sus scrofa have neither begun ossifying nor reached near-adult dimensions at 55% of the gestation period, but have an adult-like ratio of cochlear diameters to each other, suggesting an adult-like shape. The precocial development of the cetacean inner ear complements previous work demonstrating precocial development of other cetacean anatomical features such as the locomotor muscles to facilitate swimming at the moment of birth.
Collapse
Affiliation(s)
- Tara Thean
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Robert J Asher
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Colegrove KM, Venn-Watson S, Litz J, Kinsel MJ, Terio KA, Fougeres E, Ewing R, Pabst DA, McLellan WA, Raverty S, Saliki J, Fire S, Rappucci G, Bowen-Stevens S, Noble L, Costidis A, Barbieri M, Field C, Smith S, Carmichael RH, Chevis C, Hatchett W, Shannon D, Tumlin M, Lovewell G, McFee W, Rowles TK. Fetal distress and in utero pneumonia in perinatal dolphins during the Northern Gulf of Mexico unusual mortality event. DISEASES OF AQUATIC ORGANISMS 2016; 119:1-16. [PMID: 27068499 DOI: 10.3354/dao02969] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An unusual mortality event (UME) involving primarily common bottlenose dolphins Tursiops truncatus of all size classes stranding along coastal Louisiana, Mississippi, and Alabama, USA, started in early 2010 and continued into 2014. During this northern Gulf of Mexico UME, a distinct cluster of perinatal dolphins (total body length <115 cm) stranded in Mississippi and Alabama during 2011. The proportion of annual dolphin strandings that were perinates between 2009 and 2013 were compared to baseline strandings (2000-2005). A case-reference study was conducted to compare demographics, histologic lesions, and Brucella sp. infection prevalence in 69 UME perinatal dolphins to findings from 26 reference perinates stranded in South Carolina and Florida outside of the UME area. Compared to reference perinates, UME perinates were more likely to have died in utero or very soon after birth (presence of atelectasis in 88 vs. 15%, p < 0.0001), have fetal distress (87 vs. 27%, p < 0.0001), and have pneumonia not associated with lungworm infection (65 vs. 19%, p = 0.0001). The percentage of perinates with Brucella sp. infections identified via lung PCR was higher among UME perinates stranding in Mississippi and Alabama compared to reference perinates (61 vs. 24%, p = 0.01), and multiple different Brucella omp genetic sequences were identified in UME perinates. These results support that from 2011 to 2013, during the northern Gulf of Mexico UME, bottlenose dolphins were particularly susceptible to late-term pregnancy failures and development of in utero infections including brucellosis.
Collapse
Affiliation(s)
- Kathleen M Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Maywood, IL 60153
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sierra E, Fernández A, Espinosa de los Monteros A, Díaz-Delgado J, Bernaldo de Quirós Y, García-Álvarez N, Arbelo M, Herráez P. Comparative histology of muscle in free ranging cetaceans: shallow versus deep diving species. Sci Rep 2015; 5:15909. [PMID: 26514564 PMCID: PMC4626863 DOI: 10.1038/srep15909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
Different marine mammal species exhibit a wide range of diving behaviour based on their breath-hold diving capabilities. They are classically categorized as long duration, deep-diving and short duration, shallow-diving species. These abilities are likely to be related to the muscle characteristics of each species. Despite the increasing number of publications on muscle profile in different cetacean species, very little information is currently available concerning the characteristics of other muscle components in these species. In this study, we examined skeletal muscle fiber type, fiber size (cross sectional area and lesser diameter), intramuscular substrates, and perimysium-related structures, by retrospective study in 146 stranded cetaceans involving 15 different species. Additionally, we investigated diving profile-specific histological features. Our results suggest that deep diving species have higher amount of intramyocyte lipid droplets, and evidence higher percentage of intramuscular adipose tissue, and larger fibre sizes in this group of animals.
