1
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
2
|
Osking Z, Ayers JI, Hildebrandt R, Skruber K, Brown H, Ryu D, Eukovich AR, Golde TE, Borchelt DR, Read TA, Vitriol EA. ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. iScience 2019; 19:448-449. [PMID: 31425915 PMCID: PMC6708981 DOI: 10.1016/j.isci.2019.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
3
|
ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. iScience 2018; 11:294-304. [PMID: 30639851 PMCID: PMC6327879 DOI: 10.1016/j.isci.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by motor neuron cell death. However, not all motor neurons are equally susceptible. Most of what we know about the surviving motor neurons comes from gene expression profiling; less is known about their functional traits. We found that resistant motor neurons cultured from SOD1 ALS mouse models have enhanced axonal outgrowth and dendritic branching. They also have an increase in the number and size of actin-based structures like growth cones and filopodia. These phenotypes occur in cells cultured from presymptomatic mice and mutant SOD1 models that do not develop ALS but not in embryonic motor neurons. Enhanced outgrowth and upregulation of filopodia can be induced in wild-type adult cells by expressing mutant SOD1. These results demonstrate that mutant SOD1 can enhance the regenerative capability of ALS-resistant motor neurons. Capitalizing on this mechanism could lead to new therapeutic strategies. Motor neurons from end-stage SOD1 ALS mice have enhanced neurite outgrowth/branching Increased outgrowth occurs only in adult neurons and is independent of ALS symptoms SOD1G93A adult motor neurons have larger growth cones and more axonal filopodia Acute SOD1G93A expression upregulates outgrowth in wild-type adult motor neurons
Collapse
|
4
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
5
|
Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med 2017; 19:e7. [PMID: 28597807 DOI: 10.1017/erm.2017.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.
Collapse
|
6
|
Mathis S, Couratier P, Julian A, Vallat JM, Corcia P, Le Masson G. Management and therapeutic perspectives in amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 17:263-276. [DOI: 10.1080/14737175.2016.1227705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| | - Philippe Couratier
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | - Adrien Julian
- Department of Neurology, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, Centre de Référence ‘neuropathies périphériques rares’, University Hospital of Limoges, Limoges, France
| | - Philippe Corcia
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Tours, Tours, France
| | - Gwendal Le Masson
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| |
Collapse
|
7
|
Vehviläinen P, Koistinaho J, Gundars G. Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:126. [PMID: 24847211 PMCID: PMC4023018 DOI: 10.3389/fncel.2014.00126] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 02/05/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction is recognized as one of the key elements contributing to the pathology. Mitochondria are the major source of intracellular reactive oxygen species (ROS). Increased production of ROS as well as oxidative damage of proteins and lipids have been demonstrated in many models of ALS. Moreover, these changes were also observed in tissues of ALS patients indicative of important role for oxidative stress in the disease pathology. However, the origin of oxidative stress in ALS has remained unclear. ALS linked mutant Cu/Zn-superoxide dismutase 1 (SOD1) has been shown to significantly associate with mitochondria, especially in the spinal cord. In animal models, increased recruitment of mutant SOD1 (mutSOD1) to mitochondria appears already before the disease onset, suggestive of causative role for the manifestation of pathology. Recently, substantial in vitro and in vivo evidence has accumulated demonstrating that localization of mutSOD1 to the mitochondrial intermembrane space (IMS) inevitably leads to impairment of mitochondrial functions. However, the exact mechanisms of the selectivity and toxicity have remained obscure. Here we discuss the current knowledge on the role of mutSOD1 in mitochondrial dysfunction in ALS from the novel perspective emphasizing the misregulation of dismutase activity in IMS as a major mechanism for the toxicity.
Collapse
Affiliation(s)
- Piia Vehviläinen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Goldsteins Gundars
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
8
|
Affiliation(s)
- Laura K. Wood
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Steven J. Langford
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Khazaei MR, Halfter H, Karimzadeh F, Koo JH, Margolis FL, Young P. Bex1 is involved in the regeneration of axons after injury. J Neurochem 2010; 115:910-20. [PMID: 20731761 DOI: 10.1111/j.1471-4159.2010.06960.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Successful axonal regeneration is a complex process determined by both axonal environment and endogenous neural capability of the regenerating axons in the central and the peripheral nervous systems. Numerous external inhibitory factors inhibit axonal regeneration after injury. In response, neurons express various regeneration-associated genes to overcome this inhibition and increase the intrinsic growth capacity. In the present study, we show that the brain-expressed X-linked (Bex1) protein was over-expressed as a result of peripheral axonal damage. Bex1 antagonized the axon outgrowth inhibitory effect of myelin-associated glycoprotein. The involvement of Bex1 in axon regeneration was further confirmed in vivo. We have demonstrated that Bex1 knock-out mice showed lower capability for regeneration after peripheral nerve injury than wild-type animals. Wild-type mice could recover from sciatic nerve injury much faster than Bex1 knock-out mice. Our findings suggest that Bex1 could be considered as regeneration-associated gene.
