1
|
Effect of Heat Stress on Hippocampal Neurogenesis: Insights into the Cellular and Molecular Basis of Neuroinflammation-Induced Deficits. Cell Mol Neurobiol 2023; 43:1-13. [PMID: 34767143 DOI: 10.1007/s10571-021-01165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
Heat stress is known to result in neuroinflammation, neuronal damage, and disabilities in learning and memory in animals and humans. It has previously been reported that cognitive impairment caused by neuroinflammation may at least in part be mediated by defective hippocampal neurogenesis, and defective neurogenesis has been linked to aberrantly activated microglial cells. Moreover, the release of cytokines within the brain has been shown to contribute to the disruption of cognitive functions in several conditions following neuroinflammation. In this review, we summarize evolving evidence for the current understanding of inflammation-induced deficits in hippocampal neurogenesis, and the resulting behavioral impairments after heat stress. Furthermore, we provide valuable insights into the molecular and cellular mechanisms underlying neuroinflammation-induced deficits in hippocampal neurogenesis, particularly relating to cognitive dysfunction following heat stress. Lastly, we aim to identify potential mechanisms through which neuroinflammation induces cognitive dysfunction, and elucidate how neuroinflammation contributes to defective hippocampal neurogenesis. This review may therefore help to better understand the relationship between hippocampal neurogenesis and heat stress.
Collapse
|
2
|
Logue J, Schoepfer K, Guerrero AB, Zhou Y, Kabbaj M. Sex-specific effects of social isolation stress and ketamine on hippocampal plasticity. Neurosci Lett 2022; 766:136301. [PMID: 34688854 PMCID: PMC8639811 DOI: 10.1016/j.neulet.2021.136301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Chronic social isolation stress (SIS) induces lasting negative effects on the brain, including memory deficits, cognitive impairments, and mood alterations such as depression and anxiety. All these symptoms, at least in part, reflect reduced hippocampal function. In both clinical and preclinical studies, subanesthetic doses of the NMDA receptor antagonist, ketamine (KET), was shown to have rapid and lasting antidepressant effects. Animal studies have shown that biological sex and levels of gonadal hormones alter the behavioral effects of KET, with ovarian hormones increasing sensitivity to the antidepressant-like effects of KET. Since the hippocampus plays a key role in mediating some of the effects of SIS, and considering that KET at low doses has been shown to rescue some of the behavioral deficits of isolation rearing this study aimed to assess the effects of isolation stress on pre- and post-synaptic hippocampal functions in male and female rats reared in SIS, as well as determine whether some of the physiological deficits can be rescued with a single injection of sub-anesthetic doses of KET. To do this, Sprague-Dawley rats were raised from weaning in either social isolation or with same-sex cage mate for 5 to 7 weeks. Male and female rats in either diestrus of proestrus received a single injection of KET (0, 2.5, or 5.0 mg/kg) three hours prior to termination and collection of acute hippocampal slices for ex vivo electrophysiological field potential recordings. Long-term potentiation (LTP) and paired pulse facilitation (PPF) outputs were assessed in a canonical CA3-CA1 dorsal hippocampal circuit. Our data show that SIS inhibits hippocampal LTP without affecting PPF in male rats, an effect that was rescued by KET. In female rats, isolation stress did not alter LTP, but did reduce PPF - especially when females were tested in diestrus-, an effect that was rescued by KET at the highest dose. Our data thus suggest sex differences in the contribution of pre-and postsynaptic hippocampal compartments in response to stress and KET.
Collapse
Affiliation(s)
- Jordan Logue
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Kristin Schoepfer
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Alfonso Brea Guerrero
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Zhou
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Biomedical Sciences Department, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
3
|
Zhang Q, Liu F, Yan W, Wu Y, Wang M, Wei J, Wang S, Zhu X, Chai X, Zhao S. Prolonged maternal separation alters neurogenesis and synaptogenesis in postnatal dentate gyrus of mice. Bipolar Disord 2021; 23:376-390. [PMID: 32805776 DOI: 10.1111/bdi.12986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.
Collapse
Affiliation(s)
- Qianru Zhang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Feng Liu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Jingjing Wei
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Shuzhong Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Liu Y, Wang Z, Zhang X, Li S, Wu W, Li X, Yang Y. A sex-dependent delayed maturation of visual plasticity induced by adverse experiences in early childhood. Neurobiol Stress 2020; 13:100256. [PMID: 33344711 PMCID: PMC7739182 DOI: 10.1016/j.ynstr.2020.100256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022] Open
Abstract
Adverse experiences in early life have a long-term impact on the development of brain, which in turn increases the susceptibility to mental illness during adulthood, especially in female subjects. However, whether and how the visual cortex is affected by these adverse experiences as well as the mechanisms underlying the sex difference are largely unknown. Here, we established a new mouse model of early-life chronic mild stress (ECMS) without anxiety or depression-like behavior in adulthood. ECMS mice showed normal maturation of visual acuity and orientation/direction selectivity, whereas their visual cortical neurons preferred lower spatial frequency (SF) and higher temporal frequency (TF) than control mice. Meanwhile the development of ocular dominance (OD) plasticity was delayed. Specifically, compared with control mice, ECMS mice in the early stage of the critical period (CP) showed a reduction in GABA synthesis enzyme expression as well as lower OD plasticity which could be occluded by diazepam. In contrast, ECMS mice in the late stage of CP showed stronger OD plasticity, accompanied by higher expression of N-methyl-D-aspartate (NMDA) receptor NR2B subunit. Interestingly, only female ECMS mice at adulthood maintained juvenile-like OD plasticity as well as high NR2B expressions. Artificial increase in estradiol level in ECMS males via estradiol supplementary diminished this sex difference. Lastly, OD plasticity was abolished in adult ECMS females either performed with the bilateral ovariectomy in prepuberty, or directly infused with NR2B antagonist Ro 25–6981 into the visual cortex. Overall, our study demonstrates that early adverse experiences have a lasting effect on visual development of mice in a sex-dependent manner, which is mediated by the estradiol-NR2B pathway.
Collapse
Affiliation(s)
- Yueqin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhenni Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xinxin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Sitong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yupeng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Li Y, Lv Q, Li B, Luo D, Sun X, Xu J. The role of trauma experiences, personality traits, and genotype in maintaining posttraumatic stress disorder symptoms among child survivors of the Wenchuan earthquake. BMC Psychiatry 2020; 20:439. [PMID: 32894097 PMCID: PMC7487586 DOI: 10.1186/s12888-020-02844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is the most prevalent type of psychiatric disorder among children after an earthquake. This study investigated the role of trauma experiences, personality traits, and genotype in the maintenance of PTSD symptoms. METHODS In a previous large-scale epidemiological investigation 1 year after the Wenchuan earthquake, 215 children with PTSD symptoms were selected at random with their blood samples collected. All of them were followed up, and their PTSD symptoms were assessed 3 years later. The adolescent version of the UCLA PTSD Reaction Index, the earthquake exposure scale, and the Junior Eysenck Personality Questionnaire were used to determine PTSD symptoms, trauma experiences, and personality traits, respectively. We sequenced candidate genes involved in the regulation of long-term potentiation via NMDA-type receptors to identify the related SNP variations. RESULTS Being trapped for a longer period of time, feeling one's own or a family member's life to be in danger, losing a close family member or friend, extraversion, neuroticism, TrkB, G72 and CNTF were found to be associated with the maintenance of PTSD symptoms. CONCLUSIONS Experiences, personality traits, and genotype influenced the maintenance of PTSD in child survivors who were considered to be followed up without medicine. This result could help to identify potential targets for treatment and promote the rational allocation of medical resources.