Collapse
Affiliation(s)
- E Sierra
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - A Fernández
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - A Espinosa de los Monteros
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - J Díaz-Delgado
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - Y Bernaldo de Quirós
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - N García-Álvarez
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - M Arbelo
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| | - P Herráez
- Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
17
|
Shoele K, Zhu Q. Drafting mechanisms between a dolphin mother and calf. J Theor Biol 2015; 382:363-77. [DOI: 10.1016/j.jtbi.2015.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/14/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
|
18
|
Wang Z, Chen Z, Xu S, Ren W, Zhou K, Yang G. 'Obesity' is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism. Sci Rep 2015; 5:14187. [PMID: 26381091 PMCID: PMC4585638 DOI: 10.1038/srep14187] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022] Open
Abstract
Cetaceans are a group of secondarily adapted marine mammals with an enigmatic history of transition from terrestrial to fully aquatic habitat and subsequent adaptive radiation in waters around the world. Numerous physiological and morphological cetacean characteristics have been acquired in response to this drastic habitat transition; for example, the thickened blubber is one of the most striking changes that increases their buoyancy, supports locomotion, and provides thermal insulation. However, the genetic basis underlying the blubber thickening in cetaceans remains poorly explored. Here, 88 candidate genes associated with triacylglycerol metabolism were investigated in representative cetaceans and other mammals to test whether the thickened blubber matched adaptive evolution of triacylglycerol metabolism-related genes. Positive selection was detected in 41 of the 88 candidate genes, and functional characterization of these genes indicated that these are involved mainly in triacylglycerol synthesis and lipolysis processes. In addition, some essential regulatory genes underwent significant positive selection in cetacean-specific lineages, whereas no selection signal was detected in the counterpart terrestrial mammals. The extensive occurrence of positive selection in triacylglycerol metabolism-related genes is suggestive of their essential role in secondary adaptation to an aquatic life, and further implying that 'obesity' might be an indicator of good health for cetaceans.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhuo Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
19
|
Moore CD, Fahlman A, Crocker DE, Robbins KA, Trumble SJ. The degradation of proteins in pinniped skeletal muscle: viability of post-mortem tissue in physiological research. CONSERVATION PHYSIOLOGY 2015; 3:cov019. [PMID: 27293704 PMCID: PMC4778441 DOI: 10.1093/conphys/cov019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/21/2015] [Accepted: 04/11/2015] [Indexed: 06/06/2023]
Abstract
As marine divers, pinnipeds have a high capacity for exercise at depth while holding their breath. With finite access to oxygen, these species need to be capable of extended aerobic exercise and conservation of energy. Pinnipeds must deal with common physiological hurdles, such as hypoxia, exhaustion and acidosis, that are common to all exercising mammals. The physiological mechanisms in marine mammals used for managing oxygen and carbon dioxide have sparked much research, but access to animals and tissues is difficult and requires permits. Deceased animals that are either bycaught or stranded provide one potential source for tissues, but the validity of biochemical data from post-mortem samples has not been rigorously assessed. Tissues collected from stranded diving mammals may be a crucial source to add to our limited knowledge on the physiology of some of these animals and important to the conservation and management of these species. We aim to determine the reliability of biochemical assays derived from post-mortem tissue and to promote the immediate sampling of stranded animals for the purpose of physiological research. In this study, we mapped the temporal degradation of muscle enzymes from biopsied Northern elephant seals (Mirounga angustirostris) and highlight recommendations for storage protocols for the best preservation of tissue. We also compared the enzymatic activity of different muscle groups (pectoral and latissimus dorsi) in relation to locomotion and measured the effects of four freeze-thaw cycles on muscle tissue enzyme function. Results indicate that enzymatic activity fluctuates greatly, especially with varying storage temperature, storage time, species and muscle group being assayed. In contrast, proteins, such as myoglobin, remain relatively continuous in their increase at 4°C for 48 h. Stranded animals can be a valuable source of biochemical data, but enzyme assays should be used only with great caution in post-mortem tissues.
Collapse
Affiliation(s)
- Colby D. Moore
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Andreas Fahlman
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA
| | - Kathleen A. Robbins
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Stephen J. Trumble
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| |
Collapse
|
20
|
Ball HC, Stavarz M, Oldaker J, Usip S, Londraville RL, George JC, Thewissen JG, Duff RJ. Seasonal and Ontogenetic Variation in Subcutaneous Adipose Of the Bowhead Whale (Balaena mysticetus). Anat Rec (Hoboken) 2015; 298:1416-23. [DOI: 10.1002/ar.23125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Hope C. Ball
- Department of Biology; The University of Akron; Akron Ohio
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University; Rootstown Ohio
| | | | | | - Sharon Usip
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University; Rootstown Ohio
| | | | - John C. George
- North Slope Borough Department of Wildlife Management; Barrow Alaska
| | | | | |
Collapse
|
21
|
Abstract
Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during sustained periods of physical inactivity.
Collapse
|
22
|
Green ML, Herzing DL, Baldwin JD. Molecular assessment of mating strategies in a population of Atlantic spotted dolphins. PLoS One 2015; 10:e0118227. [PMID: 25692972 PMCID: PMC4334488 DOI: 10.1371/journal.pone.0118227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Similar to other small cetacean species, Atlantic spotted dolphins (Stenella frontalis) have been the object of concentrated behavioral study. Although mating and courtship behaviors occur often and the social structure of the population is well-studied, the genetic mating system of the species is unknown. To assess the genetic mating system, we genotyped females and their progeny at ten microsatellite loci. Genotype analysis provided estimates of the minimum number of male sires necessary to account for the allelic diversity observed among the progeny. Using the estimates of male sires, we determined whether females mated with the same or different males during independent estrus events. Using Gerud2.0, a minimum of two males was necessary to account for the genetic variation seen among progeny arrays of all tested females. ML-Relate assigned the most likely relationship between offspring pairs; half or full sibling. Relationship analysis supported the conservative male estimates of Gerud2.0 but in some cases, half or full sibling relationships between offspring could not be fully resolved. Integrating the results from Gerud2.0, ML-Relate with previous observational and paternity data, we constructed two-, three-, and four-male pedigree models for each genotyped female. Because increased genetic diversity of offspring may explain multi-male mating, we assessed the internal genetic relatedness of each offspring's genotype to determine whether parent pairs of offspring were closely related. We found varying levels of internal relatedness ranging from unrelated to closely related (range -0.136-0.321). Because there are several hypothesized explanations for multi-male mating, we assessed our data to determine the most plausible explanation for multi-male mating in our study system. Our study indicated females may benefit from mating with multiple males by passing genes for long-term viability to their young.