Collapse
Affiliation(s)
- Mohammad R Khazaei
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186:184-99. [DOI: 10.1016/j.cbi.2010.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/22/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
|
11
|
Scott LE, Orvig C. Medicinal Inorganic Chemistry Approaches to Passivation and Removal of Aberrant Metal Ions in Disease. Chem Rev 2009; 109:4885-910. [DOI: 10.1021/cr9000176] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lauren E. Scott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Isabel Post J, Karl Eibl J, Michiel Ross G. Zinc induces motor neuron death via a selective inhibition of brain-derived neurotrophic factor activity. ACTA ACUST UNITED AC 2009; 9:149-55. [DOI: 10.1080/17482960801934015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Le Forestier N, Lacomblez L, Meininger V. Syndromes parkinsoniens et sclérose latérale amyotrophique. Rev Neurol (Paris) 2009; 165:15-30. [DOI: 10.1016/j.neurol.2008.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/31/2007] [Accepted: 02/08/2008] [Indexed: 12/11/2022]
|
14
|
Du T, Ciccotosto GD, Cranston GA, Kocak G, Masters CL, Crouch PJ, Cappai R, White AR. Neurotoxicity from glutathione depletion is mediated by Cu-dependent p53 activation. Free Radic Biol Med 2008; 44:44-55. [PMID: 18045546 DOI: 10.1016/j.freeradbiomed.2007.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 01/21/2023]
Abstract
Loss of intracellular neuronal glutathione (GSH) is an important feature of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The consequences of GSH depletion include increased oxidative damage to proteins, lipids, and DNA and subsequent cytotoxic effects. GSH is also an important modulator of cellular copper (Cu) homeostasis and altered Cu metabolism is central to the pathology of several neurodegenerative diseases. The cytotoxic effects of Cu in cells depleted of GSH are not well understood. We have previously reported that depletion of neuronal GSH levels results in cell death from trace levels of extracellular Cu due to elevated Cu(I)-mediated free radical production. In this study we further examined the molecular pathway of trace Cu toxicity in neurons and fibroblasts depleted of GSH. Treatment of primary cortical neurons or 3T3 fibroblasts with the glutathione synthetase inhibitor buthionine sulfoximine resulted in substantial loss of intracellular GSH and increased cytotoxicity. We found that both neurons and fibroblasts revealed increased expression and activation of p53 after depletion of GSH. The increased p53 activity was induced by extracellular trace Cu. Furthermore, we showed that in GSH-depleted cells, Cu induced an increase in oxidative stress resulting in DNA damage and activation of p53-dependent cell death. These findings may have important implications for neurodegenerative disorders that involve GSH depletion and aberrant Cu metabolism.
Collapse
Affiliation(s)
- Tai Du
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Petri S, Calingasan NY, Alsaied OA, Wille E, Kiaei M, Friedman JE, Baranova O, Chavez JC, Beal MF. The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 2007; 102:991-1000. [PMID: 17630988 DOI: 10.1111/j.1471-4159.2007.04604.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the hypotheses for the development of familial amyotrophic lateral sclerosis (ALS) is that mutations in the superoxide dismutase 1 enzyme lead to aberrant properties of the copper within the active site of the enzyme which then causes increased oxidative damage. The lipophilic metal chelators DP-109 and DP-460 which chelate calcium, copper, and zinc were tested in the G93A-transgenic ALS mouse model. Both compounds significantly extended survival, DP-109 (5 mg/kg/day) by 10%, DP-460 (10 mg/kg/day) by 9%. While the effect on survival was relatively small, chelator treatment also improved motor performance, dramatically reduced cell loss in the lumbar spinal cord and decreased reactive astrocytosis and microgliosis. Markers of oxidative damage, tumor necrosis factor (TNF)-alpha and alpha-synuclein were reduced in the lumbar spinal cord of G93A mice treated with DP-109 or DP-460 as compared with vehicle-treated animals. Furthermore, the treatment induced protein expression of the transcription factor hypoxia inducible factor-1alpha and mRNA levels of vascular endothelial growth factor as a corresponding target gene. In line with previous studies using metal chelators in the G93A animal model, our results suggest that these compounds have neuroprotective capacities in ALS.