Collapse
Affiliation(s)
- Yuwei Li
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuyue Lv
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Li
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Luo
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xueli Sun
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiajun Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Long-Term Impact of Early-Life Stress on Hippocampal Plasticity: Spotlight on Astrocytes. Int J Mol Sci 2020; 21:ijms21144999. [PMID: 32679826 PMCID: PMC7404101 DOI: 10.3390/ijms21144999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Adverse experiences during childhood are among the most prominent risk factors for developing mood and anxiety disorders later in life. Early-life stress interventions have been established as suitable models to study the neurobiological basis of childhood adversity in rodents. Different models such as maternal separation, impaired maternal care and juvenile stress during the postweaning/prepubertal life phase are utilized. Especially within the limbic system, they induce lasting alterations in neuronal circuits, neurotransmitter systems, neuronal architecture and plasticity that are further associated with emotional and cognitive information processing. Recent studies found that astrocytes, a special group of glial cells, have altered functions following early-life stress as well. As part of the tripartite synapse, astrocytes interact with neurons in multiple ways by affecting neurotransmitter uptake and metabolism, by providing gliotransmitters and by providing energy to neurons within local circuits. Thus, astrocytes comprise powerful modulators of neuronal plasticity and are well suited to mediate the long-term effects of early-life stress on neuronal circuits. In this review, we will summarize current findings on altered astrocyte function and hippocampal plasticity following early-life stress. Highlighting studies for astrocyte-related plasticity modulation as well as open questions, we will elucidate the potential of astrocytes as new targets for interventions against stress-induced neuropsychiatric disorders.
Collapse
|
7
|
Wei MD, Wang YH, Lu K, Lv BJ, Wang Y, Chen WY. Ketamine reverses the impaired fear memory extinction and accompanied depressive-like behaviors in adolescent mice. Behav Brain Res 2020; 379:112342. [DOI: 10.1016/j.bbr.2019.112342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
8
|
Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 2019; 15:657-669. [PMID: 31530940 PMCID: PMC7261498 DOI: 10.1038/s41582-019-0246-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain 'wiring'.
Collapse
Affiliation(s)
- Annabel K Short
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Departments of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Repeated three-hour maternal deprivation as a model of early-life stress alters maternal behavior, olfactory learning and neural development. Neurobiol Learn Mem 2019; 163:107040. [DOI: 10.1016/j.nlm.2019.107040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022]
|
10
|
Cheng W, Han F, Shi Y. Neonatal isolation modulates glucocorticoid-receptor function and synaptic plasticity of hippocampal and amygdala neurons in a rat model of single prolonged stress. J Affect Disord 2019; 246:682-694. [PMID: 30611912 DOI: 10.1016/j.jad.2018.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Early life and stressful experiences affect hippocampal and amygdala structure and function. They also increase the incidence of mental and nervous system disorders in adults. However, prospective studies have yet to show if early-life experiences affect the risk/severity of post-traumatic stress disorder (PTSD). METHODS We applied neonatal isolation (NI) alone, single prolonged stress (SPS) alone and NI + SPS to rats. We evaluated anxiety-like behavior and spatial memory of behavior using open field, elevated plus maze, and Morris water maze tests. Then, we measured expression of glucocorticoid receptors (GRs) and synaptic-related proteins by immunofluorescence, immunohistochemistry and western blotting in the hippocampus and amygdala. RESULTS NI + SPS exacerbated the increased anxiety levels and impaired spatial memory induced by NI alone or SPS alone. NI alone or SPS alone induced varying degrees of change in expression of GRs and synaptic proteins (synapsin I and postsynaptic density protein-95) in the hippocampus and amygdala. There were opposite changes in GR expression in the hippocampal dentate gyrus and basolateral amygdala. The degree of such change was exacerbated considerably by NI + SPS. In addition, neuroligin (NLG)-1 and NLG-2 were distributed in postsynaptic sites of excitatory and inhibitory synapses, respectively. NI, SPS, and NI + SPS altered the patterns of NLG-1 and NLG-2 colocalization as well as their intensity. NI + SPS strengthened the increased ratio of NLG-1/NLG-2 in the hippocampus, but decreased this ratio in the amygdala. CONCLUSIONS NI and SPS together induced greater degrees of change in anxiety and spatial memory, as well as GR and synaptic protein levels, in the hippocampus and amygdala than the changes induced by NI alone or SPS alone.
Collapse
Affiliation(s)
- Wei Cheng
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China; Neonatal Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China.
| |
Collapse
|
11
|
Electroacupuncture Ameliorates Cognitive Deficit and Improves Hippocampal Synaptic Plasticity in Adult Rat with Neonatal Maternal Separation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2468105. [PMID: 29785188 PMCID: PMC5896274 DOI: 10.1155/2018/2468105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/02/2022]
Abstract
Exposure to adverse early-life events is thought to be the risk factors for the development of psychiatric and altered cognitive function in adulthood. The purpose of this study was to investigate whether electroacupuncture (EA) treatment in young adult rat would improve impaired cognitive function and synaptic plasticity in adult rat with neonatal maternal separation (MS). Wistar rats were randomly divided into four groups: control group, MS group, MS with EA treatment (MS + EA) group, and MS with Sham-EA treatment (MS + Sham-EA) group. We evaluated the cognitive function by using Morris water maze and fear conditioning tests. Electrophysiology experiment used in vivo long-term potentiation (LTP) at Schaffer Collateral-CA1 synapses was detected to assess extent of synaptic plasticity. Repeated EA stimulation at Baihui (GV 20) and Yintang (GV 29) during postnatal 9 to 11 weeks was identified to significantly ameliorate poor performance in behavior tests and improve the impaired LTP induction detected at Schaffer Collateral-CA1 synapse in hippocampus. Collectively, the findings suggested that early-life stress due to MS may induce adult cognitive deficit associated with hippocampus, and EA in young adult demonstrated that its therapeutic efficacy may be via ameliorating deficit of hippocampal synaptic plasticity.
Collapse
|
12
|
Császár-Nagy N, Bókkon I. Mother-newborn separation at birth in hospitals: A possible risk for neurodevelopmental disorders? Neurosci Biobehav Rev 2018; 84:337-351. [DOI: 10.1016/j.neubiorev.2017.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022]
|
13
|
van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 2017; 11:87. [PMID: 28469557 PMCID: PMC5395581 DOI: 10.3389/fncel.2017.00087] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar ("matching") adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.