Collapse
Affiliation(s)
- Michelle L. Green
- Department of Biology, Florida Atlantic University, 3200 College Avenue, Davie, Florida, 33314, United States of America
| | - Denise L. Herzing
- Wild Dolphin Project, P.O. Box 8436, Jupiter, Florida, 33468, United States of America
- Department of Biology, Department of Psychology, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States of America
| | - John D. Baldwin
- Department of Biology, Florida Atlantic University, 3200 College Avenue, Davie, Florida, 33314, United States of America
| |
Collapse
|
23
|
Topographical distribution of blubber in finless porpoises ( Neophocaena asiaeorientalis sunameri): a result from adapting to living in coastal waters. Zool Stud 2015; 54:e32. [PMID: 31966119 DOI: 10.1186/s40555-015-0111-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Blubber has many functions, among which energy storage, thermoregulation, buoyancy, and hydrodynamic streamlining are the most frequently cited. Within and between taxa, variations in its structure and distribution likely reflect different adaptations of a species to its life history requirements, environment, health, and function. Here, we use ultrasound to describe the distribution of blubber in the finless porpoise (Neophocaena asiaeorientalis sunameri) based on examinations of 34 fresh cadavers recovered as accidental fisheries bycatch. RESULTS Measurements of blubber depth determined by ultrasound positively correlated with conventional measurements using a scalpel and calipers. Whereas conventional surgical incision and visual examination revealed two layers of blubber, ultrasound revealed up to three layers; thus, ultrasound reveals additional structural detail in blubber while crude necropsy techniques do not. Across life history categories, ultrasound revealed the distribution of inner blubber to be topographically consistent with that of full-depth blubber. Blubber in the dorsal region was stratified into three layers and was significantly thicker than that in the lateral and ventral regions, in which a middle layer was normally absent. CONCLUSIONS Ultrasoundprovides a fast, effective, and accurate means to determine blubber thickness and structure, and thus, assessment of the health of fresh finless porpoise carcasses. Blubber depth is determined largely by the thickness of the inner and middle layers, wherein lipids are concentrated. The thickening of blubber in the dorsal thoracic-abdominal region suggests multiple roles of thermal insulation, lipid storage, and, we speculate, to facilitate vertical stability in the complex shallow and estuarine waters in which this animal absent of a dorsal fin occurs.
Collapse
|
24
|
Function and position determine relative proportions of different fiber types in limb muscles of the lizard Tropidurus psammonastes. ZOOLOGY 2014; 118:27-33. [PMID: 25456976 DOI: 10.1016/j.zool.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/19/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
Abstract
Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types.
Collapse
|
25
|
Moore CD, Crocker DE, Fahlman A, Moore MJ, Willoughby DS, Robbins KA, Kanatous SB, Trumble SJ. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris). Front Physiol 2014; 5:217. [PMID: 24959151 PMCID: PMC4050301 DOI: 10.3389/fphys.2014.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/20/2014] [Indexed: 11/13/2022] Open
Abstract
Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.
Collapse
Affiliation(s)
- Colby D Moore
- Department of Biology, Baylor University Waco, TX, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University Rohnert Park, CA, USA
| | - Andreas Fahlman
- Department of Life Sciences, Texas A&M University Corpus Christi, TX, USA
| | - Michael J Moore
- Department of Biology, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance and Recreation, Baylor University Waco, TX, USA
| | | | - Shane B Kanatous
- Department of Biology, College of Natural Sciences, Colorado State University Fort Collins, CO, USA
| | | |
Collapse
|
26
|
Fish FE, Legac P, Williams TM, Wei T. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. J Exp Biol 2014; 217:252-60. [DOI: 10.1242/jeb.087924] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s−1 within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta–Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.
Collapse
Affiliation(s)
- Frank E. Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Paul Legac
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Terrie M. Williams
- Center for Ocean Health, Long Marine Laboratory, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Timothy Wei
- College of Engineering, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
27
|
Favaro L, Gnone G, Pessani D. Postnatal Development of Echolocation Abilities in a Bottlenose Dolphin (Tursiops truncatus): Temporal Organization. Zoo Biol 2013; 32:210-5. [DOI: 10.1002/zoo.21056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 11/18/2012] [Accepted: 11/29/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Livio Favaro
- Dipartimento di Scienze della Vita e Biologia dei Sistemi; Università degli Studi di Torino; Torino; Italy
| | | | - Daniela Pessani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi; Università degli Studi di Torino; Torino; Italy
| |
Collapse
|
28
|
Kielhorn CE, Dillaman RM, Kinsey ST, McLellan WA, Mark Gay D, Dearolf JL, Ann Pabst D. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol 2013; 274:663-75. [DOI: 10.1002/jmor.20124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/31/2012] [Accepted: 12/16/2012] [Indexed: 01/08/2023]
|
29
|
Velten BP, Dillaman RM, Kinsey ST, McLellan WA, Pabst DA. Novel locomotor muscle design in extreme deep-diving whales. J Exp Biol 2013; 216:1862-71. [DOI: 10.1242/jeb.081323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Summary
Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations and are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (Vmt). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (Ziphius cavirostris, Cuvier and Mesoplodon densirostris, Blainville) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus, Gray) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of these cetaceans to determine whether they (a) shared muscle design features with other deep-divers and (b) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of approximately 80% fast-twitch (Type II) fibers with low Vmt. Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber-type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both cetaceans carry sufficient onboard oxygen to aerobically support their dives.
