1
|
Rajão-Saraiva J, Dunot J, Ribera A, Temido-Ferreira M, Coelho JE, König S, Moreno S, Enguita FJ, Willem M, Kins S, Marie H, Lopes LV, Pousinha PA. Age-dependent NMDA receptor function is regulated by the amyloid precursor protein. Aging Cell 2023; 22:e13778. [PMID: 36704841 PMCID: PMC10014064 DOI: 10.1111/acel.13778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/28/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.
Collapse
Affiliation(s)
- Joana Rajão-Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Jade Dunot
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Aurore Ribera
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Svenja König
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sébastien Moreno
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hélène Marie
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A Pousinha
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
2
|
Hilt PM, Bertrand MF, Féasson L, Lebon F, Mourey F, Ruffino C, Rozand V. Motor Imagery Training Is Beneficial for Motor Memory of Upper and Lower Limb Tasks in Very Old Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3541. [PMID: 36834234 PMCID: PMC9963345 DOI: 10.3390/ijerph20043541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Human aging is associated with a decline in the capacity to memorize recently acquired motor skills. Motor imagery training is a beneficial method to compensate for this deterioration in old adults. It is not yet known whether these beneficial effects are maintained in very old adults (>80 years), who are more affected by the degeneration processes. The aim of this study was to evaluate the effectiveness of a mental training session of motor imagery on the memorization of new motor skills acquired through physical practice in very old adults. Thus, 30 very old adults performed 3 actual trials of a manual dexterity task (session 1) or a sequential footstep task (session 2) as fast as they could before and after a 20 min motor imagery training (mental-training group) or watching a documentary for 20 min (control group). Performance was improved after three actual trials for both tasks and both groups. For the control group, performance decreased in the manual dexterity task after the 20 min break and remained stable in the sequential footstep task. For the mental-training group, performance was maintained in the manual dexterity task after the 20 min motor imagery training and increased in the sequential footstep task. These results extended the benefits of motor imagery training to the very old population, showing that even a short motor imagery training session improved their performance and favored the motor memory process. These results confirmed that motor imagery training is an effective method to complement traditional rehabilitation protocols.
Collapse
Affiliation(s)
- Pauline M. Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
- Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Myology Unit, Referent Center for Neuromuscular Diseases, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - France Mourey
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Laboratory Culture Sport Health and Society (C3S−UR 4660), Sport and Performance Department, University of Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| |
Collapse
|
3
|
Zhang X, An H, Chen Y, Shu N. Neurobiological Mechanisms of Cognitive Decline Correlated with Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:127-146. [PMID: 37418211 DOI: 10.1007/978-981-99-1627-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline has emerged as one of the greatest health threats of old age. Meanwhile, aging is the primary risk factor for Alzheimer's disease (AD) and other prevalent neurodegenerative disorders. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain aging. Despite playing an important role in the pathogenesis and incidence of disease, brain aging has not been well understood at a molecular level. Recent advances in the biology of aging in model organisms, together with molecular- and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. This chapter seeks to integrate the knowledge about the neurological mechanisms of age-related cognitive changes that underlie aging.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Haiting An
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Temido-Ferreira M, Ferreira DG, Batalha VL, Marques-Morgado I, Coelho JE, Pereira P, Gomes R, Pinto A, Carvalho S, Canas PM, Cuvelier L, Buée-Scherrer V, Faivre E, Baqi Y, Müller CE, Pimentel J, Schiffmann SN, Buée L, Bader M, Outeiro TF, Blum D, Cunha RA, Marie H, Pousinha PA, Lopes LV. Age-related shift in LTD is dependent on neuronal adenosine A 2A receptors interplay with mGluR5 and NMDA receptors. Mol Psychiatry 2020; 25:1876-1900. [PMID: 29950682 PMCID: PMC7387321 DOI: 10.1038/s41380-018-0110-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.
Collapse
Grants
- FCT - Fundação para a Ciência e Tecnologia
- Région Hauts de France (PARTNAIRR COGNADORA), ANR (ADORATAU and SPREADTAU), LECMA/Alzheimer Forschung Initiative, Programmes d’Investissements d’Avenir LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), France Alzheimer/Fondation de France, the FHU VasCog research network (Lille, France), Fondation pour la Recherche Médicale, Fondation Plan Alzheimer, INSERM, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, FEDER, DN2M, LICEND and CoEN.