Collapse
Affiliation(s)
| | | | - Marloes J. A. G. Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumc, Nijmegen, Netherlands
| |
Collapse
|
14
|
Effects of early life stress on rodent hippocampal synaptic plasticity: a systematic review. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Molet J, Maras PM, Kinney-Lang E, Harris NG, Rashid F, Ivy AS, Solodkin A, Obenaus A, Baram TZ. MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early-life adversity. Hippocampus 2016; 26:1618-1632. [PMID: 27657911 DOI: 10.1002/hipo.22661] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Pamela M Maras
- Department of Pediatrics, UC-Irvine, Irvine, CA, 92697-4475, USA
| | - Eli Kinney-Lang
- Department of Pediatrics, UC-Irvine, Irvine, CA, 92697-4475, USA.,Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Neil G Harris
- Department of Neurosurgery, UCLA, Los Angeles, CA, 90095-6901, USA
| | - Faisal Rashid
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | - Ana Solodkin
- Department of Anatomy and Neurobiology.,Department of Neurology, UC-Irvine, Irvine, CA, 92697-4475, USA
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology.,Department of Pediatrics, UC-Irvine, Irvine, CA, 92697-4475, USA.,Department of Neurology, UC-Irvine, Irvine, CA, 92697-4475, USA
| |
Collapse
|
16
|
Chen Y, Baram TZ. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology 2016; 41:197-206. [PMID: 26105143 PMCID: PMC4677123 DOI: 10.1038/npp.2015.181] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.
Collapse
Affiliation(s)
- Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308:H1476-98. [DOI: 10.1152/ajpheart.00859.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| | - Jefferson C. Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
18
|
Bali A, Jaggi AS. Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 2014; 746:282-92. [PMID: 25446911 DOI: 10.1016/j.ejphar.2014.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
Abstract
Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Preclinical models are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these models are also important for the development of novel pharmacological agents for stress management. The well described preclinical stress models include immobilization, restraint, electric foot shock and social isolation stress. Stress assessment in animals is done at the behavioral level using open field, social interaction, hole board test; at the biochemical level by measuring plasma corticosterone and ACTH; at the physiological level by measuring food intake, body weight, adrenal gland weight and gastric ulceration. Furthermore the comparison between different stressors including electric foot shock, immobilization and cold stressor is described in terms of intensity, hormonal release, protein changes in brain, adaptation and sleep pattern. This present review describes these preclinical stress protocols, and stress assessment at different levels.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|
19
|
Liu JH, You QL, Wei MD, Wang Q, Luo ZY, Lin S, Huang L, Li SJ, Li XW, Gao TM. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation. Mol Neurobiol 2014; 52:1421-1429. [PMID: 25860250 PMCID: PMC4588096 DOI: 10.1007/s12035-014-8917-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022]
Abstract
Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.
Collapse
Affiliation(s)
- Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Qiang-Long You
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Mei-Dan Wei
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Zheng-Yi Luo
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Song Lin
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Ji Li
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Early deprivation reduced anxiety and enhanced memory in adult male rats. Brain Res Bull 2014; 108:44-50. [DOI: 10.1016/j.brainresbull.2014.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/14/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
|
21
|
Xiong GJ, Yang Y, Wang LP, Xu L, Mao RR. Maternal separation exaggerates spontaneous recovery of extinguished contextual fear in adult female rats. Behav Brain Res 2014; 269:75-80. [DOI: 10.1016/j.bbr.2014.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/07/2014] [Indexed: 01/04/2023]
|
22
|
Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 2013; 36:353-62. [PMID: 23602195 DOI: 10.1016/j.tins.2013.03.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022]
Abstract
Since its initial conceptualisation, metaplasticity has come to encompass a wide variety of phenomena and mechanisms, creating the important challenge of understanding how they contribute to network function and behaviour. Here, we present a framework for considering potential roles of metaplasticity across three domains of function. First, metaplasticity appears ideally placed to prepare for subsequent learning by either enhancing learning ability generally or by preparing neuronal networks to encode specific content. Second, metaplasticity can homeostatically regulate synaptic plasticity, and this likely has important behavioural consequences by stabilising synaptic weights while ensuring the ongoing availability of synaptic plasticity. Finally, we discuss emerging evidence that metaplasticity mechanisms may play a role in disease causally and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, Box 56, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
23
|
Chocyk A, Bobula B, Dudys D, Przyborowska A, Majcher-Maślanka I, Hess G, Wędzony K. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci 2013; 38:2089-107. [PMID: 23581639 DOI: 10.1111/ejn.12208] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 03/03/2013] [Indexed: 02/06/2023]
Abstract
Early life experiences are crucial factors that shape brain development and function due to their ability to induce structural and functional plasticity. Among these experiences, early-life stress (ELS) is known to interfere with brain development and maturation, increasing the risk of future psychopathologies, including depression, anxiety, and personality disorders. Moreover, ELS may contribute to the emergence of these psychopathologies during adolescence. In this present study, we investigated the effects of ELS, in the form of maternal separation (MS), on the structural and functional plasticity of the medial prefrontal cortex (mPFC) and anxiety-like behavior in adolescent male rats. We found that the MS procedure resulted in disturbances in mother-pup interactions that lasted until weaning and were most strongly demonstrated by increases in nursing behavior. Moreover, MS caused atrophy of the basal dendritic tree and reduced spine density on both the apical and basal dendrites in layer II/III pyramidal neurons of the mPFC. The structural changes were accompanied by an impairment of long-term potentiation processes and increased expression of key proteins, specifically glutamate receptor 1, glutamate receptor 2, postsynaptic density protein 95, αCa(2+) /calmodulin-dependent protein kinase II and αCa(2+)/calmodulin-dependent protein kinase II phosphorylated at residue Thr305, that are engaged in long-term potentiation induction and maintenance in the mPFC. We also found that the MS animals were more anxious in the light/dark exploration test. The results of this study indicate that ELS has a significant impact on the structural and functional plasticity of the mPFC in adolescents. ELS-induced adaptive plasticity may underlie the pathomechanisms of some early-onset psychopathologies observed in adolescents.
Collapse
Affiliation(s)
- Agnieszka Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the Time Domains of Corticosteroid Hormone Influences on Brain Activity: Rapid, Slow, and Chronic Modes. Pharmacol Rev 2012; 64:901-38. [DOI: 10.1124/pr.112.005892] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Baudin A, Blot K, Verney C, Estevez L, Santamaria J, Gressens P, Giros B, Otani S, Daugé V, Naudon L. Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol Learn Mem 2012; 98:207-14. [PMID: 22922490 DOI: 10.1016/j.nlm.2012.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/27/2012] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Early life adverse events can lead to structural and functional impairments in the prefrontal cortex (PFC). Here, we investigated whether maternal deprivation (MD) alters PFC-dependent executive functions, neurons and astrocytes number and synaptic plasticity in adult male Long-Evans rats. The deprivation protocol consisted of a daily separation of newborn Long-Evans pups from their mothers and littermates 3h/day postnatal day 1-14. Cognitive performances were assessed in adulthood using the temporal order memory task (TMT) and the attentional set-shifting task (ASST) that principally implicates the PFC and the Morris water maze task (WMT) that does not essentially rely on the PFC. The neurons and astrocytes of the prelimbic (PrL) area of the medial PFC (mPFC) were immunolabelled respectively with anti-NeuN and anti-GFAP antibodies and quantified by stereology. The field potentials evoked by electrical stimulation of ventral hippocampus (ventral HPC) were recorded in vivo in the PrL area. In adulthood, MD produced cognitive deficits in two PFC-dependent tasks, the TMT and ASST, but not in the WMT. In parallel, MD induced in the prelimbic area of the medial PFC an upregulation of long-term potentiation (LTP), without any change in the number of neurons and astrocytes. We provide evidence that MD leads in adults to an alteration of the cognitive abilities dependent on the PFC, and to an exaggerated synaptic plasticity in this region. We suggest that this latter phenomenon may contribute to the impairments in the cognitive tasks.
Collapse
Affiliation(s)
- Aurélie Baudin
- INSERM, UMRs, Physiopathologie des Maladies du Système Nerveux Central, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kosten TA, Kim JJ, Lee HJ. Early life manipulations alter learning and memory in rats. Neurosci Biobehav Rev 2012; 36:1985-2006. [PMID: 22819985 DOI: 10.1016/j.neubiorev.2012.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 12/24/2022]
Abstract
Much research shows that early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
27
|
Miyazaki T, Takase K, Nakajima W, Tada H, Ohya D, Sano A, Goto T, Hirase H, Malinow R, Takahashi T. Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Invest 2012; 122:2690-701. [PMID: 22706303 DOI: 10.1172/jci63060] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023] Open
Abstract
Stressful events during early childhood can have a profound lifelong influence on emotional and cognitive behaviors. However, the mechanisms by which stress affects neonatal brain circuit formation are poorly understood. Here, we show that neonatal social isolation disrupts molecular, cellular, and circuit developmental processes, leading to behavioral dysfunction. Neonatal isolation prevented long-term potentiation and experience-dependent synaptic trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors normally occurring during circuit formation in the rodent barrel cortex. This inhibition of AMPA receptor trafficking was mediated by an increase of the stress glucocorticoid hormone and was associated with reduced calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling, resulting in attenuated whisker sensitivity at the cortex. These effects led to defects in whisker-dependent behavior in juvenile animals. These results indicate that neonatal social isolation alters neuronal plasticity mechanisms and perturbs the initial establishment of a normal cortical circuit, which potentially explains the long-lasting behavioral effects of neonatal stress.
Collapse
Affiliation(s)
- Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Maras PM, Baram TZ. Sculpting the hippocampus from within: stress, spines, and CRH. Trends Neurosci 2012; 35:315-24. [PMID: 22386641 DOI: 10.1016/j.tins.2012.01.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/10/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
Learning and memory processes carried out within the hippocampus are influenced by stress in a complex manner, and the mechanisms by which stress modulates the physiology of the hippocampus are not fully understood. This review addresses how the production and release of the neuropeptide corticotropin-releasing hormone (CRH) within the hippocampus during stress influences neuronal structure and hippocampal function. CRH functions in the contexts of acute and chronic stresses taking place during development, adulthood and aging. Current challenges are to uncover how the dynamic actions of CRH integrate with the well-established roles of adrenal-derived steroid stress hormones to shape the cognitive functions of the hippocampus in response to stress.
Collapse
Affiliation(s)
- Pamela M Maras
- Department of Anatomy/Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
29
|
Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R. A review on animal models for screening potential anti-stress agents. Neurol Sci 2011; 32:993-1005. [PMID: 21927881 DOI: 10.1007/s10072-011-0770-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Stress is a state of threatened homeostasis that produces different physiological as well as pathological changes depending on severity, type and duration of stress. The animal models are pivotal for understanding the pathophysiology of stress-induced behavioral alterations and development of effective therapy for its optimal management. A battery of models has been developed to simulate the clinical pain conditions with diverse etiology. An ideal animal model should be able to reproduce each of the aspects of stress response and should be able to mimic the natural progression of the disease. The present review describes the different types of acute and chronic stress models including immersion in cold water with no escape, cold environment isolation, immobilization/restraint-induced stress, cold-water restraint stress, electric foot shock-induced stress, forced swimming-induced stress, food-deprived activity stress, neonatal isolation-induced stress, predatory stress, day-night light change-induced stress, noise-induced stress, model of post-traumatic stress disorder and chronic unpredictable stress models.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | | | | | | | | | | |
Collapse
|
30
|
Bergado JA, Lucas M, Richter-Levin G. Emotional tagging—A simple hypothesis in a complex reality. Prog Neurobiol 2011; 94:64-76. [PMID: 21435370 DOI: 10.1016/j.pneurobio.2011.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge A Bergado
- Centro Internacional de Restauracion Neurologica, La Habana, Cuba
| | | | | |
Collapse
|
31
|
Ali I, Salzberg MR, French C, Jones NC. Electrophysiological insights into the enduring effects of early life stress on the brain. Psychopharmacology (Berl) 2011; 214:155-73. [PMID: 21165736 DOI: 10.1007/s00213-010-2125-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 11/29/2010] [Indexed: 12/31/2022]
Abstract
Increasing evidence links exposure to stress early in life to long-term alterations in brain function, which in turn have been linked to a range of psychiatric and neurological disorders in humans. Electrophysiological approaches to studying these causal pathways have been relatively underexploited. Effects of early life stress on neuronal electrophysiological properties offer a set of potential mechanisms for these susceptibilities, notably in the case of epilepsy. Thus, we review experimental evidence for altered cellular and circuit electrophysiology resulting from exposure to early life stress. Much of this work focuses on limbic long-term potentiation, but other studies address alterations in electrophysiological properties of ion channels, neurotransmitter systems, and the autonomic nervous system. We discuss mechanisms which may mediate these effects, including influences of early life stress on key components of brain synaptic transmission, particularly glutamate, GABA and 5-HT receptors, and influences on neuroplasticity (primarily neurogenesis and synaptic density) and on neuronal network activity. The existing literature, although small, provides strong evidence that early life stress induces enduring, often robust effects on a range of electrophysiological properties, suggesting further study of enduring effects of early life stress employing electrophysiological methods and concepts will be productive in illuminating disease pathophysiology.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
32
|
Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression. J Psychiatr Res 2010; 44:511-20. [PMID: 20003989 DOI: 10.1016/j.jpsychires.2009.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 01/24/2023]
Abstract
Stress has been shown to interact with genetic vulnerability in pathogenesis of psychiatric disorders. Here we investigated the outcome of interaction between genetic vulnerability and early-life stress, by employing a rodent model that combines an inherited trait of vulnerability in Flinders Sensitive Line (FSL) rats, with early-life stress (maternal separation). Basal differences in synaptic signaling between FSL rats and their controls were studied, as well as the consequences of early-life stress in adulthood, and their response to chronic antidepressant treatment (escitalopram). FSL rats showed basal differences in the activation of synapsin I and Erk1/2, as well as in alpha CaM kinase II/syntaxin-1 and alpha CaM kinase II/NMDA-receptor interactions in purified hippocampal synaptosomes. In addition, FSL rats displayed a blunted response of Erk-MAP kinases and other differences in the outcome of early-life stress in adulthood. Escitalopram treatment restored some but not all alterations observed in FSL rats after early-life stress. The marked alterations found in key regulators of presynaptic release/neurotransmission in the basal FSL rats, and as a result of early-life stress, suggest synaptic dysfunction. These results show that early gene-environment interaction may cause life-long synaptic changes affecting the course of depressive-like behavior and response to drugs.
Collapse
|
33
|
Kawano KI, Morinobu S, Sawada T, Tsuji S, Erabi K, Fuchikami M, Kozuru T, Yamawaki S, Hisaoka K, Takebayashi M. Prior neonatal isolation reduces induction of NGF mRNA and decreases GDNF mRNA in the hippocampus of juvenile and adult rodents subjected to immobilization stress. Synapse 2008; 62:259-67. [DOI: 10.1002/syn.20487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Blaise JH, Koranda JL, Chow U, Haines KE, Dorward EC. Neonatal isolation stress alters bidirectional long-term synaptic plasticity in amygdalo-hippocampal synapses in freely behaving adult rats. Brain Res 2008; 1193:25-33. [DOI: 10.1016/j.brainres.2007.11.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/29/2007] [Accepted: 11/27/2007] [Indexed: 01/08/2023]
|
35
|
Kosten TA, Karanian DA, Yeh J, Haile CN, Kim JJ, Kehoe P, Bahr BA. Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience. Neurobiol Learn Mem 2007; 88:167-76. [PMID: 17543553 DOI: 10.1016/j.nlm.2007.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/25/2022]
Abstract
Early life events have profound consequences. Our research demonstrates that the early life stress of neonatal isolation (1-h individual isolation on postnatal days 2-9) in rats has immediate and enduring neural and behavioral effects. Recently, we showed neonatal isolation impaired hippocampal-dependent context conditioned fear in adult rats. We now expand upon this finding to test whether neonatal isolation impairs performance in inhibitory avoidance and in the non-aversive, hippocampal-dependent object recognition task. In addition to assessments of hippocampal-dependent memory, we examined if neonatal isolation results in cellular alterations in the adult hippocampus. This was measured with antibodies that selectively label calpain-mediated spectrin breakdown product (BDP), a marker of cytoskeletal modification that can have neuronal consequences. Neonatally isolated male and female rats showed impaired performance in both memory tasks as well as elevated BDP levels in hippocampal immunoblot samples. In tissue sections stained for BDP, the cytoskeletal fragmentation was localized to pyramidal neurons and their proximal dendrites. Interestingly, the hippocampal samples also exhibited reduced staining for the postsynaptic marker, GluR1. Neonatal isolation may render those neurons involved in memory encoding to be vulnerable to calpain deregulation and synaptic compromise as shown previously with brain injury. Together with our prior research showing enhanced striatal-dependent learning and neurochemical responsivity, these results indicate that the early experience of neonatal isolation causes enduring yet opposing region-specific neural and behavioral alterations.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine and the Michael E. DeBakey VA Medical Center, Research Service Line (151), 2002 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Imanaka A, Morinobu S, Toki S, Yamamoto S, Matsuki A, Kozuru T, Yamawaki S. Neonatal tactile stimulation reverses the effect of neonatal isolation on open-field and anxiety-like behavior, and pain sensitivity in male and female adult Sprague-Dawley rats. Behav Brain Res 2007; 186:91-7. [PMID: 17854917 DOI: 10.1016/j.bbr.2007.07.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/23/2007] [Accepted: 07/28/2007] [Indexed: 11/24/2022]
Abstract
It is well known that early life events induce long-lasting psychophysiological and psychobiological influences in later life. In rodent studies, environmental enrichment after weaning prevents the adulthood behavioral and emotional disturbances in response to early adversities. We compared the behavioral effect of neonatal isolation (NI) with the effect of NI accompanied by tactile stimulation (NTS) to determine whether NTS could reverse or prevent the effects of NI on the adulthood behavioral and emotional responses to environmental stimuli. In addition, we also examined the sex difference of the NTS effect. Measurements of body weights, an open-field locomotor test, an elevated plus maze test, a hot-plate test, and a contextual fear-conditioning test were performed on postnatal day 60. As compared with rats subjected to NI, rats subjected to NTS showed significantly higher activity and exploration in the open-field locomotor test, lower anxiety-like behavior in the elevated plus maze test, and significantly prolonged latencies in the hot-plate test, and this effect was equal among males and females. In the contextual fear-conditioning test, whereas NTS significantly reduced the enhanced freezing time due to NI in females, no significant difference in the freezing time between NI and NTS was found in males. These findings indicate that adequate tactile stimulation in early life plays an important role in the prevention of disturbances in the behavioral and emotional responses to environmental stimuli in adulthood induced by early adverse experiences.
Collapse
Affiliation(s)
- A Imanaka
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, 734-8551 Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
UNLABELLED Seizures in neonates (NBs) remain the most frequent neurological problem in the nursery. Considerable debate about their consequences exists between data and deductions reached through animal experimentations and those obtained through clinical investigations. The main conflicting issues are whether seizures in NBs can plant the roots for epileptogenesis and cause long-term deficits. The purpose of this chapter is to evaluate both laboratory and clinical results. METHODS Clinical data will be presented, including a 20-year-long cohort of NBs. This will be followed by the main seminal discoveries obtained in neonatal models. The phenomenon of transient or persistent dysmaturity following NB seizures will be discussed in relation to etiological factors. RESULTS The findings and deductions from animal models support the notions that epileptogenesis and cognitive deficits result from NB seizures. These conclusions contrast with clinical investigations maintaining that NB seizures, per se, are symptomatic markers of preexisting or of ongoing morbidities. The reasons for contrasting views will be discussed. Suggestions will be advanced for more animal models whose seizures are consistent with the etiologies and the phenotypes of human NB seizures.
Collapse
Affiliation(s)
- Cesare T Lombroso
- Department of Neurology, Children's Hospital and Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
38
|
Knuth ED, Etgen AM. Long-term behavioral consequences of brief, repeated neonatal isolation. Brain Res 2006; 1128:139-47. [PMID: 17125746 PMCID: PMC1805632 DOI: 10.1016/j.brainres.2006.10.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 10/12/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
Rats subjected to stressful stimuli during the stress hyporesponsive period exhibit varied neuroendocrine and behavioral changes as neonates, adolescents and adults. The current work examined the effects of neonatal isolation stress, using a within-litter design, on adult anxiety-related behavior and endocrine stress reactivity. Neonatal rats were isolated daily for 1 h from postnatal day (P) 4 to 9, a manipulation previously shown to induce hypothalamic-pituitary-adrenal (HPA) responses on P9 (Knuth, E.D., Etgen, A.M. (2005) Corticosterone secretion induced by chronic isolation in neonatal rats is sexually dimorphic and accompanied by elevated ACTH. Horm Behav 47:65-75.). Control animals were either handled briefly or left undisturbed (with-dam). Adult rats were tested for anxiety-related behavior using the elevated plus maze and open field, and for endocrine responses following restraint stress. Neonatal isolation decreased center exploration of the open field following 1 h restraint, including decreased time in the center compared to with-dam or handled controls and decreased center entries and distance traveled in the center compared to with-dam controls. It also decreased time in and entries into the open arms of the elevated plus maze compared to handled controls, suggesting enhanced anxiety-related behavior. Neonatal isolation had no effect on basal or restraint-induced levels of ACTH or corticosterone. These findings indicate that neonatal isolation may enhance anxiety-related behaviors, especially in response to stress, without altering HPA function.
Collapse
Affiliation(s)
- Emily D Knuth
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 113, Bronx, NY 10461, USA
| | | |
Collapse
|
39
|
Imanaka A, Morinobu S, Toki S, Yamawaki S. Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 2006; 173:129-37. [PMID: 16860405 DOI: 10.1016/j.bbr.2006.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/22/2022]
Abstract
A number of clinical studies in which early adversities were defined retrospectively, demonstrated that early adverse experiences increased the morbidity rate of post-traumatic stress disorder (PTSD) in later life. However, no prospective studies have yet been conducted to elucidate whether early adversity affects the risk or severity of PTSD. Thus, we examined whether early adversity would strengthen the severity of PTSD symptoms in later life by using neonatal isolation (NI) and single prolonged stress (SPS) as an animal model of PTSD. We measured anxiety-like behavior in the elevated plus maze (EPM), contextual freezing in the contextual fear (CF) test, and analgesia in the flinch-jump and hot-plate tests in four groups of adult rats (sham, NI, SPS, and NI+SPS). NI significantly enhanced the SPS-induced decrease in the percentage of open arm time and open arm entries in the EPM, enhanced the SPS-induced increase in contextual freezing, and strengthened SPS-induced analgesia, without any changes in locomotor activity in the open field locomotor test. In addition, we examined the effect of environmental enrichment (EE). Repeated exposure to EE ameliorated the NI-induced enhancement of contextual freezing, but not anxiety-like behavior or analgesia, in response to SPS. The results of the present study demonstrated that while early adversity strengthened PTSD-like symptoms, EE alleviated the enhanced contextual freezing by NI and SPS. These findings suggest that early adversity may worsen dysfunction of the amygdala and hippocampus in PTSD, and an early intervention may alleviate the early adversity-mediated enhancement of hippocampal dysfunction in PTSD.
Collapse
Affiliation(s)
- Akihiro Imanaka
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, 734-8551 Hiroshima, Japan
| | | | | | | |
Collapse
|
40
|
Akers KG, Nakazawa M, Romeo RD, Connor JA, McEwen BS, Tang AC. Early life modulators and predictors of adult synaptic plasticity. Eur J Neurosci 2006; 24:547-54. [PMID: 16903856 DOI: 10.1111/j.1460-9568.2006.04921.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Early life experience can induce long-lasting changes in brain and behaviour that are opposite in direction, such as enhancement or impairment in regulation of stress response, structural and functional integrity of the hippocampus, and learning and memory. To explore how multiple early life events jointly determine developmental outcome, we investigated the combined effects of neonatal trauma (anoxia on postnatal day 1, P1) and neonatal novelty exposure (P2-21) on adult social recognition memory (3 months of age) and synaptic plasticity in the CA1 of the rat hippocampus (4.5-8 months of age). While neonatal anoxia selectively reduced post-tetanic potentiation (PTP), neonatal novel exposure selectively increased long-term potentiation (LTP). No interaction between anoxia and novelty exposure was found on either PTP or LTP. These findings suggest that the two contrasting neonatal events have selective and distinct effects on two different forms of synaptic plasticity. At the level of behaviour, the effect of novelty exposure on LTP was associated with increased social memory, and the effect of anoxia on PTP was not accompanied by changes in social memory. Such a finding suggests a bias toward the involvement of LTP over PTP in social memory. Finally, we report a surprising finding that an early behavioural measure of emotional response to a novel environment obtained at 25 days of age can predict adult LTP measured several months later. Therefore, individual differences in emotional responses present during the juvenile stage may contribute to adult individual differences in cellular mechanisms that underlie learning and memory.
Collapse
Affiliation(s)
- Katherine G Akers
- Department of Psychology, University of New Mexico, Albuquerque, 87131, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
It is now well-documented that exposures to uncontrollable (inescapable and unpredictable) stress in adulthood can have profound effects on brain and behavior. Converging lines of evidence from human and animal studies indicate that stress interferes with subsequent performances on a variety of hippocampal-dependent memory tasks. Animal studies further revealed that stress impedes ensuing induction of long-term potentiation (LTP) in the hippocampus. Because the hippocampus is important for key aspects of memory formation and because LTP has qualities congruent to an information storage mechanism, it is hypothesized that stress-induced modifications in hippocampal plasticity contribute to memory impairments associated with stress. Recent studies provide evidence that the amygdala, a structure important in stress- and emotion-related behaviors, plays a necessary role in the emergence of stress-associated changes in hippocampal LTP and memory. Early life stress also alters hippocampal plasticity and memory in a manner largely consistent with effects of adult stress exposure. This review focuses on endocrine-system-level mechanisms of stress effects in the hippocampus, and how stress, by altering the property of hippocampal plasticity, can subsequently influence hippocampal memory.
Collapse
Affiliation(s)
- Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1520, USA.
| | | | | |
Collapse
|
42
|
Bartesaghi R, Raffi M, Ciani E. Effect of early isolation on signal transfer in the entorhinal cortex–dentate–hippocampal system. Neuroscience 2006; 137:875-90. [PMID: 16325342 DOI: 10.1016/j.neuroscience.2005.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/29/2005] [Accepted: 10/18/2005] [Indexed: 11/24/2022]
Abstract
Deprivation of socio-sensory interactions during early life impairs brain function in adulthood. In previous investigations we showed that early isolation severely affects neuron development in several structures of the hippocampal region, including the entorhinal cortex. In the present study we investigated the effects of early isolation on signal processing along the entorhinal cortex-dentate-CA3-CA1 system, a major memory circuit of the hippocampal region. Male and female guinea-pigs were assigned at 6-7 days of age to either a social or an isolated environment. At 90-100 days of age the animals were anesthetized and field potentials were recorded from the entorhinal cortex-dentate-CA3-CA1 circuit, driven by dorsal psalterium commissural volleys. Analysis of the input-output function in the different structures showed that in isolated males there was a small reduction in the input-output function of the population excitatory postsynaptic potential and population spike evoked in layer II of the entorhinal cortex. No changes occurred in isolated females. In isolated males and females there was a reduction in the input-output function of the population excitatory postsynaptic potential and population spike evoked in the dentate gyrus, CA3 and CA1, but this effect was larger in males. In isolated males, but not in females, the population spike/population excitatory postsynaptic potential ratio was reduced in all investigated structures, indicating that in males the size of the discharged neuron population was reduced more than due to the decreased input. Results show that isolation reduces the synaptic function in the whole entorhinal cortex-dentate gyrus-CA3-CA1 system. While the entorhinal cortex was moderately impaired, the dentate-hippocampal system was more severely affected. The impairment in the signal transfer along the entorhinal cortex-dentate gyrus-CA3-CA1 system was heavier in males, confirming the larger susceptibility of this sex to early experience. This work provides evidence that malfunctioning of a major hippocampal network may underlie the learning deficits induced by impoverished surroundings during early life.
Collapse
Affiliation(s)
- R Bartesaghi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Piazza di Porta San Donato 2, I-40126 Bologna, Italy.
| | | | | |
Collapse
|
43
|
Avital A, Ram E, Maayan R, Weizman A, Richter-Levin G. Effects of early-life stress on behavior and neurosteroid levels in the rat hypothalamus and entorhinal cortex. Brain Res Bull 2005; 68:419-24. [PMID: 16459196 DOI: 10.1016/j.brainresbull.2005.09.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 09/19/2005] [Accepted: 09/28/2005] [Indexed: 11/18/2022]
Abstract
Recent evidence support the hypothesis that exposure to stress or trauma during early childhood may disturb the formation of functional brain pathways, in particular, of the limbic circuits. We examined the effects of exposure to early life trauma (juvenile stress) on emotional and cognitive aspects of behavior in adulthood as well as on dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) levels in relevant brain regions. Quantitative assessment of the effects of exposure to juvenile stress was made 1 month post-stress, and obtained by measuring: emotional (utilizing an open field and a startle response tests) and cognitive (Morris water-maze task) functions, as well as neurosteroids concentration (DHEA and its sulfate ester, DHEAS) in the hypothalamus and entorhinal cortex. We report here that an exposure to juvenile stress led to elevated levels of anxiety 1 month post-stress. Moreover, in a spatial learning task, the juvenile stress group performed poorer than the control group. Finally, an exposure to juvenile stress increased DHEAS but not DHEA concentrations both in the hypothalamus and the entorhinal cortex. These findings indicate that an exposure to juvenile stress has long-lasting effects on behavior and DHEAS levels in the hypothalamus and the entorhinal cortex. These effects may be of relevance to our understanding of early life stress-related disorders such as PTSD and major depression.
Collapse
Affiliation(s)
- Avi Avital
- Department of Psychology and The Brain & Behavior Research Center, University of Haifa, Mount Carmel, 31905 Haifa, Israel
| | | | | | | | | |
Collapse
|
44
|
Lynch WJ, Mangini LD, Taylor JR. Neonatal isolation stress potentiates cocaine seeking behavior in adult male and female rats. Neuropsychopharmacology 2005; 30:322-9. [PMID: 15508022 DOI: 10.1038/sj.npp.1300594] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Little is known with regard to how sex and stress might interact as vulnerability factors in cocaine abuse. In this study, we compared the effects of neonatal isolation stress on cocaine self-administration under extended access conditions and on subsequent responding in a cue-induced reinstatement paradigm in adult male and female rats. Pups from each litter were subjected to either neonatal isolation (1 h/day) or brief daily handling from postnatal day 2 through 12. Adults rats were then trained to self-administer cocaine, and once they acquired lever responding for cocaine under a fixed ratio 1 schedule, they were given 24-h access to intravenous cocaine infusions (1.5 mg/kg) that were available in discrete trials (4, 10 min trials/h) for 7 consecutive days. At 10 days after the last discrete trial session, responding was assessed during six to eight 1-h extinction sessions that were followed by a 1-h cue-induced reinstatement session. Results revealed that females took more cocaine than did males over the 7-day discrete trial self-administration period and tended to respond at higher levels during the initial extinction sessions. Although intake did not differ between handled control rats and isolated rats under extended access conditions, stress effects were observed under subsequent extinction and cue-induced reinstatement testing conditions with isolated rats responding at higher levels during both phases. Notably, stress seemed to obscure sex differences in extinction responding such both isolated males and females responded at high levels. These findings demonstrate robust and enduring effects of neonatal isolation stress on cocaine seeking behavior in adult male and female rats.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry, Yale University, New Haven, CT 06513, USA.
| | | | | |
Collapse
|
45
|
Kusaka K, Morinobu S, Kawano KI, Yamawaki S. Effect of neonatal isolation on the noradrenergic transduction system in the rat hippocampal slice. Synapse 2004; 54:223-32. [PMID: 15484210 DOI: 10.1002/syn.20086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous studies suggest that early adverse experiences induce neurochemical, morphological, and functional changes in the hippocampus in adolescence and adulthood. The aim of this study was to identify the influence of neonatal isolation (NI) on noradrenaline (NA)-mediated intracellular calcium ([Ca(2+)](i)) mobilization. To measure [Ca(2+)](i), we used the Ca(2+)-sensitive dye fura-2 and analysis by fluorescence microscopy. First, we examined the contributions of adrenergic receptor subtypes to the NA-stimulated increase in [Ca(2+)](i) in the granule cell layers of the dentate gyrus (DG) and in the pyramidal cell layers of the CA3 in the hippocampus. Second, we found that the NA-stimulated [Ca(2+)](i) increment was significantly decreased in response to NI in these hippocampal regions. In addition, we examined the influence of environmental enrichment (EE) after weaning on the decrease in the NA-stimulated [Ca(2+)](i) increment induced by NI. The administration of EE reversed the influence of NI on the NA-stimulated [Ca(2+)](i) increment in the CA3 pyramidal cell layer but not in the DG granular cell layer in the hippocampus. These findings suggest that NI and EE after weaning may modulate hippocampal function by altering adrenergic receptor-mediated signal transduction during adolescence.
Collapse
Affiliation(s)
- Kouji Kusaka
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
46
|
Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 2004; 124:71-9. [PMID: 14960340 DOI: 10.1016/j.neuroscience.2003.09.029] [Citation(s) in RCA: 584] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2003] [Indexed: 01/12/2023]
Abstract
We have previously shown that voluntary exercise produces enhanced neurogenesis and long-term potentiation (LTP) in the dentate gyrus (DG) of mice in vitro. In the present experiments we show that rats given access to a running wheel (Runners) exhibit significantly more short-term potentiation and LTP with theta-patterned conditioning stimulation in vivo than do age-matched litter mates (Controls). This increase in LTP appears to reflect an alteration in the induction threshold for synaptic plasticity that accompanies voluntary exercise. Weak theta-patterned stimulation, which did not produce LTP in control subjects, produced a robust and long-lasting LTP in Runners. LTP induction in both groups was dependent upon the activation of N-methyl-D-aspartate (NMDA) receptors, and could be blocked by the competitive antagonist [+/-]-3-[2-carboxypiperazin-4-yl] propanephosphonic acid. Consistent with these findings, we found that mRNA levels for NR2B subtype of NMDA receptor were increased specifically in the DG of Runners. In addition to changes in NR2B mRNA levels, quantitative polymerase chain reaction analysis revealed that brain-derived neurotrophic factor (BDNF) and glutamate receptor 5 mRNA levels were also significantly elevated in the DG of Runners, but not in other areas of the hippocampus. Thus, alterations in the expression of BDNF, and specific glutamate receptor subtypes, may underlie the ability of exercise to enhance neurogenesis and reduce the threshold for LTP in the DG.
Collapse
Affiliation(s)
- J Farmer
- Department of Psychology, Division of Neuroscience and The Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
47
|
Yorns WR, Blaise JH, Bronzino JD. Frequency-dependent changes in the paired-pulse index in the hippocampus of the freely moving adult male rat. Exp Neurol 2004; 186:104-8. [PMID: 14980815 DOI: 10.1016/j.expneurol.2003.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 06/16/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
The paired-pulse index (PPI) has been widely used as a measure of modulation of cellular excitability in the hippocampal trisynaptic circuit. This paper presents a quantification of the changes in this measure of neuronal modulation as a result of the application of pulse trains having six different train frequencies (0.1, 1, 5, 8, 15, and 30 Hz) to one of the major efferent pathways to the dentate gyrus, the medial perforant path (MPP). Our findings indicate that the modulation of the first leg of the hippocampal trisynaptic circuit is dependent on the frequency of the "burst train" applied to the perforant pathway. This methodological finding is of importance to all investigators studying hippocampal plasticity via LTP or LTD approaches. The different synaptic mechanisms implicated in being responsible for the changes in the PPI are also discussed.
Collapse
Affiliation(s)
- W R Yorns
- Department of Engineering, Trinity College, Hartford, CT 006106-3100, USA.
| | | | | |
Collapse
|
48
|
Guo M, Wu CF, Liu W, Yang JY, Chen D. Sex difference in psychological behavior changes induced by long-term social isolation in mice. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:115-21. [PMID: 14687865 DOI: 10.1016/j.pnpbp.2003.09.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Social isolation can induce psychological behavior changes. It is interesting to know whether there is sex difference in responding to social isolation or not. The present study compared the behavior difference between male and female mice isolated for 1-4 months. The results showed that the isolated male mice had higher accounts of locomotor activity than the isolated female and group-housed ones. Both isolated male and female mice spent shorter time in the dark box than the group-housed mice in the light/dark test, and isolated male mice spent less time in the closed arms than isolated female and group-housed mice when isolated for 2, 3 and 4 months in the elevated plus-maze test. These results suggest that isolation induce an anxiolytic-like effect. The immobile time in the forced swimming test was shortened in male mice isolated for 1 and 2 months. Both isolated male and female mice showed shorter time in pentobarbital-induced loss of righting reflex and less body weight gain. These results demonstrated that there was a sex difference in psychological behavior changes in mice undergoing social isolation and the male mice were more easily affected by isolation.
Collapse
Affiliation(s)
- Ming Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | |
Collapse
|
49
|
Bartesaghi R. Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig. Hippocampus 2004; 14:482-98. [PMID: 15224984 DOI: 10.1002/hipo.10201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously reported that neonatal isolation shapes neuron morphology remarkably in the dentate gyrus and hippocampus of the guinea pig, a precocial rodent whose brain is at an advanced stage of maturation at birth. The aim of the present work was to investigate the effects of early isolation on the physiology of the hippocampal trisynaptic circuit. Male and female guinea pigs were assigned at 6-7 days of age to either a social or an isolated environment. After 90-100 days, the animals were anesthetized and electrophysiological experiments were carried out. The monosynaptic response evoked by medial perforant path stimulation in the dentate gyrus (DG) and the following response trisynaptically evoked in field CA1 by the DG-CA3 system were evaluated with several stimulus protocols: (1) current source-density (CSD) analysis; (2) input/output function; (3) paired-pulse potentiation (PPP); and (4) long-term potentiation (LTP). Isolated animals exhibited a reduction in the magnitude of the current sinks in the middle molecular layer and granule cell layer of the DG and in the input/output function of the granule cell population excitatory postsynaptic potential (EPSP) and population spike (PS) over a wide range of stimuli. The latter effect was larger in males. The ratio between the PS and EPSP of the granule cells was reduced in isolated compared to control males, but the opposite occurred in females. Isolation affected PPP of the granule cell response in males only, causing a larger facilitation of the PS. No isolation-related effects were found in the magnitude of the LTP of the DG response in either sex. Isolated animals exhibited a reduction in the current sinks in stratum radiatum and stratum pyramidale of field CA1 and in the input/output function of the EPSP and PS of field CA1. These effects were larger in males. The results show that early isolation causes a reduction in the synaptic function of the DG-CA3-CA1 system, driven by perforant path volleys. The isolation-induced impairment in signal processing along the hippocampal network suggests that the outcome of early isolation may be an impairment in the memory functions in which the entorhinal-hippocampal system plays a key role.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Bologna, Italy.
| |
Collapse
|
50
|
Zimmerberg B, Rosenthal AJ, Stark AC. Neonatal social isolation alters both maternal and pup behaviors in rats. Dev Psychobiol 2003; 42:52-63. [PMID: 12471636 DOI: 10.1002/dev.10086] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of emotional behavior is dependent on the early experiences of the infant and the quality of maternal care. In these experiments, the effects of social isolation during the preweaning period on both pup behavior and maternal responsivity were examined. In the first study, the number of ultrasonic vocalizations (USVs) emitted after brief maternal separation was measured in neonatal rats with differing histories of social isolation. The social isolation procedure consisted of 5 days of daily separation from the dam and littermates for either 3 or 6 hr. At both ages tested, socially isolated pups vocalized significantly less than control pups. In the second study, the effects of prior isolation either daily for 5 previous days (Chronic Isolation) or for 4 hr prior to testing (Acute Isolation) were examined in a T-maze choice test. Pup vocalizations in the presence of the dam and dams' maternal behavior were assessed. When the dam was confined to the start box or during the maternal free access period, both Chronic and Acute Isolates vocalized less than pups that had never left the home nest. Dams spent more time with and licked and groomed more frequently and for a longer time both Chronic and Acute Isolates compared to pups that had always been with dams in the home nest. These results suggest that early isolation experience can alter subsequent responses to separation stress in neonatal rats and that maternal behavior is sensitive to the prior experiences of offspring.
Collapse
Affiliation(s)
- Betty Zimmerberg
- Department of Psychology, Williams College, Williamstown, MA 01267, USA
| | | | | |
Collapse
|