Collapse
Affiliation(s)
- Susanne Petri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shaw CE, Arechavala-Gomeza V, Al-Chalabi A. Chapter 14 Familial amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:279-300. [PMID: 18808899 DOI: 10.1016/s0072-9752(07)80017-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
17
|
Corcia P. Contenu et modalités de l’annonce du diagnostic de SLA dans un contexte familial. Rev Neurol (Paris) 2006. [DOI: 10.1016/s0035-3787(06)75174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Ji HF, Shen L, Zhang HY. β-Lactam antibiotics are multipotent agents to combat neurological diseases. Biochem Biophys Res Commun 2005; 333:661-3. [PMID: 15907788 DOI: 10.1016/j.bbrc.2005.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Accepted: 05/02/2005] [Indexed: 01/06/2023]
Abstract
Recently, Rothstein et al. reported that beta-lactam antibiotics, including penicillin and ceftriaxone, are potential therapeutic drugs to treat some neurological disorders, e.g., amyotrophic lateral sclerosis (ALS), by modulating the expression of glutamate transporter GLT1 via gene activation. However, considering the facts that: (i) many neurological diseases (including ALS) are associated with transition metal ions and redox stress, and ALS can be efficiently prevented by metal chelators, e.g., diethyl-dithiocarbamate (DDC); (ii) beta-lactam antibiotics have long been known as metal chelators, we argue that the beneficial effect of beta-lactam antibiotics on ALS likely involves Cu(II)-attenuating ability. This is partially supported by our theoretical calculations.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China
| | | | | |
Collapse
|
19
|
Birkaya B, Aletta JM. NGF promotes copper accumulation required for optimum neurite outgrowth and protein methylation. ACTA ACUST UNITED AC 2005; 63:49-61. [PMID: 15627265 DOI: 10.1002/neu.20114] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of copper in biological phenomena that involve signal transduction is poorly understood. A well-defined cellular model of neuronal differentiation has been utilized to examine the requirement for copper during nerve growth factor (NGF) signal transduction that results in neurite outgrowth. Experiments demonstrate that NGF increases cellular copper content within 3 days of treatment. Copper chelators reduce the effects of NGF on neurite outgrowth and copper accumulation. The effects of tetraethylene pentamine (TEPA), a copper-specific chelator, are reversible by removal from the culture medium and/or by addition of equimolar copper chloride. Because previous work demonstrated that NGF increases protein methylation in PC12 cells, we examined whether TEPA also inhibits S-adenosylhomocysteine hydrolase (SAHH), an essential copper enzyme involved in all protein methylation reactions. In addition to direct in vitro inhibition of SAHH, we show that TEPA decreases protein arginine methyltransferase 1(PRMT1)-specific enzyme activity in PC12 cells and sympathetic neurons. These data comprise the first biochemical and cellular evidence to address the mechanism of copper involvement in neuronal differentiation.
Collapse
Affiliation(s)
- Barbara Birkaya
- Department of Pharmacology and Toxicology, Center for Neuroscience, University at Buffalo School of Medicine and Biomedical Sciences, State University of New York, 3435 Main Street, Buffalo, New York 14214-3000, USA
| | | |
Collapse
|
20
|
Qian Y, Zheng Y, Abraham L, Ramos KS, Tiffany-Castiglioni E. Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. ACTA ACUST UNITED AC 2005; 134:323-32. [PMID: 15836927 DOI: 10.1016/j.molbrainres.2004.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 11/05/2004] [Accepted: 11/06/2004] [Indexed: 10/25/2022]
Abstract
To determine neuronal and glial responses to copper (Cu) elevation in the CNS, human neuroblastoma and astrocytoma cells were used to compare their responses to Cu in terms of reactive oxygen species (ROS) generation and expression of enzymes responsible for anti-oxidation. Astrocytoma cells, not neuroblastoma cells, were responsive to Cu and Cu elevation was associated with ROS generation. Intracellular Cu levels as determined by inductively coupled plasma-mass spectrometry (ICP-MS), and expression levels of copper-transporting ATPase (ATP7A) and human copper transporter 1 (hCtr1) as detected by quantitative reverse transcription-polymerase chain reaction (RT-PCR), were comparable in both cell lines. Differences in Cu-induced ROS between two cell lines paralleled superoxide dismutase (SOD)-catalase expression as detected by Western blot analysis. Copper,zinc-SOD (Cu,Zn-SOD) and catalase protein levels were upregulated by Cu in neuroblastoma cells while Cu,Zn-SOD was down-regulated by Cu and catalase level was not changed in astrocytoma cells. Manganese-SOD (Mn-SOD) was not responsive to Cu in either cell line. Furthermore, 78-kDa glucose-regulated protein aggregation and upregulation were observed in Cu-treated astrocytoma cells, but not neuroblastoma cells. These data suggest that neurons use the SOD-catalase system to scavenge Cu-induced ROS while glia rely on the endoplasmic reticulum stress response to compensate for the reduction of ROS scavenging capacity.
Collapse
Affiliation(s)
- Yongchang Qian
- Department of Veterinary Integrative Biosciences, Texas A and M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal-protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.
Collapse
Affiliation(s)
- Kevin J Barnham
- Department of Pathology, The University of Melbourne, The Mental Health Research Institute of Victoria, Victoria 3010, Australia
| | | | | |
Collapse
|
22
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease of motor neurons. The inherited form of the disease, familial ALS, represents 5-10% of the total cases, and the best documented of these are due to lesions in SOD1, the gene encoding copper-zinc superoxide dismutase (CuZnSOD). The mechanism by which mutations in SOD1 cause familial ALS is currently unknown. Two hypotheses have dominated recent discussion of the toxicity of ALS mutant CuZnSOD proteins: the oligomerization hypothesis and the oxidative damage hypothesis. The oligomerization hypothesis maintains that mutant CuZnSOD proteins are, or become, misfolded and consequently oligomerize into increasingly high-molecular-weight species that ultimately lead to the death of motor neurons. The oxidative damage hypothesis maintains that ALS mutant CuZnSOD proteins catalyze oxidative reactions that damage substrates critical for viability of the affected cells. This perspective reviews some of the properties of both wild-type and mutant CuZnSOD proteins, suggests how these properties may be relevant to these two hypotheses, and proposes that these two hypotheses are not necessarily mutually exclusive.
Collapse
|
23
|
White AR, Cappai R. Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neurosci Res 2003; 71:889-97. [PMID: 12605416 DOI: 10.1002/jnr.10537] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutathione (GSH) is an important antioxidant, and its depletion in neurons has been implicated in several neurodegenerative disorders. Aberrant copper metabolism is also implicated in neurodegeneration and may result in the generation of toxic free radicals. However, little is known about the relationship between GSH depletion and copper homeostasis. In the present study, we examined the role of extracellular trace biometals in neuronal cell death induced by GSH depletion. Treatment of primary cortical neurons with buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, induced a rapid loss of intracellular GSH, leading to decreased neuronal cell viability. Neuronal cell death induced by GSH depletion was dependent on trace levels of extracellular copper in the culture medium (1.6 microM). Neurons were protected against GSH depletion-mediated toxicity when cultured in Chelex 100-treated medium containing tenfold less copper (0.16 microM) than normal medium. The addition of copper, but not iron or zinc, to Chelex 100-treated medium restored the neurotoxicity induced by GSH depletion. Moreover, BSO toxicity in normal medium was inhibited by copper chelators. The neurotoxic effects of copper in GSH-depleted neurons involved generation of copper(I) and subsequent free radical-mediated oxidative stress. These studies demonstrate a critical role for extracellular trace copper in neuronal cell death caused by GSH depletion and may have important implications for the understanding of toxic processes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anthony R White
- Department of Pathology, The University of Melbourne, and The Mental Health Research Institute, Parkville, Victoria, Australia.
