1
|
Seese S, Tinsley CE, Wulffraat G, Hixon JG, Monfils MH. Conspecific interactions predict social transmission of fear in female rats. Sci Rep 2024; 14:7804. [PMID: 38565873 PMCID: PMC10987648 DOI: 10.1038/s41598-024-58258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Social transmission of fear occurs in a subset of individuals, where an Observer displays a fear response to a previously neutral stimulus after witnessing or interacting with a conspecific Demonstrator during memory retrieval. The conditions under which fear can be acquired socially in rats have received attention in recent years, and suggest that social factors modulate social transmission of information. We previously found that one such factor, social rank, impacts fear conditioning by proxy in male rats. Here, we aimed to investigate whether social roles as determined by nape contacts in females, might also have an influence on social transmission of fear. In-line with previous findings in males, we found that social interactions in the home cage can provide insight into the social relationship between female rats and that these relationships predict the degree of fear acquired by-proxy. These results suggest that play behavior affects the social transfer/transmission of information in female rats.
Collapse
Affiliation(s)
- Sydney Seese
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - Carolyn E Tinsley
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Grace Wulffraat
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - J Gregory Hixon
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - Marie-H Monfils
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA.
| |
Collapse
|
2
|
Nelson XJ, Taylor AH, Cartmill EA, Lyn H, Robinson LM, Janik V, Allen C. Joyful by nature: approaches to investigate the evolution and function of joy in non-human animals. Biol Rev Camb Philos Soc 2023; 98:1548-1563. [PMID: 37127535 DOI: 10.1111/brv.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered 'laughter' vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.
Collapse
Affiliation(s)
- Ximena J Nelson
- Private Bag 4800, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alex H Taylor
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys, 23, Barcelona, Spain
- School of Psychology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erica A Cartmill
- Departments of Anthropology and Psychology, UCLA, 375 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Heidi Lyn
- Department of Psychology, University of South Alabama, 75 S. University Blvd., Mobile, AL, 36688, USA
| | - Lauren M Robinson
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| | - Vincent Janik
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St Andrews, KY16 8LB, UK
| | - Colin Allen
- Department of History & Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Suri D, Zanni G, Mahadevia D, Chuhma N, Saha R, Spivack S, Pini N, Stevens GS, Ziolkowski-Blake A, Simpson EH, Balsam P, Rayport S, Ansorge MS. Dopamine transporter blockade during adolescence increases adult dopamine function, impulsivity, and aggression. Mol Psychiatry 2023; 28:3512-3523. [PMID: 37532798 PMCID: PMC10618097 DOI: 10.1038/s41380-023-02194-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Sensitive developmental periods shape neural circuits and enable adaptation. However, they also engender vulnerability to factors that can perturb developmental trajectories. An understanding of sensitive period phenomena and mechanisms separate from sensory system development is still lacking, yet critical to understanding disease etiology and risk. The dopamine system is pivotal in controlling and shaping adolescent behaviors, and it undergoes heightened plasticity during that time, such that interference with dopamine signaling can have long-lasting behavioral consequences. Here we sought to gain mechanistic insight into this dopamine-sensitive period and its impact on behavior. In mice, dopamine transporter (DAT) blockade from postnatal (P) day 22 to 41 increases aggression and sensitivity to amphetamine (AMPH) behavioral stimulation in adulthood. Here, we refined this sensitive window to P32-41 and identified increased firing of dopaminergic neurons in vitro and in vivo as a neural correlate to altered adult behavior. Aggression can result from enhanced impulsivity and cognitive dysfunction, and dopamine regulates working memory and motivated behavior. Hence, we assessed these behavioral domains and found that P32-41 DAT blockade increases impulsivity but has no effect on cognition, working memory, or motivation in adulthood. Lastly, using optogenetics to drive dopamine neurons, we find that increased VTA but not SNc dopaminergic activity mimics the increase in impulsive behavior in the Go/NoGo task observed after adolescent DAT blockade. Together our data provide insight into the developmental origins of aggression and impulsivity that may ultimately improve diagnosis, prevention, and treatment strategies for related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Deepika Suri
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Giulia Zanni
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Darshini Mahadevia
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Rinki Saha
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Stephen Spivack
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Nicolò Pini
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Gregory S Stevens
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Annette Ziolkowski-Blake
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College, Columbia University, New York, NY, 10032, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Stark RA, Pellis SM. Using the 'stranger test' to assess social competency in adult female Long Evans rats reared with a Fischer 344 partner. Behav Processes 2021; 192:104492. [PMID: 34478804 DOI: 10.1016/j.beproc.2021.104492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022]
Abstract
Rats reared with limited access to a play partner during the juvenile period develop into adults with impairments in various cognitive, emotional, and social skills. The present study assesses the consequences of play deprivation on adult social skills in female Long Evans (LE) rats that were reared with a low-playing Fischer 344 rat over the juvenile period. As adults, their social skills were assessed using the stranger paradigm, by pairing the deprived LE rats with a novel LE partner in a neutral arena. While the deprived rat engages its partner in play there were alterations in key aspects of play, such as reduced pinning and a longer latency to begin playing, that suggest there are impairments in the social ability of the deprived rat. Most notable were the changes in the behaviour of the typically reared partner, a reduction in the amount of play it initiated and fewer actions that produced reciprocal and prolonged interactions. The changes in the behaviour of the normally reared partner suggest that it detected subtle changes in the play deprived LE rats. These findings support the hypothesis that peer-peer play experiences during the juvenile period are important for the development of socio-cognitive skills.
Collapse
Affiliation(s)
- Rachel A Stark
- University of Lethbridge, 4401 Univerisity Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Sergio M Pellis
- University of Lethbridge, 4401 Univerisity Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
5
|
Arakawa H. Sensorimotor developmental factors influencing the performance of laboratory rodents on learning and memory. Behav Brain Res 2019; 375:112140. [PMID: 31401145 PMCID: PMC6741784 DOI: 10.1016/j.bbr.2019.112140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Behavioral studies in animal models have advanced our knowledge of brain function and the neural mechanisms of human diseases. Commonly used laboratory rodents, such as mice and rats, provide a useful tool for studying the behaviors and mechanisms associated with learning and memory processes which are cooperatively regulated by multiple underlying factors, including sensory and motor performance and emotional/defense innate components. Each of these factors shows unique ontogeny and governs the sustainment of behavioral performance in learning tasks, and thus, understanding the integrative processes of behavioral development are crucial in the accurate interpretation of the functional meaning of learning and memory behaviors expressed in commonly employed behavioral test paradigms. In this review, we will summarize the major findings in the developmental processes of rodent behavior on the basis of the emergence of fundamental components for sustaining learning and memory behaviors. Briefly, most sensory modalities (except for vision) and motor abilities are functional at the juvenile stage, in which several defensive components, including active and passive defensive strategies and risk assessment behavior, emerge. Sex differences are detectable from the juvenile stage through adulthood and are considerable factors that influence behavioral tests. The test paradigms addressed in this review include associative learning (with an emphasis on fear conditioning), spatial learning, and recognition. This basic background information will aid in accurately performing behavioral studies in laboratory rodents and will therefore contribute to reducing inappropriate interpretations of behavioral data and further advance research on learning and memory in rodent models.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St. HSF2/S251, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Kondrakiewicz K, Kostecki M, Szadzińska W, Knapska E. Ecological validity of social interaction tests in rats and mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12525. [DOI: 10.1111/gbb.12525] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Kacper Kondrakiewicz
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Mateusz Kostecki
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Weronika Szadzińska
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
7
|
Paul MJ, Probst CK, Brown LM, de Vries GJ. Dissociation of Puberty and Adolescent Social Development in a Seasonally Breeding Species. Curr Biol 2018; 28:1116-1123.e2. [PMID: 29551412 DOI: 10.1016/j.cub.2018.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/09/2023]
Abstract
Alongside the development of sexual characteristics and reproductive competence, adolescents undergo marked cognitive, social, and emotional development [1]. A fundamental question is whether these changes are triggered by activation of the hypothalamic-pituitary-gonadal (HPG) axis at puberty (puberty dependent) or whether they occur independently of HPG activation (puberty independent). Disentangling puberty-dependent from puberty-independent mechanisms is difficult because puberty and adolescence typically proceed concurrently. Here, we test a new approach that leverages natural adaptations of a seasonally breeding species to dissociate pubertal status from chronological age. Siberian hamsters (Phodopus sungorus) reared in a long, summer-like day length (LD) exhibit rapid pubertal development, whereas those reared in a short, winter-like day length (SD) delay puberty by several months to synchronize breeding with the following spring [2, 3]. We tested whether the SD-induced delay in puberty delays the peri-adolescent decline in juvenile social play and the rise in aggression that characterizes adolescent social development in many species [4-6] and compared the results to those obtained after prepubertal gonadectomy. Neither SD rearing nor prepubertal gonadectomy altered the age at which hamsters transitioned from play to aggression; SD-reared hamsters completed this transition prior to puberty. SD rearing and prepubertal gonadectomy, however, increased levels of play in male and female juveniles, implicating a previously unknown role for prepubertal gonadal hormones in juvenile social behavior. Levels of aggression were also impacted (decreased) in SD-reared and gonadectomized males. These data demonstrate that puberty-independent mechanisms regulate the timing of adolescent social development, while prepubertal and adult gonadal hormones modulate levels of age-appropriate social behaviors.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| | - Clemens K Probst
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Lauren M Brown
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Geert J de Vries
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
8
|
Riters LV, Spool JA, Merullo DP, Hahn AH. Song practice as a rewarding form of play in songbirds. Behav Processes 2017; 163:91-98. [PMID: 29031813 DOI: 10.1016/j.beproc.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
In adult songbirds, the primary functions of song are mate attraction and territory defense; yet, many songbirds sing at high rates as juveniles and outside these primary contexts as adults. Singing outside primary contexts is critical for song learning and maintenance, and ultimately necessary for breeding success. However, this type of singing (i.e., song "practice") occurs even in the absence of immediate or obvious extrinsic reinforcement; that is, it does not attract mates or repel competitors. Here we review studies that support the hypothesis that song practice is stimulated and maintained by intrinsic reward mechanisms (i.e., that it is associated with a positive affective state). Additionally, we propose that song practice can be considered a rewarding form of play behavior similar to forms of play observed in multiple young animals as they practice sequences of motor events that are used later in primary adult reproductive contexts. This review highlights research suggesting at least partially overlapping roles for neural reward systems in birdsong and mammalian play and evidence that steroid hormones modify these systems to shift animals from periods of intrinsically rewarded motor exploration (i.e., singing in birds and play in mammals) to the use of similar motor patterns in primary reproductive contexts.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Allison H Hahn
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| |
Collapse
|
9
|
Abstract
Play is an important part of normal childhood development and is seen in varied forms among many mammals. While not indispensable to normal development, playful social experiences as juveniles may provide an opportunity to develop flexible behavioral strategies when novel and uncertain situations arise as an adult. To understand the neurobiological mechanisms responsible for play and how the functions of play may relate to these neural substrates, the rat has become the model of choice. Play in the rat is easily quantified, tightly regulated, and can be modulated by genetic factors and postnatal experiences. Brain areas most likely to be involved in the modulation of play include regions within the prefrontal cortex, dorsal and ventral striatum, some regions of the amygdala, and habenula. This paper discusses what we currently know about the neurobiological substrates of play and how this can help illuminate functional questions about the putative benefits of play.
Collapse
Affiliation(s)
- Stephen M Siviy
- Department of Psychology, Gettysburg College, Gettysburg, PA 17325, USA
| |
Collapse
|
10
|
Cervantes MC, Delville Y. Developmental predictors of an impulsive-aggressive phenotype. Dev Psychobiol 2011; 53:343-58. [PMID: 21365639 DOI: 10.1002/dev.20524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 12/03/2010] [Indexed: 11/11/2022]
Abstract
In hamsters, individual differences in offensive aggression are associated with impulsive choice, leading to the characterization of a distinct impulsive-aggressive phenotype. This study had two goals: to determine the developmental trajectory of the maturation of this phenotype and to address its parental lineage. Interestingly, individuals most aggressive as adults were less likely to attack in early puberty. However, looking at the transition of agonistic behavior from play fighting to adult aggression, impulsive-aggressive individuals were less likely to engage in play fighting attacks and more likely to engage in more mature agonistic behavior. Additionally, parental lineages were compared for the aggressive responses expressed by their adult offspring. Most impulsive-aggressive individuals were offspring of few select males, which were more likely to produce this phenotype, without an association with females or specific litters. These findings identify an abnormal and accelerated development of agonistic behavior in impulsive-aggressive individuals and a likelihood of heritability.
Collapse
Affiliation(s)
- M Catalina Cervantes
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, TX 78712, USA.
| | | |
Collapse
|
11
|
Ward C, Bauer EB, Smuts BB. Partner preferences and asymmetries in social play among domestic dog, Canis lupus familiaris, littermates. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Field EF, Pellis SM. The brain as the engine of sex differences in the organization of movement in rats. ARCHIVES OF SEXUAL BEHAVIOR 2008; 37:30-42. [PMID: 18074218 DOI: 10.1007/s10508-007-9270-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sex differences in the kinematic organization of non-reproductive behavior are often relegated to byproducts of sex differences in body morphology. We review evidence showing not only that male and female rats organize their posture and stepping differently during a variety of actions, but that these differences arise from sex differences in the organization of movement in the central nervous system (CNS). Indeed, the expression and choice of sex-typical patterns of movement can be altered by CNS injury. The pattern of hormonal regulation of these sex differences is also not organized as commonly held theory would predict. As expected, males castrated shortly after birth are female-typical in their motor organization. Females ovariectomized at birth, however, are male-typical in their patterns of movement. Thus, female-typical patterns of movement organization are not the default form, but rather are dependent on the effects of gonadal steroids to feminize the developing CNS. The implications of these findings are discussed with regards to our understanding of the evolution of sex differences in CNS anatomy and behavior both for animals and humans.
Collapse
Affiliation(s)
- Evelyn F Field
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | | |
Collapse
|
13
|
Wommack JC, Delville Y. Stress, aggression, and puberty: neuroendocrine correlates of the development of agonistic behavior in golden hamsters. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:267-73. [PMID: 17914258 DOI: 10.1159/000105490] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During puberty, agonistic behaviors undergo significant transitions. In golden hamsters, puberty is marked by a transition from play fighting to adult aggression. During early puberty, male golden hamsters perform play-fighting attacks. This response type is gradually replaced by adult attacks over the course of puberty. Interestingly, this behavioral transition does not appear to be controlled by changes in gonadal steroids. Instead, the shift from play fighting to adult aggression in male golden hamsters is driven by pubertal changes in glucocorticoid levels. Specifically, the transition from play fighting to adult aggression coincides with developmental increases in glucocorticoid levels, and external manipulations such as social stress or treatment with corticosteroid receptor agonists accelerate this behavioral shift. Moreover, the consequences of social stress differ greatly between juvenile and adult male golden hamsters. Although a single defeat during adulthood causes severe and long lasting behavioral and neuroendocrine consequences, socially subjugated juveniles show only transient behavioral effects. As such, it is likely that pubertal changes in the HPA axis are not only linked to the maturation of offensive responses but also determine the consequences of social stress. Combined, these studies in golden hamsters provide a novel mechanism for the development of agonistic behavior and suggest that age related differences in behavioral plasticity are mediated by the development of the HPA axis.
Collapse
Affiliation(s)
- Joel C Wommack
- Psychology Department and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|
14
|
Arakawa H. Age-dependent change in exploratory behavior of male rats following exposure to threat stimulus: Effect of juvenile experience. Dev Psychobiol 2007; 49:522-30. [PMID: 17577238 DOI: 10.1002/dev.20243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ontogeny of exploratory behavior depending on the intensity of threat in a modified open-field was investigated in male rats aged 40, 65, and 130 days, by comparing with less threatening condition with no shock and more threatening condition where they were exposed to mild electric shock. The number of crossings in a dim peripheral alley was counted as the level of activity. The total duration of stay in the central area was measured as the level of exploration. The number of entries and stretch-attend postures into a bright center square were measured as active exploratory behavior and the risk assessment behavior, respectively. When exposed to mild shock prior to the test, 40-day-old rats decreased these exploratory behaviors, while 65- and 130-day-old rats increased active exploratory behavior (Experiment 1). A lower level of exploratory behavior following a mild shock was found in 65 and 130-day-old rats isolated during the juvenile stage, but not in rats isolated after puberty (Experiment 2). These findings suggest that the direction of changes in exploratory behavior of male rats following an increase in potential danger showed ontogenetic transition, which is mediated by social experiences as juveniles, but not as adults. This transition may be associated with the emergence of active exploratory behavior during the juvenile stage, which is activated by social interaction.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Psychology Graduate School of Letters Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
Pellis SM, Hastings E, Shimizu T, Kamitakahara H, Komorowska J, Forgie ML, Kolb B. The effects of orbital frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social contexts. Behav Neurosci 2006; 120:72-84. [PMID: 16492118 DOI: 10.1037/0735-7044.120.1.72] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a series of 3 experiments on rats, 2 hypotheses were tested: (a) that damage to the orbital frontal cortex (OFC) would alter the socially relevant context for executing defensive responses but not their performance and (b) that damage done to the OFC in early infancy would produce more deficits in social behavior than similar damage occurring in adulthood. Bilateral or unilateral OFC damage in adult males did not impair their ability to defend themselves during play fighting and when protecting their food but did impair their ability to modify the pattern of defense in response to different partners. Rats that sustained bilateral damage at 3 days of age not only had deficits in partner-related modulation of defense but also exhibited hyperactivity in their play. The findings thus supported the proposed hypotheses.
Collapse
Affiliation(s)
- Sergio M Pellis
- Canadian Centre for Behavioural NeuroscienceDepartment of Psychology and Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Field EF, Whishaw IQ, Pellis SM, Watson NV. Play fighting in androgen-insensitivetfm rats: Evidence that androgen receptors are necessary for the development of adult playful attack and defense. Dev Psychobiol 2006; 48:111-20. [PMID: 16489596 DOI: 10.1002/dev.20121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The frequency of playful attack and the style of playful defense, are modifiable by gonadal steroids and change after puberty in male and female rats. The present study examined the play behavior exhibited by testicular feminized mutation (tfm)-affected males, who are insensitive to androgens but can bind estrogens aromatized from androgens, to determine the relative contributions of androgens and estrogens to the age-related changes in play behavior. tfm males did not exhibit a decrease in playful attack with age and were more likely to maintain the use of complete rotations, a juvenile form of playful defense, into adulthood. tfm males did however, show age related changes in the use of partial rotations and upright postures, two other forms of playful defense, that were similar to normal males. These data suggest that the development of play fighting and defense in males is dependent on both androgen- and estrogen-receptor-mediated effects.
Collapse
|
17
|
Wommack JC, Salinas A, Delville Y. Glucocorticoids and the development of agonistic behaviour during puberty in male golden hamsters. J Neuroendocrinol 2005; 17:781-7. [PMID: 16280025 DOI: 10.1111/j.1365-2826.2005.01369.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During puberty, the agonistic behaviour of male golden hamsters undergoes a transition from play fighting to adult aggression. Repeated exposure to social stress early in puberty accelerates this transition. The present study investigated the possible role of glucocorticoids on the maturation of agonistic behaviour. First, we compared serum cortisol levels following a 20-min restraint stress during early puberty, mid-puberty or adulthood. Across puberty, animals exhibited a two-fold increase in post-restraint cortisol levels. We also compared corticotrophin-releasing hormone (CRH) immunoreactive fibres projecting to the median eminence between animals in early puberty and adulthood. The CRH fibre density was two-fold greater in adults compared to juveniles. Furthermore, we investigated the effects of stress hormones on the maturation of agonistic behaviour. Male hamsters were injected daily with dexamethasone, a corticosteroid receptor type II agonist (0, 10 or 40 microg/100 g), early in puberty from postnatal day 31 (P-31) to P-36. When paired with a smaller and younger intruder on P-37, attack frequency did not differ between groups. However, dexamethasone-treated animals showed a dose-dependent decrease in the percentage of play-fighting attacks and an increase in the percentage of adult attacks. In summary, puberty can be described as a period of increasing hypothalamic-pituitary-adrenal activity in male golden hamsters. Moreover, increasing glucocorticoid levels influence the maturation of agonistic behaviour. These data shed new light on the neuroendocrine mechanisms that regulate the maturation of social behaviours during puberty.
Collapse
Affiliation(s)
- J C Wommack
- Psychology Department and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
18
|
Arakawa H. Changes in the pattern of exploratory behavior are associated with the emergence of social dominance relationships in male rats. Dev Psychobiol 2005; 48:39-47. [PMID: 16381035 DOI: 10.1002/dev.20114] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examined the effect of the establishment of dominance relationships and subordination on exploratory behavior for both postpubertal and adult male rats. Prior to an open field test, subjects were housed either in isolation (IS) or in littermate pairs (PS) with mild dominance relationships without overt victory or defeat, or in pairs with clear hierarchical relationships as dominants (DOM) or subordinates (SUB). Stretch-attend postures and entries into the center area of the open-field were measured as an index of passive and active exploratory behavior, respectively, and crossings in the peripheral area were counted as activity. SUB rats, both postpubertal and adult, displayed less activity and lower levels of active exploratory behavior, whereas adult IS rats showed higher levels of active exploratory behavior compared to the other groups. Furthermore, both DOM and PS rats exhibited a more passive pattern of exploratory behavior in adulthood than in postpuberty. Thus the results show that an increase in the active exploratory pattern is inhibited by the establishment of social relationships among adult rats, while a decrease in activity is a primarily effect of subordination. The capacity to change exploratory patterns following subordination is found even in the postpubertal stage when adultlike social relationships have not yet appeared.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- School of Psychology, Chukyo University, 101-2 Yagoto-honcho, Nagoya 466-8666, Japan.
| |
Collapse
|
19
|
Rooney NJ, Bradshaw JWS. Links between play and dominance and attachment dimensions of dog-human relationships. J APPL ANIM WELF SCI 2003; 6:67-94. [PMID: 12909524 DOI: 10.1207/s15327604jaws0602_01] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
It is often claimed that certain behavioral problems in domestic dogs can be triggered by the games played by dog and caregiver (owner). In this study, we examine possible links between the types of games played and dimensions of the dog-owner relationship that are generally considered to affect such problems. Fifty dog-owner partnerships were filmed during 3-min play sessions in which the owner was allowed to choose the games played. All partnerships then undertook a 1-hr test designed to measure elements of behavior commonly ascribed to "dominance" and "attachment." Principal components analysis of the data produced 2 dominance-related factors (Amenability and Confident Interactivity) and 4 factors describing aspects of attachment (Nonspecific Attention Seeking, Preference for Owner, Preference for Unfamiliar Person, and Separation-Related Behavior). Amenability, in particular, varied significantly between breeds. In the study, we then compared types of games played to each of these factors. Dogs playing rough-and-tumble scored higher for Amenability and lower on Separation-Related Behavior than did dogs playing other types of games. Dogs playing tug-of-war and fetch scored high on Confident Interactivity. Winning or losing these games had no consistent effect on their test scores. If the dog started the majority of the games, the dog was significantly less amenable and more likely to exhibit aggression. The results suggest that how dogs play reflects general attributes of their temperament and relationship with their owner. This study provides no evidence that games play a major deterministic role on dominance dimensions of dog-human relationships, but the results suggest that playing games involving considerable body contact may affect attachment dimensions.
Collapse
|
20
|
Abstract
The experiments explored the effects on feeding when rats were moved between individual and paired housing. In Experiment 1, rats moved to paired housing showed a 3-day suppression in feeding (initially 23%) compared to chronically individual- or pair-housed rats. In Experiment 2, half of the rats from the two control groups of Experiment 1 were moved between individual and paired housing on alternate days. Only the rats moved to paired housing showed a feeding suppression (initially 40%), but the nature of the suppression differed from Experiment 1: it appeared that only one rat of each pair showed a feeding suppression. Experiment 3 examined simultaneous introduction of running wheels and moves to paired housing. The feeding suppression induced by the move to paired housing was more immediate and shorter lived than the wheel-induced suppression. Unlike wheel access, paired housing produced only a temporary suppression of body weight. These experiments suggest that the relatively simple manipulation of moving rats from individual to paired housing results in a temporary stress-induced decrease in feeding.
Collapse
Affiliation(s)
- R O'Connor
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | |
Collapse
|
21
|
Nunes S, Muecke EM, Anthony JA, Batterbee AS. Endocrine and energetic mediation of play behavior in free-living Belding's ground squirrels. Horm Behav 1999; 36:153-65. [PMID: 10506539 DOI: 10.1006/hbeh.1999.1538] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many juvenile mammals play, and rates and patterns of play behavior often differ between young males and females. The sexual dimorphisms typical of mammalian play suggest that it might be influenced by gonadal hormones. Moreover, because play competes with growth, physical development, and acquisition of fat reserves for available energy, play behavior should theoretically be influenced by energetic variables. We examined patterns of social play behavior and endocrine and energetic mediation of social play in free-living juvenile Belding's ground squirrels (Spermophilus beldingi). Bouts of social play in young S. beldingi resembled adult copulation and fighting, and young males initiated sexual play but not play fighting at much higher rates than did young females. To elucidate the proximal causes of play, we altered early androgen exposure by treating females with testosterone (T) at birth and used females treated with oil vehicle as controls. We concurrently manipulated energy availability by provisioning with extra food and used unprovisioned squirrels as controls. Hourly rates of play behavior were highest near the time of weaning and declined thereafter among both experimental and control groups of juveniles. Thus, we observed no influence of either T treatment or food provisioning on the temporal patterning of play behavior. Perinatal T treatment had no effect on play fighting, but caused rates of sexual play behavior initiated by young females to increase to near those observed for young males, suggesting that T organizes a masculine tendency to initiate sexual play behavior but not play fighting. Food provisioning increased rates of play among males and females from both T-treated and control litters, suggesting that energy availability limits play behavior.
Collapse
Affiliation(s)
- S Nunes
- Department of Zoology, Michigan State University, East Lansing, Michigan, 48824, USA.
| | | | | | | |
Collapse
|
22
|
Pellis SM, Field EF, Whishaw IQ. The development of a sex-differentiated defensive motor pattern in rats: A possible role for juvenile experience. Dev Psychobiol 1999. [DOI: 10.1002/(sici)1098-2302(199909)35:2<156::aid-dev8>3.0.co;2-c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Smith L, Fantella SL, Pellis S. Playful defensive responses in adult male rats depend on the status of the unfamiliar opponent. Aggress Behav 1999. [DOI: 10.1002/(sici)1098-2337(1999)25:2<141::aid-ab6>3.0.co;2-s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Pellis SM, Pellis VC. Play fighting of rats in comparative perspective: a schema for neurobehavioral analyses. Neurosci Biobehav Rev 1998; 23:87-101. [PMID: 9861614 DOI: 10.1016/s0149-7634(97)00071-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Play fighting is a commonly reported form of play in the young of many mammals. Most of the studies on the neurobehavioral mechanisms regulating this behavior have focused on the laboratory rat. The rationale for doing so has been primarily on practical grounds. This paper seeks to answer the question. "How good is the rat as a model of mammalian play fighting?" A review of the detailed structure of play fighting in rats and other mammals reveals that play fighting is not a unitary activity, but rather has distinct components with each having distinct regulatory mechanisms. The rat is typical of many other mammals for some features of play fighting, but not others. Therefore, two conclusions are drawn from this review. First, given that play fighting is a composite category of behavior, questions regarding its underlying neurobehavioral mechanisms need to be narrowly constructed, so as to deal with highly specific mechanisms. For example, what mechanism regulates the pubertal decline in play fighting? Second, the rat is shown to be a good model species for the study of some features of play fighting, but it cannot be assumed to represent an "average" mammal for all features.
Collapse
Affiliation(s)
- S M Pellis
- Department of Psychology, University of Lethbridge, Canada.
| | | |
Collapse
|
25
|
Smith LK, Forgie ML, