1
|
Vu CB, Pan D, Peng B, Kumaravel G, Smits G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Grant D, Hetu G, Petter RC. Novel diamino derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine as potent and selective adenosine A2a receptor antagonists. J Med Chem 2005; 48:2009-18. [PMID: 15771443 DOI: 10.1021/jm0498396] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Piperazine derivatives of 2-furanyl[1,2,4]triazolo[1,5-a][1,3,5]triazine have recently been demonstrated to be potent and selective adenosine A(2a) receptor antagonists with oral activity in rodent models of Parkinson's disease. We have replaced the piperazinyl group with a variety of linear, monocyclic, and bicyclic diamines. Of these diamines, (R)-2-(aminomethyl)pyrrolidine is a particularly potent and selective replacement for the piperazinyl group. With this diamine component, we have been able to prepare numerous analogues with low nanomolar affinity toward the A(2a) receptor and good selectivity with respect to the A(1) receptor (>200-fold in some cases). Selected analogues from this series of [1,2,4]triazolo[1,5-a][1,3,5]triazine have now been shown to be orally active in the mouse catalepsy model.
Collapse
Affiliation(s)
- Chi B Vu
- Department of Medicinal Chemistry, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Morelli M, Wardas J. Adenosine A(2a) receptor antagonists: potential therapeutic and neuroprotective effects in Parkinson's disease. Neurotox Res 2001; 3:545-56. [PMID: 15111244 DOI: 10.1007/bf03033210] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most effective treatment of Parkinson's disease (PD) is, at present, the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA), however a number of disadvantages such as a loss of drug efficacy and severe side-effects (psychoses, dyskinesias and on-off phenomena) limit long-term effective utilisation of this drug. Recent experimental studies in which selective antagonists of adenosine A(2A) receptors were used, have shown an improvement in motor disabilities in animal models of PD. The A(2A) antagonist [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine] (SCH 58261) potentiated the contralateral turning behavior induced by a threshold dose of L-DOPA or direct dopamine receptor agonists in unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, an effect accompanied by an increase in Fos-like-immunoreactivity in neurons of the lesioned striatum. Likewise, other A(2A) receptor antagonists such as (3,7-dimethyl-1-propargylxanthine) (DMPX), [E-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine] (KF 17837) and [E-1,3-diethyl-8(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6-dione] (KW 6002) antagonized catalepsy induced by haloperidol or reserpine in the rat, whereas in non-human primate models of PD, KW 6002 reduced the rigidity and improved the disability score of MPTP-treated marmosets and cynomolgus monkeys. Moreover, in contrast to L-DOPA, selective A(2A) receptor antagonists administered chronically did not produce dyskinesias and did not evoke tolerance in 6-OHDA and MPTP models of PD. An additional therapeutic potential of adenosine A(2A) antagonists emerged from studies showing neuroprotective properties of these compounds in animal models of cerebral ischemia and excitotoxicity, as well as in the MPTP model of PD. Adenosine A(2A) receptor antagonists by reversing motor impairments in animal models of PD and by contrasting cell degeneration are some of the most promising compounds for the treatment of PD.
Collapse
Affiliation(s)
- M Morelli
- Department of Toxicology, University of Cagliari, Palazzo delle Scienze, Via Ospedale 72, 09124, Cagliari, Italy
| | | |
Collapse
|
3
|
Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Ådén U, Svenningsson P. Adenosine receptor signaling in vitro and in vivo. Drug Dev Res 2001. [DOI: 10.1002/ddr.1124] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Pinna A, Fenu S, Morelli M. Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 2001; 39:233-8. [PMID: 11284438 DOI: 10.1002/1098-2396(20010301)39:3<233::aid-syn1004>3.0.co;2-k] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several evidences indicate that the selective blockade of adenosine A2A receptors counteracts the motor activity impairment in experimental models of Parkinson's disease. In the present study, the effects of the adenosine A2A receptor antagonist, SCH 58261 (5-amino-7-beta-phenylethyl)-2-(8-furyl)pyrazolo(4,3-e)-1,2,4-triazolo(1,5-c)pyrimidine, were assessed following a repeated treatment schedule in the contralateral turning behavior rat model of Parkinson's disease. Unilateral lesions of the nigrostriatal pathway were induced by injecting 6-hydroxydopamine (6-OHDA in medial forebrain bundle. Repeated administration of SCH 58261 was performed either alone (7 and 14 days repeated SCH 58261) or together with L-dopa (19 days repeated SCH 58261 plus L-dopa or L-dopa alone). After a 7- and 14-day repeated administration schedule, SCH 58261 (5 mg/kg) maintained its ability to potentiate the contralateral turning behavior induced by a subthreshold dose of L-dopa (2 mg/kg i.p.), showing no tolerance to its stimulant effects. SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) or L-dopa (6 mg/kg) alone induced, at these dosages, the same number of contralateral turnings after the first administration. While chronic intermittent SCH 58261 plus L-dopa did not lead to a modified turning behavior during treatment, L-dopa alone produced a progressive increase in turning behavior intensity and duration. These results provide evidence that SCH 58261 retains its ability to potentiate L-dopa effects in a validated rat model of Parkinson's disease even after repeated treatments. Moreover, these results suggest that adenosine A2A blockade prevents the appearance of motor response alterations in L-dopa-treated rats, supporting the concept that A2A receptor antagonists have a therapeutic potential for the treatment of Parkinson's disease
Collapse
Affiliation(s)
- A Pinna
- Department of Toxicology, University of Cagliari, Italy
| | | | | |
Collapse
|
5
|
Morelli M, Pinna A. Modulation by adenosine A2A receptors of dopamine-mediated motor behavior as a basis for antiparkinson?s disease drugs. Drug Dev Res 2001. [DOI: 10.1002/ddr.1138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, Varani K, Monopoli A, Matarrese M, Carpinelli A, Magni F, Kienle MG, Fazio F. Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography. J Med Chem 2000; 43:4359-62. [PMID: 11087559 DOI: 10.1021/jm0009843] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S Todde
- CNR-INB, University of Milano-Bicocca, Scientific Institute H San Raffaele, Via Olgettina 60, I-20132 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fenu S, Cauli O, Morelli M. Cross-sensitization between the motor activating effects of bromocriptine and caffeine: role of adenosine A(2A) receptors. Behav Brain Res 2000; 114:97-105. [PMID: 10996051 DOI: 10.1016/s0166-4328(00)00190-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acute motor response to caffeine was studied in rats repeatedly treated with vehicle or the dopamine D(2) agonist bromocriptine either in a novel cage or in the home cage. Rats receiving bromocriptine (5 mg/kg i.p.) in a novel cage were sensitized to the motor stimulating effects of bromocriptine itself and showed cross-sensitization to the acute administration of low (10 mg/kg s.c. ) but not high (25 mg/kg s.c.) doses of caffeine, no matter if the novel cage was identical or different from the test cage. In contrast, caffeine (10 mg/kg i.p.) administered to rats which had received bromocriptine (5 mg/kg i.p.) in the home cage and which showed no sign of a sensitized response to bromocriptine, failed to show an increased locomotor and stereotyped response as compared to vehicle pretreated rats. Similarly to caffeine, the selective adenosine A(2A) antagonist SCH 58261 (3 mg/kg i.p.) showed an increased motor response in bromocriptine sensitized rats. The sensitized response to caffeine or SCH 58261 did not appear to be due to an higher basal motor activity of bromocriptine sensitized rats since acute administration of vehicle induced a similar motor response in bromocriptine and vehicle pretreated rats. Dopamine D(2) and adenosine A(2A) receptors are colocalized in striatal efferent neurons where they control in an opposite direction motor behavior. The results of the present study showed that changes in the sensitivity of D(2) receptors influenced the sensitivity of the adenosine antagonist caffeine through an action on A(2A) receptors. D(2) and A(2A) receptors, therefore, not only acutely interact in the mediation of motor behavior but long-term modification of the D(2) receptors, such as sensitization, affected the response of adenosine A(2A) receptors.