| | | |
Collapse
|
24
|
Abstract
Neurodegenerative diseases (NDD) are a group of illness with diverse clinical importance and etiologies. NDD include motor neuron disease such as amyotrophic lateral sclerosis (ALS), cerebellar disorders, Parkinson's disease (PD), Huntington's disease (HD), cortical destructive Alzheimer's disease (AD) and Schizophrenia. Numerous epidemiological and experimental studies provide many risk factors such as advanced age, genetic defects, abnormalities of antioxidant enzymes, excitotoxicity, cytoskeletal abnormalities, autoimmunity, mineral deficiencies, oxidative stress, metabolic toxicity, hypertension and other vascular disorders. Growing body of evidence implicates free radical toxicity, radical induced mutations and oxidative enzyme impairment and mitochondrial dysfunction due to congenital genetic defects in clinical manifestations of NDD. Accumulation of oxidative damage in neurons either primarily or secondarily may account for the increased incidence of NDD such as AD, ALS and stroke in aged populations. The molecular mechanisms of neuronal degeneration remain largely unknown and effective therapies are not currently available. Recent interest has focused on antioxidants such as carotenoids and in particular lycopene, a potent antioxidant in tomatoes and tomato products, flavonoids and vitamins as potentially useful agents in the management of human NDD. The pathobiology of neurodegenerative disorders with emphasis on genetic origin and its correlation with oxidative stress of neurodegenerative disorders will be reviewed and the reasons as to why brain constitutes a vulnerable site of oxidative damage will be discussed. The article will also discuss the potential free radical scavenger, mechanism of antioxidant action of lycopene and the need for the use of antioxidants in the prevention of NDD.
Collapse
Affiliation(s)
- A V Rao
- Department of Nutritional Sciences, University of Toronto, Ont., Canada.
| | | |
Collapse
|
25
|
Abstract
The increasing complexity of the pathways implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS) has stimulated intensive research in many directions. Genetic analysis of familial ALS has yielded six loci and one disease gene (SOD1), initially suggesting a role for free radicals in the disease process, although the mechanisms through which the mutant exerts toxicity and results in selective motor neuron death remain uncertain. Numerous studies have focused on structural elements of the affected cell, emphasizing the role of neurofilaments and peripherin and their functional disruption in disease. Other topics examined include cellular homeostasis of copper and calcium, particularly in the context of oxidative stress and the processes of protein aggregation, glutamate excitotoxicity, and apoptosis. It has become evident that there is considerable interplay between these mechanisms and, as the role of each is established, a common picture may emerge, enabling the development of more targeted therapies. This study discusses the main areas of investigation and reviews the findings.
Collapse
Affiliation(s)
- Collette K Hand
- Centre for Research in Neuroscience, McGill University, and Montréal General Hospital Research Institute (L7-224), 1650 Cedar Avenue, Montréal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
26
|
Contrasting, species-dependent modulation of copper-mediated neurotoxicity by the Alzheimer's disease amyloid precursor protein. J Neurosci 2002. [PMID: 11784781 DOI: 10.1523/jneurosci.22-02-00365.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amyloid precursor protein (APP) of Alzheimer's disease (AD) has a copper binding domain (CuBD) located in the N-terminal cysteine-rich region that can strongly bind copper(II) and reduce it to Cu(I) in vitro. The CuBD sequence is similar among the APP family paralogs [amyloid precursor-like proteins (APLP1 and APLP2)] and its orthologs (including Drosophila melanogaster, Xenopus laevis, and Caenorhabditis elegans), suggesting an overall conservation in its function or activity. The APP CuBD is involved in modulating Cu homeostasis and amyloid beta peptide production. In this paper, we demonstrate for the first time that Cu-metallated full-length APP ectodomain induces neuronal cell death in vitro. APP Cu neurotoxicity can be induced directly or potentiated through Cu(I)-mediated oxidation of low-density lipoprotein, a finding that may have important implications for the role of lipoproteins and membrane cholesterol composition in AD. Cu toxicity induced by human APP, Xenopus APP, and APLP2 CuBDs is dependent on conservation of histidine residues at positions corresponding to 147 and 151 of human APP. Intriguingly, APP orthologs with different amino acid residues at these positions had dramatically altered Cu phenotypes. The corresponding C. elegans APL-1 CuBD, which has tyrosine and lysine residues at positions 147 and 151, respectively, strongly protected against Cu-mediated lipid peroxidation and neurotoxicity in vitro. Replacement of histidines 147 and 151 with tyrosine and lysine residues conferred this neuroprotective Cu phenotype to human APP, APLP2, and Xenopus APP CuBD peptides. Moreover, we show that the toxic and protective CuBD phenotypes are associated with differences in Cu binding and reduction. These studies identify a significant evolutionary change in the function of the CuBD in modulating Cu metabolism. Our findings also suggest that targeting of inhibitors to histidine residues at positions 147 and 151 of APP could significantly alter the oxidative potential of APP.
Collapse
|
27
|
Cepinskas G, Rui T, Kvietys PR. Neutrophil-endothelial cell interactions during the development of tolerance to ischaemia/reperfusion in isolated cells. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:23-33. [PMID: 11678723 DOI: 10.1046/j.1365-201x.2001.00881.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ischaemia/reperfusion (I/R) tolerance refers to the phenomenon by which the inflammation and associated sequelae induced by I/R is ameliorated by an I/R challenge imposed 24 h earlier. The development of I/R tolerance is dependent on the synthesis of new proteins. In vivo and in vitro studies provide support for nitric oxide synthase (NOS), antioxidant enzymes, and heat shock proteins (HSPs) as the effector proteins. Activation of the nuclear transcription factor, NFkappaB, appears to be a prerequisite for the development of I/R tolerance. In vitro approaches using anoxia/reoxygenation (A/R) to mimic I/R have provided insights into the complexity of the development of I/R tolerance, i.e. different cells may use different signalling pathways to develop A/R tolerance and influence the responses of adjacent cells during the process. The use of cells from genetically altered mice is expediting attempts to unravel specific mechanisms involved in the development of A/R tolerance.
Collapse
Affiliation(s)
- G Cepinskas
- Vascular Biology Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
28
|
Abstract
1. Missense mutations in the gene encoding Cu,Zn superoxide dismutase (SOD1) are responsible for causing one form of familial amyotrophic lateral sclerosis (FALS) linked to chromosome 21q. 2. Mutant SOD1-induced disease is clearly related to a toxic gain of function for the abnormal enzyme, and recent work has begun to investigate the mechanisms underlying this toxicity. In addition to its well known and likely beneficial dismutase activity, wild type SOD1 also possesses the ability to participate in other enzymatic reactions that may be injurious to cells including peroxidation or nitration. 3. Many of the SOD1 mutations associated with FALS appear to increase the likelihood that the enzyme will perform either one of these potentially harmful functions resulting in increased hydroxyl radical formation or the addition of nitro groups to tyrosine residues within cellular proteins.
Collapse
Affiliation(s)
- J L Elliott
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| |
Collapse
|
29
|
Andreassen OA, Dedeoglu A, Friedlich A, Ferrante KL, Hughes D, Szabo C, Beal MF. Effects of an inhibitor of poly(ADP-ribose) polymerase, desmethylselegiline, trientine, and lipoic acid in transgenic ALS mice. Exp Neurol 2001; 168:419-24. [PMID: 11259130 DOI: 10.1006/exnr.2001.7633] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of transgenic mouse models of amyotrophic lateral sclerosis (ALS) allows the testing of neuroprotective agents. We evaluated the effects of five agents in transgenic mice with the G93A Cu,Zn superoxide dismutase mutation. A novel inhibitor of poly(ADP-ribose) polymerase showed no effects on survival. Desmethylselegiline and CGP3466 are agents that exert antiapoptotic effects in vitro by preventing nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase. They had no significant effects on survival in the G93A mice. Trientine, a copper chelator, produced a modest significant increase in survival. Similarly administration of lipoic acid in the diet produced a significant improvement in survival. These results therefore provide evidence for potential therapeutic effects of copper chelators and lipoic acid in the treatment of ALS.