Collapse
|
30
|
Johnson SP, Catania JM, Harman RJ, Jensen ED. Adipose-derived stem cell collection and characterization in bottlenose dolphins (Tursiops truncatus). Stem Cells Dev 2012; 21:2949-57. [PMID: 22530932 DOI: 10.1089/scd.2012.0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal adipose depot and aid in the guidance of the liposuction cannula during aspiration. Liposuction procedures from 6 dolphins yielded 0.9-12.7 g of adipose. All samples yielded sufficient nucleated cells to initiate primary cell cultures, and at passage 2, were successfully differentiated into adipogenic, chondrogenic, neurogenic, and osteogenic cell lineages. The cultured dolphin cells expressed known stem-cell-associated CD markers, CD44 and CD90. Ultrasound-guided liposuction proved to be a safe and minimally invasive procedure that resulted in the successful isolation of ASCs in bottlenose dolphins. This is the first article that conclusively establishes the presence of stem cells in the dolphin.
Collapse
Affiliation(s)
- Shawn P Johnson
- National Marine Mammal Foundation, San Diego, California, USA.
| | | | | | | |
Collapse
|
31
|
Priester C, Morton LC, Kinsey ST, Watanabe WO, Dillaman RM. Growth patterns and nuclear distribution in white muscle fibers from black sea bass, Centropristis striata: evidence for the influence of diffusion. ACTA ACUST UNITED AC 2011; 214:1230-9. [PMID: 21430198 DOI: 10.1242/jeb.053199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study investigated the influence of fiber size on the distribution of nuclei and fiber growth patterns in white muscle of black sea bass, Centropristis striata, ranging in body mass from 0.45 to 4840 g. Nuclei were counted in 1 μm optical sections using confocal microscopy of DAPIand Acridine-Orange-stained muscle fibers. Mean fiber diameter increased from 36±0.87 μm in the 0.45 g fish to 280±5.47 μm in the 1885 g fish. Growth beyond 2000 g triggered the recruitment of smaller fibers, thus significantly reducing mean fiber diameter. Nuclei in the smaller fibers were exclusively subsarcolemmal (SS), whereas in larger fibers nuclei were more numerous and included intermyofibrillar (IM) nuclei. There was a significant effect of body mass on nuclear domain size (F=118.71, d.f.=3, P<0.0001), which increased to a maximum in fish of medium size (282-1885 g) and then decreased in large fish (>2000 g). Although an increase in the number of nuclei during fiber growth can help preserve the myonuclear domain, the appearance of IM nuclei during hypertrophic growth seems to be aimed at maintaining short effective diffusion distances for nuclear substrates and products. If only SS nuclei were present throughout growth, the diffusion distance would increase in proportion to the radius of the fibers. These observations are consistent with the hypothesis that changes in nuclear distribution and fiber growth patterns are mechanisms for avoiding diffusion limitation during animal growth.
Collapse
Affiliation(s)
- Carolina Priester
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA.
| | | | | | | | | |
Collapse
|
32
|
Prewitt JS, Freistroffer DV, Schreer JF, Hammill MO, Burns JM. Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: limitations to diving behavior? J Comp Physiol B 2010; 180:757-66. [PMID: 20140678 DOI: 10.1007/s00360-010-0448-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Adult marine mammal muscles rely upon a suite of adaptations for sustained aerobic metabolism in the absence of freely available oxygen (O(2)). Although the importance of these adaptations for supporting aerobic diving patterns of adults is well understood, little is known about postnatal muscle development in young marine mammals. However, the typical pattern of vertebrate muscle development, and reduced tissue O(2) stores and diving ability of young marine mammals suggest that the physiological properties of harbor seal (Phoca vitulina) pup muscle will differ from those of adults. We examined myoglobin (Mb) concentration, and the activities of citrate synthase (CS), beta-hydroxyacyl coA dehydrogenase (HOAD), and lactate dehydrogenase (LDH) in muscle biopsies from harbor seal pups throughout the nursing period, and compared these biochemical parameters to those of adults. Pups had reduced O(2) carrying capacity ([Mb] 28-41% lower than adults) and reduced metabolically scaled catabolic enzyme activities (LDH/RMR 20-58% and CS/RMR 29-89% lower than adults), indicating that harbor seal pup muscles are biochemically immature at birth and weaning. This suggests that pup muscles do not have the ability to support either the aerobic or anaerobic performance of adult seals. This immaturity may contribute to the lower diving capacity and behavior in younger pups. In addition, the trends in myoglobin concentration and enzyme activity seen in this study appear to be developmental and/or exercise-driven responses that together work to produce the hypoxic endurance phenotype seen in adults, rather than allometric effects due to body size.
Collapse
Affiliation(s)
- J S Prewitt
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr, Anchorage, AK 99508, USA.
| | | | | | | | | |
Collapse
|
33
|
Noren SR, Wells RS. Blubber Deposition during Ontogeny in Free-Ranging Bottlenose Dolphins: Balancing Disparate Roles of Insulation and Locomotion. J Mammal 2009. [DOI: 10.1644/08-mamm-a-138r.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Zahorodny Duggan ZP, Koopman HN, Budge SM. Distribution and development of the highly specialized lipids in the sound reception systems of dolphins. J Comp Physiol B 2009; 179:783-98. [DOI: 10.1007/s00360-009-0360-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 12/01/2022]
|
35
|
Cotten PB, Piscitelli MA, McLellan WA, Rommel SA, Dearolf JL, Pabst DA. The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus. J Morphol 2009; 269:1520-38. [PMID: 18777569 DOI: 10.1002/jmor.10668] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3 s) (Ridgway et al. 1969 Science 166:1651-1654). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf 2003 J Morphol 256:79-88) suggests that this muscle does not likely power their rapid ventilatory event. Based on Bramble's (1989 Amer Zool 29:171-186) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of craniocervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbopelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n = 7) and the fiber-type profiles (n = 6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the craniocervical muscles act to draw the sternum and associated ribs craniodorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbopelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that dolphins utilize muscles, similar to those used by galloping mammals, to power their explosive ventilation.
Collapse
Affiliation(s)
- Pamela B Cotten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | | | | | | | | | | |
Collapse
|
36
|
Nunn CL, Lindenfors P, Pursall ER, Rolff J. On sexual dimorphism in immune function. Philos Trans R Soc Lond B Biol Sci 2009; 364:61-9. [PMID: 18926977 DOI: 10.1098/rstb.2008.0148] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual dimorphism in immune function is a common pattern in vertebrates and also in a number of invertebrates. Most often, females are more 'immunocompetent' than males. The underlying causes are explained by either the role of immunosuppressive substances, such as testosterone, or by fundamental differences in male and female life histories. Here, we investigate some of the main predictions of the immunocompetence handicap hypothesis (ICHH) in a comparative framework using mammals. We focus specifically on the prediction that measures of sexual competition across species explain the observed patterns of variation in sex-specific immunocompetence within species. Our results are not consistent with the ICHH, but we do find that female mammals tend to have higher white blood cell counts (WBC), with some further associations between cell counts and longevity in females. We also document positive covariance between sexual dimorphism in immunity, as measured by a subset of WBC, and dimorphism in the duration of effective breeding. This is consistent with the application of 'Bateman's principle' to immunity, with females maximizing fitness by lengthening lifespan through greater investment in immune defences. Moreover, we present a meta-analysis of insect immunity, as the lack of testosterone in insects provides a means to investigate Bateman's principle for immunity independently of the ICHH. Here, we also find a systematic female bias in the expression of one of the two components of insect immune function that we investigated (phenoloxidase). From these analyses, we conclude that the mechanistic explanations of the ICHH lack empirical support. Instead, fitness-related differences between the sexes are potentially sufficient to explain many natural patterns in immunocompetence.
Collapse
Affiliation(s)
- Charles L Nunn
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
37
|
Etnier SA, McLellan WA, Blum J, Pabst DA. Ontogenetic changes in the structural stiffness of the tailstock of bottlenose dolphins (Tursiops truncatus). J Exp Biol 2008; 211:3205-13. [DOI: 10.1242/jeb.012468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
SUMMARY
Late-term fetal bottlenose dolphins (Tursiops truncatus) are bent ventrolaterally en utero, requiring extreme flexibility of the axial skeleton and associated soft tissues. At birth, neonatal dolphins must immediately swim to the surface to breath, yet the dorsoventral oscillations used during locomotion may be compromised by the lateral flexibility evident in the fetus. The unique fetal position of dolphins, coupled with their need to swim at birth, places conflicting mechanical demands on the tailstock. Our previous research demonstrated that neonatal dolphins possess laterally placed, axial muscles that are functionally specialized to actively maintain the straightened posture of the tailstock. Here, we investigated the development of passive lateral stability in the tailstock of bottlenose dolphins by performing whole-body bending tests on an ontogenetic series of stranded dolphin specimens (N=15), including fetuses, neonates and juveniles (total length 58–171 cm). Structural stiffness increased,while overall body curvature decreased, with increasing body length. Scaling analyses suggest that increased structural stiffness is due to increases in size and probably changes in the passive material properties of the tailstock through ontogeny. The neutral zone was approximately constant with increasing size, while the relative neutral zone (neutral zone/total length) decreased. The lateral stability of the tailstock appears to be controlled by a combination of active and passive systems and the role of these systems varies through ontogeny. While neonates use active, muscular mechanisms to limit lateral deformations of the tailstock, the stability of the maturing tailstock is due primarily to its passive tissue properties.