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS)
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS), by the Foundation Plan Alzheimer (Senior Innovative Grant 2010)
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-450, Porto, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Inês Marques-Morgado
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Pedro Pereira
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Sara Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Laetitia Cuvelier
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Valerie Buée-Scherrer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Younis Baqi
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - Christa E Müller
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Luc Buée
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Charité-University Medicine, 10117, Berlin, Germany
- Institute of Biology, University of Lübeck, 23652, Lübeck, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - David Blum
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
5
|
Temido-Ferreira M, Coelho JE, Pousinha PA, Lopes LV. Novel Players in the Aging Synapse: Impact on Cognition. J Caffeine Adenosine Res 2019; 9:104-127. [PMID: 31559391 PMCID: PMC6761599 DOI: 10.1089/caff.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne, France
| | - Luísa V. Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Altered expression of ionotropic L-Glutamate receptors in aged sensory neurons of Aplysia californica. PLoS One 2019; 14:e0217300. [PMID: 31120976 PMCID: PMC6532900 DOI: 10.1371/journal.pone.0217300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022] Open
Abstract
The simplified nervous system of Aplysia californica (Aplysia) allows for detailed studies of physiological and molecular changes in small sets of neurons. Sensory neurons of the biting and tail withdrawal reflexes are glutamatergic and show reduced L-Glutamate current density in aged animals, making them a good candidate to study age-related changes in glutamatergic responses. To examine if changes in ionotropic L-Glu receptor (iGluR) transcription underlie reduced physiology, mRNA expression of iGluR was quantified in two sensory neuron clusters of two cohorts of Aplysia at both sexual maturity (~8 months) and advanced age (~12 months). Sensory neuron aging resulted in a significant overall decrease in expression of iGluR subunits in both sensory neuron clusters and cohorts. Although the individual subunits differentially expressed varied between sensory neuron clusters and different cohorts of animals, all differentially expressed subunits were downregulated, with no subunits showing significantly increased expression with age. Overall declines in transcript expression suggest that age-related declines in L-Glu responsiveness in Aplysia sensory neurons could be linked to overall declines in iGluR expression, rather than dysregulation of specific subunits. In both sensory neuron clusters tested the N-methyl-D-aspartate receptor subtype was expressed at significantly greater levels than other iGluR subtypes, suggesting an in vivo role for NMDAR-like receptors in Aplysia sensory neurons.
Collapse
|
7
|
The use of motor imagery training to retain the performance improvement following physical practice in the elderly. Exp Brain Res 2019; 237:1375-1382. [PMID: 30877341 DOI: 10.1007/s00221-019-05514-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/09/2019] [Indexed: 01/01/2023]
Abstract
With physiological aging, appears a deterioration of the ability to retain motor skills newly acquired. In this study, we tested the beneficial role of motor imagery training to compensate this deterioration. We tested four groups: young control group (n = 10), elderly control group (n = 10), young mental-training group (n = 13) and elderly mental-training group (n = 13). In pre- and post-tests, the participants performed three trials on a dexterity manual task (the Nine Hole Peg Test), commonly used in clinic. We recorded the movement duration as a factor of performance. Each trial, including 36 arm movements, consisted in manipulating sticks as fast as possible. The control groups watched a non-emotional documentary for 30 min and the mental-training groups imagined the task (50 trials). First, we observed a speed improvement during the pre-test session for all groups. Immediately after viewing the movie (post-test 1), the young control group showed a preservation of motor performance in comparison to the performance measured before the break (pret-test 3), while the young mental-training group improved performance after motor imagery practice. For the elderly, the control group showed a deterioration of motor performance at post-test 1, attesting a deterioration of the ability to retain motor skills with aging. Interestingly, the elderly mental-training group showed a preservation of motor performance between the pre-test 3 and the post-test 1. The present findings demonstrate the beneficial role of mental training with motor imagery to retain the performance improvement following physical practice in the elderly. This method could be an alternative to prevent the deterioration of motor skills.
Collapse
|
8
|
Greer JB, Schmale MC, Fieber LA. Whole-transcriptome changes in gene expression accompany aging of sensory neurons in Aplysia californica. BMC Genomics 2018; 19:529. [PMID: 29996779 PMCID: PMC6042401 DOI: 10.1186/s12864-018-4909-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Large-scale molecular changes occur during aging and have many downstream consequences on whole-organism function, such as motor function, learning, and memory. The marine mollusk Aplysia californica can be used to study transcriptional changes that occur with age in identified neurons of the brain, because its simplified nervous system allows for more direct correlations between molecular changes, physiological changes, and their phenotypic outcomes. Behavioral deficits in the tail-withdrawal reflex of aged animals have been correlated with reduced excitation in sensory neurons that control the reflex. RNASeq was used to investigate whole-transcriptome changes in tail-withdrawal sensory neurons of sexually mature and aged Aplysia to correlate transcriptional changes with reduced behavioral and physiological responses. Results Paired-end sequencing resulted in 210 million reads used for differential expression analysis. Aging significantly altered expression of 1202 transcripts in sensory neurons underlying the tail-withdrawal reflex, with an approximately equal number of these genes up- and down regulated with age. Despite overall bidirectionality of expression changes, > 80% of ion channel genes that were differentially expressed had decreased expression with age. In particular, several voltage-gated K+ and Ca2+ channels were down regulated. This marked decrease in ion channel expression may play an important role in previously observed declines in aged sensory neuron excitability. We also observed decreased expression of genes and pathways involved in learning and memory. Genes involved in the stress response showed increased expression in aged Aplysia neurons. Conclusions Significantly altered expression of many genes between sexually mature and aged Aplysia suggests large molecular changes that may impact neuronal function. Decreased ion channel mRNA observed could mean fewer receptors present in aged neurons, resulting in reduced excitability of PVC sensory neurons, ultimately leading to reduced tail-withdrawal reflex observed in aged Aplysia. Significant changes in other genes and pathways, such as stress response and learning and memory, have previously been shown to occur with age in many vertebrate organisms. This suggests that some effects of aging are common across many animal phyla. Electronic supplementary material The online version of this article (10.1186/s12864-018-4909-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
9
|
Kempsell AT, Fieber LA. Habituation in the Tail Withdrawal Reflex Circuit is Impaired During Aging in Aplysia californica. Front Aging Neurosci 2016; 8:24. [PMID: 26903863 PMCID: PMC4751345 DOI: 10.3389/fnagi.2016.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
The relevance of putative contributors to age-related memory loss are poorly understood. The tail withdrawal circuit of the sea hare, a straightforward neural model, was used to investigate the aging characteristics of rudimentary learning. The simplicity of this neuronal circuit permits attribution of declines in the function of specific neurons to aging declines. Memory was impaired in advanced age animals compared to their performance at the peak of sexual maturity, with habituation training failing to attenuate the tail withdrawal response or to reduce tail motoneuron excitability, as occurred in peak maturity siblings. Baseline motoneuron excitability of aged animals was significantly lower, perhaps contributing to a smaller scope for attenuation. Conduction velocity in afferent fibers to tail sensory neurons (SN) decreased during aging. The findings suggest that age-related changes in tail sensory and motor neurons result in deterioration of a simple form of learning in Aplysia.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
10
|
Kempsell AT, Fieber LA. Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica. Front Aging Neurosci 2015; 7:173. [PMID: 26388769 PMCID: PMC4558425 DOI: 10.3389/fnagi.2015.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023] Open
Abstract
Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature vs. advanced age Aplysia californica (Aplysia). L-Glutamate- (L-Glu-) evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT) in sensory neurons (SN) isolated from mature but not aged animals. Activation of protein kinase A (PKA) and protein kinase C (PKC) signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
11
|
Kempsell AT, Fieber LA. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica. PLoS One 2015; 10:e0127056. [PMID: 25970633 PMCID: PMC4430239 DOI: 10.1371/journal.pone.0127056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 11/18/2022] Open
Abstract
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.
Collapse
Affiliation(s)
- Andrew T. Kempsell
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
| | - Lynne A. Fieber
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:568587. [PMID: 25101288 PMCID: PMC4101966 DOI: 10.1155/2014/568587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Deep brain stimulation (DBS) has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS) electrode implantation (sham stimulation); group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.
Collapse
|
13
|
Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1575-87. [PMID: 22851280 PMCID: PMC3776110 DOI: 10.1007/s11357-012-9460-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
In rats, as in humans, normal aging is characterized by a decline in hippocampal-dependent learning and memory, as well as in glutamatergic function. Both growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels have been reported to decrease with age, and treatment with either GH or IGF-I can ameliorate age-related cognitive decline. Interestingly, acute GH and IGF-I treatments enhance glutamatergic synaptic transmission in the rat hippocampus of juvenile animals. However, whether this enhancement also occurs in old rats, when cognitive impairment is ameliorated by GH and IGF-I (des-IGF-I), remains to be determined. To address this issue, we used an in vitro CA1 hippocampal slice preparation and extracellular recording techniques to study the effects of acute application of GH and IGF-I on compound field excitatory postsynaptic potentials (fEPSPs), as well as AMPA- and NMDA-dependent fEPSPs, in young adult (10 months) and old (28 months) rats. The results indicated that both GH and IGF-I increased compound-, AMPA-, and NMDA-dependent fEPSPs to a similar extent in slices from both age groups and that this augmentation was likely mediated via a postsynaptic mechanism. Initial characterization of the signaling cascades underlying these effects revealed that the GH-induced enhancement was not mediated by the JAK2 signaling element in either young adult or old rats but that the IGF-I-induced enhancement involved a PI3K-mediated mechanism in old, but not young adults. The present findings are consistent with a role for a GH- or IGF-I-induced enhancement of glutamatergic transmission in mitigating age-related cognitive impairment in old rats.
Collapse
Affiliation(s)
- Doris P. Molina
- />Departments of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Olusegun J. Ariwodola
- />Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Jeff L. Weiner
- />Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Judy K. Brunso-Bechtold
- />Departments of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
- />Roena Kulynych Center for Memory and Cognition Research, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Michelle M. Adams
- />Departments of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
- />Roena Kulynych Center for Memory and Cognition Research, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
- />Department of Psychology, Bilkent University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
14
|
Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal 2012; 17:1590-609. [PMID: 22114878 PMCID: PMC3449441 DOI: 10.1089/ars.2011.4406] [Citation(s) in RCA: 343] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Among different forms of oxidative stress, lipid peroxidation comprises the interaction of free radicals with polyunsaturated fatty acids, which in turn leads to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. HNE is considered a robust marker of oxidative stress and a toxic compound for several cell types. Proteins are particularly susceptible to modification caused by HNE, and adduct formation plays a critical role in multiple cellular processes. RECENT ADVANCES With the outstanding progress of proteomics, the identification of putative biomarkers for neurodegenerative disorders has been the main focus of several studies and will continue to be a difficult task. CRITICAL ISSUES The present review focuses on the role of lipid peroxidation, particularly of HNE-induced protein modification, in neurodegenerative diseases. By comparing results obtained in different neurodegenerative diseases, it may be possible to identify both similarities and specific differences in addition to better characterize selective neurodegenerative phenomena associated with protein dysfunction. Results obtained in our laboratory and others support the common deregulation of energy metabolism and mitochondrial function in neurodegeneration. FUTURE DIRECTIONS Research towards a better understanding of the molecular mechanisms involved in neurodegeneration together with identification of specific targets of oxidative damage is urgently required. Redox proteomics will contribute to broaden the knowledge in regard to potential biomarkers for disease diagnosis and may also provide insight into damaged metabolic networks and potential targets for modulation of disease progression.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | |
Collapse
|
15
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tripathi A. New cellular and molecular approaches to ageing brain. Ann Neurosci 2012; 19:177-82. [PMID: 25205996 PMCID: PMC4117059 DOI: 10.5214/ans.0972.7531.190410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/01/2012] [Accepted: 12/30/2012] [Indexed: 11/23/2022] Open
Abstract
The last decade has witnessed a mammoth progress in the area of brain ageing. Recent gene profiling and brain imaging techniques have made it possible to explore the dark areas of ageing neurons in a new molecular perspective. Many conserved pathways and cellular and molecular mechanisms particularly nuclear mitochondrial molecular interactions are known now. Disruptions in mitochondrial function and reduction in cellular antioxidative and immunoproteins contribute to generation of reactive oxygen species (ROS) which leads to deteriorated adult neurogenesis, reduced white matter and compromised neural plasticity. The overall deteriorated structure and function of neurons is manifested in form of cognitive decline and prolonged neurodegenerative disorders. Dietary restrictions (DR), physical and mental activities however have been shown to counter these ailments. However more precise molecular dynamics at protein levels is still debatable which is the future task for neuroscientists.
Collapse
Affiliation(s)
- Anurag Tripathi
- Department of Zoology, Ranchi College, Ranchi University, Ranchi – 834008
| |
Collapse
|
17
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51:1302-19. [PMID: 21782935 DOI: 10.1016/j.freeradbiomed.2011.06.027] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA.
| |
Collapse
|
18
|
Butterfield DA, Reed T, Sultana R. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer's disease. Free Radic Res 2011; 45:59-72. [PMID: 20942567 DOI: 10.3109/10715762.2010.520014] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proteins play an important role in normal structure and function of the cells. Oxidative modification of proteins may greatly alter the structure and may subsequently lead to loss of normal physiological cell functions and may lead to abnormal function of cell and eventually to cell death. These modifications may be reversible or irreversible. Reversible protein modifications, such as phosphorylation, can be overcome by specific enzymes that cause a protein to 'revert' back to its original protein structure, while irreversible protein modifications cannot. Several important irreversible protein modifications include protein nitration and HNE modification, both which have been extensively investigated in research on the progression of Alzheimer's disease (AD). From the earliest stage of AD throughout the advancement of the disorder there is evidence of increased protein nitration and HNE modification. These protein modifications lead to decreased enzymatic activity, which correlates directly to protein efficacy and provides support for several common themes in AD pathology, namely altered energy metabolism, mitochondrial dysfunction and reduced cholinergic neurotransmission. The current review summarized some of the findings on protein oxidation related to different stages of Alzheimer's disease (AD) that will be helpful in understanding the role of protein oxidation in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.
| | | | | |
Collapse
|
19
|
Potier B, Billard JM, Rivière S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P. Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 2010; 9:722-35. [PMID: 20569241 DOI: 10.1111/j.1474-9726.2010.00593.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT-1 and reduced glutamate uptake occur in the aged (24-27 months) Sprague-Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3-5 months) and aged rats are depressed by DL-TBOA, an inhibitor of glutamate transporter activity, in an N-Methyl-d-Aspartate (NMDA)-receptor-dependent manner. In aged but not in young rats, part of the depressing effect of DL-TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d-methyl-4-carboxy-phenylglycine (MCPG). The paired-pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL-TBOA. These results suggest that the age-associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz-induced long-term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.
Collapse
Affiliation(s)
- Brigitte Potier
- Université Paris Descartes, Centre de Psychiatrie et de Neurosciences, UMR, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kumar A. Carbachol-induced long-term synaptic depression is enhanced during senescence at hippocampal CA3-CA1 synapses. J Neurophysiol 2010; 104:607-16. [PMID: 20505129 DOI: 10.1152/jn.00278.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the cholinergic transmitter system is a hallmark of Alzheimer's disease and contributes to an age-associated decline in memory performance. The current study examined the influence of carbachol, a cholinergic receptor agonist, on synaptic transmission over the course of aging. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synapses in acute hippocampal slices obtained from young adult (5-8 mo) and aged (22-24 mo) male Fischer 344 rats. Bath application of carbachol elicited a transient depression of synaptic transmission, which was followed by a long-lasting depression (CCh-LTD) observed 90 min after carbachol cessation in both age groups. However, the magnitude of CCh-LTD was significantly larger in senescent animals and was attenuated by N-methyl-D-aspartate receptor blockade in aged animals. Blockade of L-type Ca(2+) channels inhibited CCh-LTD to a greater extent in aged animals compared to young adults. Finally, the expression of CCh-LTD was dependent on protein synthesis. The results indicate that altered Ca(2+) homeostasis or muscarinic activation of Ca(2+) signaling contribute to the enhanced CCh-LTD during senescence.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
21
|
Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J, Völker K, Ho HV, Mooren F, Knecht S, Flöel A. Physical activity and memory functions: an interventional study. Neurobiol Aging 2009; 32:1304-19. [PMID: 19716631 DOI: 10.1016/j.neurobiolaging.2009.08.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/25/2022]
Abstract
Previous studies have suggested beneficial effects of physical activity on cognition. Here, we asked in an interventional approach if physical activity performed at different intensity levels would differentially affect episodic memory function. Additionally, we tried to identify mechanisms mediating these changes. Sixty-two healthy elderly individuals were assessed for level of physical activity, aerobic fitness, episodic memory score, neurotrophin and catecholamine levels, and received a magnetic resonance image of the brain at baseline and after a six months intervention of medium or low-intensity physical activity or control. Increase in total physical activity was positively associated with increase in memory score over the entire cohort, without significant differences between intensity groups. It was also positively associated with increases in local gray matter volume in prefrontal and cingulate cortex, and BDNF levels (trend). In conclusion, we showed that physical activity conveys the beneficial effects on memory function independently of its intensity, possibly mediated by local gray matter volume and neurotrophic factors. Our findings may carry significant implications for prevention of cognitive decline in the elderly.
Collapse
Affiliation(s)
- R Ruscheweyh
- Department of Neurology, University of Muenster, Albert-Schweitzer-Strasse 33, Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 2008; 30:107-20. [PMID: 18325775 DOI: 10.1016/j.nbd.2007.12.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/29/2007] [Accepted: 12/23/2007] [Indexed: 11/17/2022] Open
Abstract
Numerous investigations point to the importance of oxidative imbalance in mediating AD pathogenesis. Accumulated evidence indicates that lipid peroxidation is an early event during the evolution of the disease and occurs in patients with mild cognitive impairment (MCI). Because MCI represents a condition of increased risk for Alzheimer's disease (AD), early detection of disease markers is under investigation. Previously we showed that HNE-modified proteins, markers of lipid peroxidation, are elevated in MCI hippocampus and inferior parietal lobule compared to controls. Using a redox proteomic approach, we now report the identity of 11 HNE-modified proteins that had significantly elevated HNE levels in MCI patients compared with controls that span both brain regions: Neuropolypeptide h3, carbonyl reductase (NADPH), alpha-enolase, lactate dehydrogenase B, phosphoglycerate kinase, heat shock protein 70, ATP synthase alpha chain, pyruvate kinase, actin, elongation factor Tu, and translation initiation factor alpha. The enzyme activities of lactate dehydrogenase, ATP synthase, and pyruvate kinase were decreased in MCI subjects compared with controls, suggesting a direct correlation between oxidative damage and impaired enzyme activity. We suggest that impairment of target proteins through the production of HNE adducts leads to protein dysfunction and eventually neuronal death, thus contributing to the biological events that may lead MCI patients to progress to AD.
Collapse
Affiliation(s)
- Tanea Reed
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658-77. [PMID: 17664130 PMCID: PMC2031860 DOI: 10.1016/j.freeradbiomed.2007.05.037] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.
Collapse
|
24
|
Floel A, Garraux G, Xu B, Breitenstein C, Knecht S, Herscovitch P, Cohen LG. Levodopa increases memory encoding and dopamine release in the striatum in the elderly. Neurobiol Aging 2006; 29:267-79. [PMID: 17098331 PMCID: PMC2323457 DOI: 10.1016/j.neurobiolaging.2006.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/13/2006] [Accepted: 10/07/2006] [Indexed: 11/25/2022]
Abstract
Normal aging is associated with a decrease in dopaminergic function and a reduced ability to form new motor memories with training. This study examined the link between both phenomena. We hypothesized that levodopa would (a) ameliorate aging-dependent deficits in motor memory formation, and (b) increase dopamine availability at the dopamine type 2-like (D2) receptor during training in task-relevant brain structures. The effects of training plus levodopa (100mg, plus 25mg carbidopa) on motor memory formation and striatal dopamine availability were measured with [(11)C]raclopride (RAC) positron emission tomography (PET). We found that levodopa did not alter RAC-binding potential at rest but it enhanced training effects on motor memory formation as well as dopamine release in the dorsal caudate nucleus. Motor memory formation during training correlated with the increase of dopamine release in the caudate nucleus. These results demonstrate that levodopa may ameliorate dopamine deficiencies in the elderly by replenishing dopaminergic presynaptic stores, actively engaged in phasic dopamine release during motor training.
Collapse
Affiliation(s)
- A Floel
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Thakur MK, Sharma PK. Aging of Brain: Role of Estrogen. Neurochem Res 2006; 31:1389-98. [PMID: 17061165 DOI: 10.1007/s11064-006-9191-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/03/2006] [Indexed: 12/12/2022]
Abstract
The brain undergoes many structural and functional changes during aging. Some of these changes are regulated by estrogens which act mainly through their intracellular receptors, estrogen receptor ERalpha and ERbeta. The expression of these receptors is regulated by several factors including their own ligand estrogen, and others such as growth hormone and thyroid hormone. The levels of these factors decrease during aging which in turn influence estrogen signaling leading to alterations in brain functions. In the present paper, we review the effects of aging on brain structure and function, and estrogen action and signaling during brain aging. The findings suggest key role of estrogen in the maintenance of brain functions during aging.
Collapse
Affiliation(s)
- M K Thakur
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|
26
|
Celnik P, Stefan K, Hummel F, Duque J, Classen J, Cohen LG. Encoding a motor memory in the older adult by action observation. Neuroimage 2006; 29:677-84. [PMID: 16125417 DOI: 10.1016/j.neuroimage.2005.07.039] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022] Open
Abstract
The ability of motor training to encode a motor memory is reduced in older adults. Here, we tested the hypothesis that training-dependent memory encoding, an issue of relevance in neurorehabilitation, is enhanced in elder individuals by action observation which alone can contribute to learning processes. A group of 11 healthy older adults participated in this study, which consisted of three randomized counterbalanced sessions on different days testing the effects of motor training (MT) alone, action observation (AO) alone, and a combination of both (MT + AO) on motor memory encoding. The combination of MT + AO formed a motor memory in the primary motor cortex and differentially modulated motor cortical excitability in muscles that were agonist and antagonist with respect to the training task, but MT or AO alone did not. These results suggest that action observation can enhance the effects of motor training on memory encoding protocols in the older adult, possibly through Hebbian modulation of intracortical excitatory mechanisms.
Collapse
Affiliation(s)
- Pablo Celnik
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
27
|
Flöel A, Breitenstein C, Hummel F, Celnik P, Gingert C, Sawaki L, Knecht S, Cohen LG. Dopaminergic influences on formation of a motor memory. Ann Neurol 2005; 58:121-30. [PMID: 15984008 DOI: 10.1002/ana.20536] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of the central nervous system to form motor memories, a process contributing to motor learning and skill acquisition, decreases with age. Dopaminergic activity, one of the mechanisms implicated in memory formation, experiences a similar decline with aging. It is possible that restoring dopaminergic function in elderly adults could lead to improved formation of motor memories with training. We studied the influence of a single oral dose of levodopa (100mg) administered preceding training on the ability to encode an elementary motor memory in the primary motor cortex of elderly and young healthy volunteers in a randomized, double-blind, placebo-controlled design. Attention to the task and motor training kinematics were comparable across age groups and sessions. In young subjects, encoding a motor memory under placebo was more prominent than in older subjects, and the encoding process was accelerated by intake of levodopa. In the elderly group, diminished motor memory encoding under placebo was enhanced by intake of levodopa to levels present in younger subjects. Therefore, upregulation of dopaminergic activity accelerated memory formation in young subjects and restored the ability to form a motor memory in elderly subjects; possible mechanisms underlying the beneficial effects of dopaminergic agents on motor learning in neurorehabilitation.
Collapse
Affiliation(s)
- Agnes Flöel
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sawaki L, Yaseen Z, Kopylev L, Cohen LG. Age-dependent changes in the ability to encode a novel elementary motor memory. Ann Neurol 2003; 53:521-4. [PMID: 12666120 DOI: 10.1002/ana.10529] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In healthy individuals, motor training elicits cortical plasticity that encodes the kinematic details of the practiced movements and is thought to underlie recovery of function after stroke. The influence of age on this form of plasticity is incompletely understood. We studied 55 healthy subjects and identified a substantial decrease in training-dependent plasticity as a function of age in the absence of differences in training kinematics. These results suggest that the ability of the healthy aging motor cortex to reorganize in response to training decreases with age.
Collapse
Affiliation(s)
- Lumy Sawaki
- Human Cortical Physiology Section/National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Nakao K, Ikegaya Y, Yamada MK, Nishiyama N, Matsuki N. Fimbrial control of bidirectional synaptic plasticity of medial perforant path-dentate transmission. Synapse 2003; 47:163-8. [PMID: 12494398 DOI: 10.1002/syn.10168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lesions of the fimbria-fornix (FF) tract cause profound impairments of cognitive ability in animals. Our previous study showed that spatial performance correlates with long-term potentiation (LTP) of the dentate gyrus (DG), but not of the CA1 region, in rats with bilateral FF lesions, suggesting that FF lesions selectively inhibited LTP in the DG. The cortical input to the DG is anatomically and physiologically divided into two types of afferents, i.e., the medial perforant path (MPP) and the lateral perforant path (LPP), which show distinct synaptic properties. To elucidate the difference in the FF modulation of these two inputs, field responses were recorded from MPP- or LPP-DG synapses in anesthetized rats. MPP-DG synapses of rats with FF lesions displayed neither LTP in response to theta-burst stimulation nor long-term depression (LTD) in response to low-frequency burst stimulation. In contrast to the MPP, LPP-DG synapses showed normal LTP in rats with FF lesions. The low-frequency burst stimulation could not induce LTD at LPP-DG synapses in either intact or FF-lesioned rats. These results suggest that the FF pathway selectively supports the mechanisms of bidirectional synaptic plasticity at MPP-DG synapses. This study provides new insights into external control of information processing in the hippocampus.
Collapse
Affiliation(s)
- Kazuhito Nakao
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
30
|
Foster TC. Regulation of synaptic plasticity in memory and memory decline with aging. PROGRESS IN BRAIN RESEARCH 2002; 138:283-303. [PMID: 12432775 DOI: 10.1016/s0079-6123(02)38083-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas C Foster
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
31
|
Mattsson A, Ogren SO, Olson L. Facilitation of dopamine-mediated locomotor activity in adult rats following cholinergic denervation. Exp Neurol 2002; 174:96-108. [PMID: 11869038 DOI: 10.1006/exnr.2001.7850] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dopamine hypothesis of schizophrenia postulates hyperactivity of dopaminergic neurotransmission in the mesolimbic system. However, the possible underlying causes for this dopaminergic overfunction are not well understood. Therefore, the main aim of this study was to examine the effect of central cholinergic denervation on dopamine-mediated functions. We also examined the effect of neonatal cholinergic denervation upon adult brain function. The immunotoxin 192 IgG-saporin causes severe lesions of the basal forebrain cholinergic system when infused into the lateral ventricles by targeting neurons expressing the p75 neurotrophin receptor. The toxin may also damage p75-expressing Purkinje neurons in the cerebellum. We have compared the behavioral effects of intracerebroventricular injections of 192 IgG-saporin to adult rats with that of injections to neonate rats. As expected, adult treated rats displayed an almost complete cholinergic denervation of forebrain corticohippocampal areas concomitant with a marked impairment in the Morris water maze. When tested as adults, neonatally treated animals had a less complete cholinergic denervation and showed lesser impairments in water maze behaviors. Interestingly, adult treated rats showed increased spontaneous horizontal activity and a remarkable increase in locomotor response to d-amphetamine as evidenced by increased horizontal and vertical activity. There were no marked changes of spontaneous or drug-induced locomotor activity in adult rats treated with 192 IgG-saporin as neonates. These results suggest that cholinergic denervation of the forebrain causes a marked enhancement of behavioral responses related to dopaminergic activity, probably mainly mediated presynaptically. However, it cannot be fully excluded that damage to noncholinergic systems, e.g., Purkinje cells, might contribute to the effects. The striking overreaction to dopaminergic stimuli, presumably caused by the cholinergic deficit, is discussed in relation to the suggested role of cholinergic malfunctioning in schizophrenia.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
32
|
McEchron MD, Weible AP, Disterhoft JF. Aging and learning-specific changes in single-neuron activity in CA1 hippocampus during rabbit trace eyeblink conditioning. J Neurophysiol 2001; 86:1839-57. [PMID: 11600644 DOI: 10.1152/jn.2001.86.4.1839] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rabbit trace eyeblink conditioning is a hippocampus-dependent task in which the auditory conditioned stimulus (CS) is separated from the corneal airpuff unconditioned stimulus (US) by a 500-ms empty trace interval. Young rabbits are able to associate the CS and US and acquire trace eyeblink conditioned responses (CRs); however, a subset of aged rabbits show poor learning on this task. Several studies have shown that CA1-hippocampal activity is altered by aging; however, it is unknown how aging affects the interaction of CA1 single neurons within local ensembles during learning. The present study examined the extracellular activity of CA1 pyramidal neurons within local ensembles in aged (29-34 mo) and young (3-6 mo) rabbits during 10 daily sessions (80 trials/session) of trace eyeblink conditioning. A single surgically implanted nonmovable stereotrode was used to record ensembles ranging in size from 2 to 12 separated single neurons. A total of six young and four aged rabbits acquired significant levels of CRs, whereas five aged rabbits showed very few CRs similar to a group of five young pseudoconditioned rabbits. Pyramidal cells (2,159 total) were recorded from these four groups during training. Increases in CA1 pyramidal cell firing to the CS and US were diminished in the aged nonlearners. Local ensembles from all groups contained heterogeneous types of pyramidal cell responses. Some cells showed increases while others showed decreases in firing during the trace eyeblink trial. Hierarchical clustering was used to isolate seven different classes of single-neuron responses that showed unique firing patterns during the trace conditioning trial. The proportion of cells in each group was similar for six of seven response classes. Unlike the excitatory modeling patterns reported in previous studies, three of seven response types (67% of recorded cells) exhibited some type of inhibitory decrease to the CS, US, or both. The single-neuron response classes showed different patterns of learning-related activity across training. Several of the single-neuron types from the aged nonlearners showed unique alterations in response magnitude to the CS and US. Cross-correlation analyses suggest that specific single-neuron types provide more correlated single-neuron activity to the ensemble processing of information. However, aged nonlearners showed a significantly lower level of coincident pyramidal cell firing for all cell types within local ensembles in CA1.
Collapse
Affiliation(s)
- M D McEchron
- Department of Cell and Molecular Biology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
33
|
Fujii S, Sumikawa K. Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus. Brain Res 2001; 894:347-53. [PMID: 11251214 DOI: 10.1016/s0006-8993(01)02057-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Long-term potentiation (LTP) is widely considered to be the cellular substrate of learning and memory. The induction of LTP becomes more difficult with age in parallel with declining learning and memory ability. Because nicotine improves learning and memory in aged rats, we examined the effects of acute and chronic nicotine exposure on age-related declines in LTP induction. We found that acute nicotine exposure lowered the threshold for LTP induction in the aging hippocampus. The effect of nicotine was mimicked by the alpha7 nicotinic acetylcholine receptor (nAChR) antagonist methyllycaconitine and blocked by the non-alpha7 nAChR antagonist dihydro-beta-erythroidine, suggesting that both nicotine-mediated desensitization of alpha7 nAChRs and activation of non-alpha7 nAChRs contribute to the nicotine effect. The non-alpha7 nAChR agonist A85380 that facilitates the induction of LTP in the young hippocampus had no effect, however, suggesting that at least one pathway involving non-alpha7 nAChRs was altered by aging. Chronic nicotine treatment of aged rats also lowered the threshold for LTP induction and acute nicotine exposure lowered the threshold further in the chronic-nicotine-treated aged hippocampus. These results not only suggest that the mechanisms mediated by acute and chronic nicotine exposure are different, but also demonstrate that age-associated declines in LTP induction can be reversed with nicotine treatment.
Collapse
Affiliation(s)
- S Fujii
- Department of Neurobiology and Behavior, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
34
|
Virgili M, Monti B, Polazzi E, Angiolini G, Contestabile A. Topography of neurochemical alterations in the CNS of aged rats. Int J Dev Neurosci 2001; 19:109-16. [PMID: 11226760 DOI: 10.1016/s0736-5748(00)00057-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have performed a general survey study on alterations of neurotransmitter-related and glia-related neurochemical markers in various regions of the CNS of aged (30-month-old) as compared to adult (4-month-old) rats. We have found significant decreases in the level of neurochemical parameters related to the cholinergic and GABAergic systems in several regions of the CNS of aged rats. Only few of the alterations present at the age of 30 months, were present in a group of rat of intermediate age (20 months) included in the present study. Less widespread alterations were found concerning the glutamatergic neurotransmission system. Neurochemical markers related to glial cells (astrocytes and oligodendrocytes) showed a remarkable stability in aged rats as compared to neurotransmitter-related markers. Considering the various CNS areas examined in the present study, the spinal cord of the aged rats was the region showing the most profound alterations of neurochemical parameters, as compared to the various brain areas of the same rats. The present results suggest that moderate and region-specific alterations of neurotransmitter-related parameters occur during normal aging and that glia-related markers are fundamentally stable in the absence of specific pathologies.
Collapse
Affiliation(s)
- M Virgili
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | | | | | | | | |
Collapse
|
35
|
Potier B, Poindessous-Jazat F, Dutar P, Billard JM. NMDA receptor activation in the aged rat hippocampus. Exp Gerontol 2000; 35:1185-99. [PMID: 11113601 DOI: 10.1016/s0531-5565(00)00122-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Age-related alterations of N-methyl-D-aspartate receptor (NMDAr) activation were investigated in the CA1 field of hippocampal slices from young (3-6 months old) and aged (25-33 months old) Sprague-Dawley rats by using ex vivo extracellular electrophysiological recording techniques. NMDAr-mediated field excitatory postsynaptic potentials (fEPSPs) were induced by electrical stimulation of glutamatergic fibers in a magnesium (Mg(2+))-free medium supplemented with the non-NMDAr antagonist CNQX. The fEPSPs were significantly smaller in aged rats, whereas the response of presynaptic afferent fibers remained unaffected. No significant age-related differences were found in the ability of Mg(2+) to depress the magnitude of NMDAr-mediated fEPSPs. The responsiveness of postsynaptic NMDAr to the agonist was assessed in both groups of animals. No age-related differences were recorded either in the depolarizing effect of bath-applied NMDA or in the magnitude of the depolarization after altering extracellular Mg(2+) concentration. Finally, short-term potentiation (STP) of excitatory transmission was studied in young and aged rats considering the pivotal role of NMDAr in synaptic plasticity. No age-related alterations of the magnitude and the time course of STP in response to 10 or 30Hz conditioning stimulation were found. Because of the decrease in the magnitude of NMDAr-mediated synaptic transmission in aged animals, the absence of obvious modifications of synaptic plasticity suggests the occurrence of compensatory mechanisms that are discussed.
Collapse
Affiliation(s)
- B Potier
- Dynamique des Systèmes Neuroendocriniens, INSERM U159, 2ter rue d'Alesia, 75014, Paris, France
| | | | | | | |
Collapse
|
36
|
Bassant MH, Jouvenceau A, Apartis E, Poindessous-Jazat F, Dutar P, Billard JM. Immunolesion of the cholinergic basal forebrain: effects on functional properties of hippocampal and septal neurons. Int J Dev Neurosci 1998; 16:613-32. [PMID: 10198811 DOI: 10.1016/s0736-5748(98)00073-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Deficits in cholinergic function have been documented in a variety of brain disorders including Alzheimer's Disease and, to a lesser extent, in normal ageing. In the present article, we have reviewed our recent findings on the effects of the loss of basal forebrain cholinergic neurons on the functional properties of the septohippocampal pathway. In vivo and ex vivo investigations were performed in rats following basal forebrain cholinergic lesion with the specific immunotoxin 192 IgG-saporin. Our results suggest a significant contribution of cholinergic neurons in the rhythmically bursting activity recorded within the medial septum. In addition, they give evidence that acetylcholine may tonically decrease the glutamatergic synaptic responses in the hippocampus whereas the GABAergic mediated inhibitory potentials are not affected. The possible contribution of these cholinergic mechanisms in the age-related functional alterations of the septohippocampal activity is discussed.
Collapse
Affiliation(s)
- M H Bassant
- INSERM U 161, Unité de Recherches de Physiopharmacologie du Système Nerveux, Paris, France
| | | | | | | | | | | |
Collapse
|