Collapse
Affiliation(s)
- S Fenu
- Department of Toxicology, University of Cagliari, Viale A. Diaz 182, 09126, Cagliari, Italy
| | | | | |
Collapse
|
8
|
Abbracchio MP, Cattabeni F. Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N Y Acad Sci 2000; 890:79-92. [PMID: 10668415 DOI: 10.1111/j.1749-6632.1999.tb07983.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine acts as a neurotransmitter in the brain through the activation of four specific G-protein-coupled receptors (the A1, A2A, A2B, and A3 receptors). The A1 receptor has long been known to mediate neuroprotection, mostly by blockade of Ca2+ influx, which results in inhibition of glutamate release and reduction of its excitatory effects at a postsynaptic level. However, the development of selective A1 receptor agonists as antiischemic agents has been hampered by their major cardiovascular side effects. More recently, apparently deleterious effects have been reported following the activation of other adenosine receptor subtypes, namely, the A2A and the A3 receptors. In particular, selective A2A receptor antagonists have been demonstrated to markedly reduce cell death associated with brain ischemia in the rat, suggesting that the cerebral A2A receptor may indeed contribute to the development of ischemic damage. The beneficial effects evoked by A2A antagonists may be due to blockade of presynaptic A2A receptors (which are stimulatory on glutamate release) and/or to inhibition of A2A receptor-mediated activation of microglial cells. Even more puzzling data have been reported for the A3 receptor subtype, which can indeed mediate both cell protection and cell death, simply depending upon the degree of receptor activation and/or specific pathophysiological conditions. In particular, a mild subthreshold activation of this receptor has been associated with a reinforcement of the cytoskeleton and reduction of spontaneous apoptosis, which may play a role in "ischemic preconditioning" of the brain, according to which a short ischemic period may protect the brain from a subsequent, sustained ischemic insult that would be lethal. In contrast, a robust and prolonged activation of the A3 receptor has been shown to trigger cell death by either necrosis or apoptosis. Such apparently opposing actions may be reconciled by hypothesizing that adenosine-mediated cell killing during ischemia may be aimed at isolating the most damaged areas to favor those parts of the brain that still retain a chance for functional recovery. In fact, both A3 receptor-mediated cell death and A2A receptor-mediated actions may be viewed as an attempt to selectively kill irreversibly damaged cells in the "core" ischemic area, in order to save space and energy for the surrounding live cells in the "pneumbra" area. Hence, the pharmacological modulation of the A2A and A3 receptors via selective ligands may represent a novel strategy in the therapeutic approach to pathologies characterized by acute or chronic neurodegenerative events.
Collapse
Affiliation(s)
- M P Abbracchio
- Institute of Pharmacological Sciences, University of Milan, Italy.
| | | |
Collapse
|
9
|
Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 2000; 43:440-8. [PMID: 10669571 DOI: 10.1021/jm9911480] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-soluble prodrugs of potent, A(2A)-selective adenosine receptor (AR) antagonists were prepared. 8-(m-Bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX, 11) and the analogous 8-(m-methoxystyryl)xanthine derivative (MS-DMPX, 5b) were used as starting points. It was found that polar functional groups suitable for the attachment of a prodrug moiety were tolerated on the styryl ring and even better on the 3-substituent. 8-(m-Hydroxystyryl)-DMPX (7) and 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-1-propargylxanthine (5e, MSX-2) were the most potent and A(2A)-selective compounds and were selected for prodrug formation. For the preparation of 5e a new ring-closure method was applied. Treatment of 6-amino-1-(3-hydroxypropyl)-5-(m-methoxycinnamoylamino)-3-propa rgylur acil with hexamethyldisilazane at high temperature resulted in higher yields of the target xanthine than the standard ring-closure procedure using sodium hydroxide. Phosphate prodrugs were prepared by classical phosphorylation using phosphorus oxychloride and alternatively by using a phosphoramidite method. Phosphates of the aliphatic alcohol 5e could be obtained by both methods in similar yields. The phenolic compound 7, however, could be phosphorylated only by using the phosphoramidite method. The disodium salts of the phosphate prodrugs exhibited high water solubility (8-(m-methoxystyryl)-7-methyl-3-[3-O-phosphatylpropyl]-1- propargylxan thine disodium salt, 9b: 17 mM, 9 mg/mL). Prodrug 9b was found to be stable in aqueous solution (pH 7) but readily cleaved by phosphatases to liberate 5e (MSX-2). Compound 5e showed high affinity for rat A(2A) AR (K(i) = 8 nM), human recombinant A(2A) AR (K(i) = 5 nM), and human native A(2A) AR (K(i) = 15 nM) and was highly selective versus rat A(1) AR (110-fold), human recombinant A(2A) AR (500-fold), human A(2B) AR (>2000-fold), and human A(3) AR (>2000-fold).
Collapse
Affiliation(s)
- R Sauer
- Institute of Pharmacy, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Acquas E, Fenu S, Loddo P, Di Chiara G. A within-subjects microdialysis/behavioural study of the role of striatal acetylcholine in D1-dependent turning. Behav Brain Res 1999; 103:219-28. [PMID: 10513590 DOI: 10.1016/s0166-4328(99)00038-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In rats lesioned with 6-hydroxydopamine (6-OHDA) the effect of the noncompetitive N-methyl D-aspartate (NMDA) receptor antagonist, MK-801, the dopamine (DA) D2 receptor agonist quinpirole and the A2A adenosine antagonist SCH 58261 was studied on acetylcholine (ACh) release in the lesioned striatum and contralateral turning behaviour stimulated by the administration of the DA D1 receptor agonist CY 208-243. Administration of CY 208-243 (75, 100 and 200 microg/kg) to 6-OHDA-lesioned rats dose-dependently stimulated ACh release and induced contralateral turning. MK-801 (50 and 100 microg/kg) reduced basal ACh release (max 22%) and did not elicit any turning. MK-801 (50 and 100 microg/kg) potentiated the contralateral turning, but failed to modify the stimulation of ACh release elicited by 100 and 200 microg/kg of CY 208-243. MK-801 (100 microg/kg) prevented the increase in striatal ACh release evoked by the lower dose of CY 208-243 (75 microg/kg) but contralateral turning was not observed. The D2 receptor agonist quinpirole (30 and 60 microg/kg) elicited low-intensity contralateral turning and decreased basal ACh release. Quinpirole potentiated the D1-mediated contralateral turning behaviour elicited by CY 208-243 (100 microg/kg), but failed to affect the increase in ACh release elicited by the D1 agonist. The adenosine A2A receptor antagonist SCH 58261 (1 microg/kg i.v.) failed per se to elicit contralateral turning behaviour. SCH 58261 potentiated the contraversive turning induced by CY 208-243 but failed to affect the increase of ACh release. The results of the present study indicate that blockade of NMDA receptors by MK-801. stimulation of DA D2 receptors by quinpirole and blockade of adenosine A2A receptors by SCH 58261 potentiate the D1-mediated contralateral turning behaviour in DA denervated rats without affecting the action of the D1 agonist on ACh release. These observations do not support the hypothesis that the potentiation of D1-dependent contralateral turning by MK-801, quinpirole or SCH 58261 is mediated by changes in D1-stimulated release of ACh in the striatum.
Collapse
Affiliation(s)
- E Acquas
- Department of Toxicology and CNR-Center for Neuropharmacology, University of Cagliari, Italy
| | | | | | | |
Collapse
|
11
|
M�ller CE, Sauer R, Maurinsh Y, Huertas R, F�lle F, Klotz KN, Nagel J, Hauber W. A2A-selective adenosine receptor antagonists: Development of water-soluble prodrugs and a new tritiated radioligand. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199811/12)45:3/4<190::aid-ddr16>3.0.co;2-a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Kim YC, de Zwart M, Chang L, Moro S, von Frijtag Drabbe Künzel JK, Melman N, IJzerman AP, Jacobson KA. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A2B and A3 receptor subtypes. J Med Chem 1998; 41:2835-45. [PMID: 9667972 DOI: 10.1021/jm980094b] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adenosine antagonist 9-chloro-2-(2-furanyl)[1,2,4]triazolo[1, 5-c]quinazolin-5-amine (CGS 15943) binds nonselectively to human A1, A2A, and A3 receptors with high affinity. Acylated derivatives and one alkyl derivative of the 5-amino group and other modifications were prepared in an effort to enhance A2B or A3 subtype potency. In general, distal modifications of the N5-substituent were highly modulatory to potency and selectivity at adenosine receptors, as determined in radioligand binding assays at rat brain A1 and A2A receptors and at recombinant human A3 receptors. In Chinese hamster ovary cells stably transfected with human A2B receptor cDNA, inhibition of agonist-induced cyclic AMP production was measured. An N5-(2-iodophenyl)acetyl derivative was highly selective for A2A receptors. An (R)-N5-alpha-methyl(phenylacetyl) derivative was the most potent derivative at A3 receptors, with a Ki value of 0.36 nM. A bulky N5-diphenylacetyl derivative, 13, displayed a Ki value of 0. 59 nM at human A3 receptors and was moderately selective for that subtype. Thus, a large, nondiscriminating hydrophobic region occurs in the A3 receptor in proximity to the N5-substituent. A series of straight-chain N5-aminoalkylacyl derivatives demonstrated that for A2B receptors the optimal chain length occurs with three methylene groups, i.e., the N5-gamma-aminobutyryl derivative 27 which had a pA2 value of 8.0 but was not selective for A2B receptors. At A1, A2A, and A3 receptors however the optimum occurs with four methylene groups. An N5-pivaloyl derivative, which was less potent than 27 at A1, A2A, and A3 receptors, retained moderate potency at A2B receptors. A molecular model of the 27-A2B receptor complex based on the structure of rhodopsin utilizing a "cross-docking" procedure was developed in order to visualize the environment of the ligand binding site.
Collapse
Affiliation(s)
- Y C Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Barbieri D, Abbracchio MP, Salvioli S, Monti D, Cossarizza A, Ceruti S, Brambilla R, Cattabeni F, Jacobson KA, Franceschi C. Apoptosis by 2-chloro-2'-deoxy-adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochem Int 1998; 32:493-504. [PMID: 9676749 PMCID: PMC6906928 DOI: 10.1016/s0197-0186(97)00129-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adenosine has profound effects on immune cells and has been implicated in the intrathymic apoptotic deletion of T-cells during development. In order to characterize adenosine effects on quiescent peripheral blood mononuclear cells (PBMC), we have evaluated the ability of the previously characterized adenosine receptor agonist 2-chloro-adenosine (2CA; Ceruti, Barbieri et al., 1997) and of the antineoplastic drug 2-chloro-2'-deoxy-adenosine (2CdA, cladribine) to trigger apoptosis of PBMC. Apoptosis was assessed by morphological changes, DNA fragmentation by agarose gel electrophoresis and appearance of hypodiploid DNA peak by flow cytometry. 2CA (10 microM) and 2CdA (1 microM) induced apoptosis in human PBMC, which are relatively insensitive to apoptosis. For both agents, the effect was concentration- and time-dependent, although 2CdA induced apoptosis more potently than 2CA. Evaluation of mitochondrial function in parallel samples using the mitochondrial membrane-potential-specific dye JC-1 showed that mitochondrial damage followed the same kinetics as apoptosis, hence an early damage of mitochondria is likely not responsible for adenosine-induced death of PBMC. The effect of 2CA was partially prevented by addition of dipyridamole (DP), a nucleoside transport inhibitor, hence some of the apoptotic effect of this nucleoside is, at least in part, due to intracellular action. Alternatively, DP did not affect 2CdA-induced apoptosis, suggesting that 2CdA may enter cells via a DP-insensitive transporter. 5-Iodotubercidin (5-Itu), a nucleoside kinase inhibitor, was also able to partially prevent the action of 2CA and was not able to affect 2CdA-induced apoptosis, suggesting a different role for phosphorylation in 2CA- vs 2CdA-induced apoptosis. To test the role of P1 receptors, agonists and antagonists selective at various P1 receptor subtypes were used. Data suggest that, for 2CA, apoptosis is partially sustained by activation of the A2A receptor subtype, whereas no role is exerted by P1 receptors in 2CdA-dependent apoptosis. Moreover, in these cells, apoptosis could also be triggered through intense activation of the A3 receptor via selective agonists such as 2-chloro-N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IB-MECA), but this mechanism plays no role in either 2CA- or 2CdA-induced apoptosis. On the whole, our results suggest that 2CA and 2CdA follow different pathways in inducing apoptosis of immune cells. Moreover, our data also suggest that there are at least three different ways by which adenosine derivatives may induce apoptosis of human PBMC: (i) through an A2A-like extracellular membrane receptor; (ii) through entry of nucleosides into cells and direct activation of intracellular events involved in the apoptotic process; or (iii) through activation of the A3 receptor.
Collapse
Affiliation(s)
- D. Barbieri
- Department of Biomedical Sciences, Section of General Pathology, University of Modena, Via Campi 287, 41100 Modena, Italy
| | - M. P. Abbracchio
- Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - S. Salvioli
- Department of Biomedical Sciences, Section of General Pathology, University of Modena, Via Campi 287, 41100 Modena, Italy
| | - D. Monti
- Department of Biomedical Sciences, Section of General Pathology, University of Modena, Via Campi 287, 41100 Modena, Italy
| | - A. Cossarizza
- Department of Biomedical Sciences, Section of General Pathology, University of Modena, Via Campi 287, 41100 Modena, Italy
| | - S. Ceruti
- Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - R. Brambilla
- Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - F. Cattabeni
- Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - K. A. Jacobson
- Mol. Recogn. Sect., Lab. Bioorg. Chem., NIDDK, NIH, Bethesda, MD, U.S.A
| | - C. Franceschi
- Department of Biomedical Sciences, Section of General Pathology, University of Modena, Via Campi 287, 41100 Modena, Italy
- Italian National Research Centers on Ageing, INRCA, via Birarelli 8, 60100 Ancona, Italy
| |
Collapse
|
14
|
Abstract
The adenosine A2A receptor subtype is one of the four adenosine receptors that have been identified in the mammalian organism. In addition to being found in blood vessels, platelets and polymorphonuclear leukocytes, the A2A receptors are abundant in the central nervous system, especially in the striatum. The recent development of selective A2A receptor ligands, in particular of receptor antagonists, makes it possible to elucidate the function of A2A receptors in normal and altered conditions. Pharmacological studies have shown that A2A receptor antagonists are potentially effective for treatment of neurodegenerative processes such as Parkinson's disease. Their activity is attributed to the close anatomical and functional links between A2A receptors and dopaminergic pathways in the basal ganglia. More recently, A2A receptor antagonists have proved to be active in models of cerebral ischemia. While the mechanisms underlying the role of A2A receptors in the hypoxia/ ischemia processes remains to be clarified, it is recognized that A2A receptor antagonists counteract the effects of excitatory aminoacids, which are massively released after cerebral ischemia. Another function of A2A receptors is related to protection from seizures, but further studies are needed to elucidate their specific interaction, if any, with neuronal excitability. Altogether, the great advance recently made with the discovery of selective A2A receptor ligands provides increasing information on the function of A2A receptors and opens new perspectives for treatment of neurological disorders.
Collapse
Affiliation(s)
- E Ongini
- Schering-Plough Research Institute, Milan, Italy.
| | | | | | | |
Collapse
|
15
|
|
16
|
Williams M, Wright S, Kenneth Lloyd G. Improved therapies for Parkinson's disease: life beyond dopamine D2D3 receptors agonists. Trends Pharmacol Sci 1997. [DOI: 10.1016/s0165-6147(97)90650-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
|