Collapse
Affiliation(s)
- S. A. Etnier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208,USA
| | - W. A. McLellan
- Biology and Marine Biology, University of North Carolina Wilmington,Wilmington, NC 28403, USA
| | - J. Blum
- Mathematics and Statistics, University of North Carolina Wilmington,Wilmington, NC 28403, USA
| | - D. A. Pabst
- Biology and Marine Biology, University of North Carolina Wilmington,Wilmington, NC 28403, USA
| |
Collapse
|
38
|
Kanatous SB, Hawke TJ, Trumble SJ, Pearson LE, Watson RR, Garry DJ, Williams TM, Davis RW. The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. ACTA ACUST UNITED AC 2008; 211:2559-65. [PMID: 18689409 DOI: 10.1242/jeb.018119] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our objective was to determine the ontogenetic changes in the skeletal muscles of Weddell seals that transform a non-diving pup into an elite diving adult. Muscle biopsies were collected from pups, juveniles and adults and analyzed for changes in fiber type, mitochondrial density, myoglobin concentrations and aerobic, lipolytic and anaerobic enzyme activities. The fiber type results demonstrated a decrease in slow-twitch oxidative (Type I) fibers and a significant increase in fast-twitch oxidative (Type IIA) fibers as the animals mature. In addition, the volume density of mitochondria and the activity of lipolytic enzymes significantly decreased as the seals matured. To our knowledge, this is the first quantitative account describing a decrease in aerobic fibers shifting towards an increase in fast-twitch oxidative fibers with a significant decrease in mitochondrial density as animals mature. These differences in the muscle physiology of Weddell seals are potentially due to their three very distinct stages of life history: non-diving pup, novice diving juvenile, and elite deep diving adult. During the first few weeks of life, pups are a non-diving terrestrial mammal that must rely on lanugo (natal fur) for thermoregulation in the harsh conditions of Antarctica. The increased aerobic capacity of pups, associated with increased mitochondrial volumes, acts to provide additional thermogenesis. As these future elite divers mature, their skeletal muscles transform to a more sedentary state in order to maintain the low levels of aerobic metabolism associated with long-duration diving.
Collapse
Affiliation(s)
- S B Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sone K, Koyasu K, Kobayashi S, Oda SI. Fetal growth and development of the coypu (Myocastor coypus): Prenatal growth, tooth eruption, and cranial ossification. Mamm Biol 2008. [DOI: 10.1016/j.mambio.2007.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Pulster EL, Maruya KA. Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 393:367-375. [PMID: 18272207 DOI: 10.1016/j.scitotenv.2007.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 05/25/2023]
Abstract
Coastal marine resources are at risk from anthropogenic contaminants, including legacy persistent organic pollutants (POPs) with half-lives of decades or more. To determine if polychlorinated biphenyl (PCB) signatures can be used to distinguish among local populations of inshore bottlenose dolphins (Tursiops truncatus) along the southeastern U.S. coast, blubber from free-ranging and stranded animals were collected along the Georgia coast in 2004 and analyzed for PCB congeners using gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). Mean total PCB concentrations (77+/-34 microg/g lipid) were more than 10 fold higher and congener distributions were highly enriched in Cl(7)-Cl(10) homologs in free-ranging animals from the Turtle/Brunswick River estuary (TBRE) compared with strandings samples from Savannah area estuaries 90 km to the north. Using principal components analysis (PCA), the Aroclor 1268 signature associated with TBRE animals was distinct from that observed in Savannah area animals, and also from those in animals biopsied in other southeastern U.S estuaries. Moreover, PCB signatures in dolphin blubber closely resembled those in local preferred prey fish species, strengthening the hypothesis that inshore T. truncatus populations exhibit long-term fidelity to specific estuaries and making them excellent sentinels for assessing the impact of stressors on coastal ecosystem health.
Collapse
Affiliation(s)
- Erin L Pulster
- Marine Sciences Department, Savannah State University, Savannah, GA 31404, USA.
| | | |
Collapse
|
41
|
Montie EW, Garvin SR, Fair PA, Bossart GD, Mitchum GB, McFee WE, Speakman T, Starczak VR, Hahn ME. Blubber morphology in wild bottlenose dolphins (Tursiops truncatus) from the Southeastern United States: Influence of geographic location, age class, and reproductive state. J Morphol 2007; 269:496-511. [DOI: 10.1002/jmor.10602] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Noren SR, Biedenbach G, Edwards EF. Ontogeny of swim performance and mechanics in bottlenose dolphins(Tursiops truncatus). J Exp Biol 2006; 209:4724-31. [PMID: 17114405 DOI: 10.1242/jeb.02566] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Morphological and physiological development impacts swimming performance throughout ontogeny. Our investigation of the ontogeny of swim performance(mean and maximum swim speed) and swim effort (stroke amplitude and tailbeat frequency) of independently swimming bottlenose dolphins (Tursiops truncatus) demonstrated that swimming capabilities are extremely limited in calves. Mean and maximum swim speeds of 0-1-month-old calves were only 37%and 52% of that for adults, respectively, and levels similar to those of adults were not achieved until one year post-partum. Limitations in swim speed were associated with an inability to achieve mature thrusting capabilities, as stroke amplitude and distance covered per stroke remained significantly lower than adult levels during the first-year post-partum. Although calves were expected to require less thrusting power to propel their smaller bodies through water, size-specific stroke amplitudes of 0-3-month-olds (23-26% of body length) were smaller than those of dolphins ≥10 months post-partum(29-30% of body length). As a result, swim speed standardized by body length was significantly slower for 0-3-month-old dolphins compared with dolphins≥10 months post-partum. These results suggest that other factors, such as underdeveloped physiology, act synergistically with small body size to limit independent swim performance in dolphins during ontogeny.
Collapse
Affiliation(s)
- Shawn R Noren
- Protected Resources Division, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
43
|
Gillet B, Sebrié C, Bogaert A, Bléneau S, de la Porte S, Beloeil JC. Study of muscle regeneration using in vitro 2D 1H spectroscopy. Biochim Biophys Acta Gen Subj 2005; 1724:333-44. [PMID: 15936151 DOI: 10.1016/j.bbagen.2005.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/20/2005] [Accepted: 04/22/2005] [Indexed: 11/17/2022]
Abstract
The in vivo spectrum of regenerating muscles shows a specific cross-correlation signal assigned to the (n-3) fatty acyl chain, which peaks during the myoblast fusion phase. In order to identify the origin of this signal and to take all the lipid metabolites into account, we investigated the degeneration-regeneration process by 1H 2D NMR of lipid muscle extracts. We observed an increase in the total amount of lipids during the regeneration process, although the lipid profile did not show any drastic change during this process. The changes in the NMR signal observed in vivo and, in particular, the appearance of the specific (n-3) fatty acyl chain signal appears to arise from mobile lipid compartments located in fusing cells.
Collapse
Affiliation(s)
- B Gillet
- Institut de Chimie des Substances Naturelles UPR 2301, CNRS, 91198 Gif sur Yvette cedex, France.
| | | | | | | | | | | |
Collapse
|
44
|
Dunkin RC, McLellan WA, Blum JE, Pabst DA. The ontogenetic changes in the thermal properties of blubber from Atlantic bottlenose dolphinTursiops truncatus. J Exp Biol 2005; 208:1469-80. [PMID: 15802671 DOI: 10.1242/jeb.01559] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn Atlantic bottlenose dolphins Tursiops truncatus, both the thickness and lipid content of blubber vary across ontogeny and across individuals of differing reproductive and nutritional status. This study investigates how these changes in blubber morphology and composition influence its thermal properties. Thermal conductivity (W m–1deg.–1, where deg. is °C) and thermal insulation(m2 deg. W–1) of dolphin blubber were measured in individuals across an ontogenetic series (fetus through adult, N=36),pregnant females (N=4) and emaciated animals (N=5). These thermal properties were determined by the simultaneous use of two common experimental approaches, the heat flux disc method and the standard material method. Thickness, lipid and water content were measured for each blubber sample. Thermal conductivity and insulation varied significantly across ontogeny. Blubber from fetuses through sub-adults was less conductive(range=0.11–0.13±0.02 W m–1deg.–1) than that of adults (mean=0.18 W m–1deg.–1). The conductivity of blubber from pregnant females was similar to non-adult categories, while that of emaciated animals was significantly higher (0.24 ± 0.04 W m deg.–1) than all other categories. Blubber from sub-adults and pregnant females had the highest insulation values while fetuses and emaciated animals had the lowest. In nutritionally dependant life history categories, changes in blubber's thermal insulation were characterized by stable blubber quality (i.e. conductivity)and increased blubber quantity (i.e. thickness). In nutritionally independent animals, blubber quantity remained stable while blubber quality varied. A final, unexpected observation was that heat flux measurements at the deep blubber surface were significantly higher than that at the superficial surface, a pattern not observed in control materials. This apparent ability to absorb heat, coupled with blubber's fatty acid composition, suggest that dolphin integument may function as a phase change material.
Collapse
Affiliation(s)
- Robin C Dunkin
- Biological Sciences, University of North Carolina at Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Cetacean sleep phenomenology consists of a combination of unihemispheric slow wave sleep and a massive reduction in the amount of rapid eye movement sleep. Despite various proposals, the selection pressure driving the evolution of this combined sleep phenomenology is unknown. It was recently suggested that the need to produce heat in the thermally challenging aquatic environment might have been the selection pressure. Mechanisms of heat loss and heat production can be measured directly or indirectly. The present study was designed to test the thermogenetic proposal by recording indirect measurements of heat loss (surface area to volume ratio) and heat production (tail-beats per minute). A strong correlation was found between these two parameters, such that increases in potential heat loss were matched by increases in potential heat production. This result suggests that the need to compensate for heat loss can provide an evolutionary rationale for the appearance of extant cetacean sleep physiology.
Collapse
Affiliation(s)
- Praneshri Pillay
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | | |
Collapse
|
46
|
Struntz DJ, McLellan WA, Dillaman RM, Blum JE, Kucklick JR, Pabst DA. Blubber development in bottlenose dolphins (Tursiops truncatus). J Morphol 2004; 259:7-20. [PMID: 14666521 DOI: 10.1002/jmor.10154] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blubber, the lipid-rich hypodermis of cetaceans, functions in thermoregulation, buoyancy control, streamlining, metabolic energy storage, and locomotion. This study investigated the development of this specialized hypodermis in bottlenose dolphins (Tursiops truncatus) across an ontogenetic series, including fetuses, neonates, juveniles, subadults, and adults. Blubber samples were collected at the level of the mid-thorax, from robust specimens (n = 25) that stranded along the coasts of North Carolina and Virginia. Blubber was dissected from the carcass and its mass, and the depth and lipid content at the sample site, were measured. Samples were prepared using standard histological methods, viewed by light microscopy, and digital images of blubber captured. Images were analyzed through the depth of the blubber for morphological and structural features including adipocyte size, shape, and numbers, and extracellular, structural fiber densities. From fetus to adult, blubber mass and depth increased proportionally with body mass and length. Blubber lipid content increased dramatically with increasing fetal length. Adult and juvenile blubber had significantly higher blubber lipid content than fetuses, and this increase was reflected in mean adipocyte size, which increased significantly across all robust life history categories. In juvenile, subadult, and adult dolphins, this increase in cell size was not uniform across the depth of the blubber, with the largest increases observed in the middle and deep blubber regions. Through-depth counts of adipocytes were similar in all life history categories. These results suggest that blubber depth is increased during postnatal growth by increasing cell size rather than cell number. In emaciated adults (n = 2), lipid mobilization, as evidenced by a decrease in adipocyte size, was localized to the middle and deep blubber region. Thus, in terms of both lipid accumulation and depletion, the middle and deep blubber appear to be the most metabolically dynamic. The superficial blubber likely serves a structural role important in streamlining the animal. This study demonstrates that blubber is not a homogeneous tissue through its depth, and that it displays life history-dependent changes in its morphology and lipid content.
Collapse
Affiliation(s)
- D J Struntz
- Department of Biological Sciences, University of North Carolina at Wilmington, North Carolina 28403, USA
| | | | | | | | | | | |
Collapse
|
47
|
Etnier SA, Dearolf JL, McLellan WA, Pabst DA. Postural role of lateral axial muscles in developing bottlenose dolphins (Tursiops truncatus). Proc Biol Sci 2004; 271:909-18. [PMID: 15255045 PMCID: PMC1691682 DOI: 10.1098/rspb.2004.2683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foetal dolphins (Tursiops truncatus) are bent ventrolaterally, such that the tailflukes and lower jaw are juxtaposed. The lateral flexibility required en utero may compromise the efficiency of the dorsoventral oscillations required of the swimming neonate. The m. intertransversarius caudae dorsalis (IT) is the most laterally placed epaxial muscle. Bilateral contractions of the IT could limit lateral deformations of the flexible tailstock of the early neonate. We test the hypothesis that the IT is functioning as a postural muscle in neonates by examining its morphological, histological and biochemical properties. The neonatal IT has a relatively large cross-sectional area and bending moment, as well as a large proportion of slow-twitch fibres and elevated myoglobin concentrations. Our results demonstrate that the IT is functionally capable of performing this specific postural function in neonatal dolphins. In later life-history stages, when postural control is no longer needed, the IT serves to fine-tune the position of the tailstock during locomotion. The changing function of the adult IT is concomitant with changes in morphology and biochemistry, and most notably, with an increase in the proportion of fast-twitch fibres. We suggest that these changes reflect strong selective pressure to improve locomotor abilities by limiting lateral deformations during this critical life-history stage.
Collapse
Affiliation(s)
- Shelley A Etnier
- Biological Sciences, University of North Carolina at Wilmington, Wilmington, NC 28403, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Being born directly into the aquatic environment creates unique challenges for the breathing muscles of neonatal cetaceans. Not only must these muscles be active at the instant of birth to ventilate the lungs, but their activities must also be coordinated with those of the locomotor muscles such that breathing takes place only at the water's surface. At least one major locomotory muscle of bottlenose dolphins (Tursiops truncatus) has been demonstrated to be well developed and, therefore, able to power the neonatal dolphin's early movements (Dearolf et al. [2000] J Morphol 244:203-215). Thus, because of the demands for coordinated behavior with the locomotor muscles, it is hypothesized that the breathing muscles of bottlenose dolphins, represented in this study by the diaphragm, will also demonstrate adult morphology at birth. However, histochemical and biochemical analyses demonstrate that neonatal dolphins have immature diaphragms, with only 52% of the adult slow fiber-type profile (neonates: 34% slow-twitch fibers; adults: 66% slow-twitch fibers). The developmental state of the dolphin diaphragm is compared to those of other neonatal mammals, using a muscle development index (% slow-twitch fibers in neonatal muscle / % slow-twitch fibers in adult muscle). Fiber-type profiles reported in the literature are used to calculate index values for the diaphragms of altricial rats, rabbits, and cats, intermediate baboons and humans, and precocial sheep and horses. The dolphin is not unique in having an immature diaphragm at birth; however, there is a positive relationship between the developmental state of the diaphragm and the overall developmental state of the neonate. The presence of type IIc ("undifferentiated") fibers in the diaphragms of altricial developers (e.g., rats, rabbits, and cats) is correlated with the slow contraction speeds recorded from their diaphragms. The diaphragms of neonatal horses and dolphins express little to no type IIc fibers and, thus, may have the ability to contract at the speeds required for their increased ventilation rates. These results lead to the modification of the criterion for evaluating the developmental state of a muscle at birth. Thus, the developmental state of a neonatal muscle should be based on both its value of Dearolf et al.'s (2000) developmental index, as well as the percentage of type IIc fibers found in that muscle.
Collapse
Affiliation(s)
- J L Dearolf
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
49
|
The development of blood oxygen stores in bottlenose dolphins (Tursiops truncatus): implications for diving capacity. J Zool (1987) 2002. [DOI: 10.1017/s0952836902001243] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Ontogenetic allometry and body composition of harbour porpoises (Phocoena phocoena, L.) from the western North Atlantic. J Zool (1987) 2002. [DOI: 10.1017/s0952836902001061] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|