Collapse
Affiliation(s)
- O A Andreassen
- Neurochemistry Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R. Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer's-type neurodegenerative pathways. J Neurochem 2001; 76:1509-20. [PMID: 11238735 DOI: 10.1046/j.1471-4159.2001.00178.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidative stress may have an important role in the progression of neurodegenerative disorders such as Alzheimer's disease (AD) and prion diseases. Oxidative damage could result from interactions between highly reactive transition metals such as copper (Cu) and endogenous reducing and/or oxidizing molecules in the brain. One such molecule, homocysteine, a thiol-containing amino acid, has previously been shown to modulate Cu toxicity in HeLa and endothelial cells in vitro. Due to a possible link between hyperhomocysteinemia and AD, we examined whether interaction between homocysteine and Cu could potentiate Cu neurotoxicity. Primary mouse neuronal cultures were treated with homocysteine and either Cu (II), Fe (II or III) or Zn (II). Homocysteine was shown to selectively potentiate toxicity from low micromolar concentrations of Cu. The toxicity of homocysteine/Cu coincubation was dependent on the ability of homocysteine to reduce Cu (II) as reflected by the inhibition of toxicity with the Cu (I)-specific chelator, bathocuproine disulphonate. This was supported by data showing that homocysteine reduced Cu (II) more effectively than cysteine or methionine but did not reduce Fe (III) to Fe (II). Homocysteine also generated high levels of hydrogen peroxide in the presence of Cu (II) and promoted Abeta/Cu-mediated hydrogen peroxide production and neurotoxicity. The potentiation of metal toxicity did not involve excitotoxicity as ionotropic glutamate receptor antagonists had no effect on neurotoxicity. Homocysteine alone also had no effect on neuronal glutathione levels. These studies suggest that increased copper and/or homocysteine levels in the elderly could promote significant oxidant damage to neurons and may represent additional risk factor pathways which conspire to produce AD or related neurodegenerative conditions.
Collapse
Affiliation(s)
- A R White
- Department of Pathology, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Alisky JM, Davidson BL. Gene therapy for amyotrophic lateral sclerosis and other motor neuron diseases. Hum Gene Ther 2000; 11:2315-29. [PMID: 11096437 DOI: 10.1089/104303400750038435] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are several incurable diseases of motor neuron degeneration, including amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, hereditary spastic hemiplegia, spinal muscular atrophy, and bulbospinal atrophy. Advances in gene transfer techniques coupled with new insights into molecular pathology have opened promising avenues for gene therapy aimed at halting disease progression. Nonviral preparations and recombinant adenoviruses, adeno-associated viruses, herpesviruses, and lentiviruses may ultimately transduce sufficient numbers of cerebral, brainstem, and spinal cord neurons for therapeutic applications. This could be accomplished by direct injection, transduction of lower motor neurons via retrograde transport after intramuscular injection, or cell-based therapies. Studies using transgenic mice expressing mutant superoxide dismutase 1 (SOD1), a model for one form of ALS, established that several proteins were neuroprotective, including calbindin, bcl-2, and growth factors. These same molecules promoted neuronal survival in other injury models, suggesting general applicability to all forms of ALS. Potentially correctable genetic lesions have also been identified for hereditary spastic hemiplegia, bulbospinal atrophy, and spinal muscular atrophy. Finally, it may be possible to repopulate lost corticospinal and lower motor neurons by transplanting stem cells or stimulating native progenitor populations. The challenge ahead is to translate these basic science breakthroughs into workable clinical practice.
Collapse
Affiliation(s)
- J M Alisky
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
32
|
Abstract
The mechanisms by which mutations of the SOD1 gene cause selective motor neuron death remain uncertain, although interest continues to focus on the role of peroxynitrite, altered peroxidase activity of mutant SOD1, changes in intracellular copper homeostasis, protein aggregation, and changes in the function of glutamate transporters leading to excitotoxicity. Neurofilaments and peripherin appear to play some part in motor neuron degeneration, and amyotrophic lateral sclerosis is occasionally associated with mutations of the neurofilament heavy chain gene. Linkage to several chromosomal loci has been established for other forms of familial amyotrophic lateral sclerosis, but no new genes have been identified. In the clinical field, interest has been shown in the population incidence and prevalence of amyotrophic lateral sclerosis and the clinical variants that cause diagnostic confusion. Transcranial magnetic stimulation has been used to detect upper motor neuron damage and to explore cortical excitability in amyotrophic lateral sclerosis, and magnetic resonance imaging including proton magnetic resonance spectroscopy and diffusion weighted imaging also provide useful information on the upper motor neuron lesion. Aspects of care including assisted ventilation, nutrition, and patient autonomy are addressed, and underlying these themes is the requirement to measure quality of life with a new disease-specific instrument. Progress has been made in developing practice parameters. Riluzole remains the only drug to slow disease progression, although interventions such as non-invasive ventilation and gastrostomy also extend survival.
Collapse
Affiliation(s)
- A Al-Chalabi
- Department of Neurology, Guy's King's and St Thomas' School of Medicine and Institute of Psychiatry, De Crespigny Park, London, UK
| | | |
Collapse
|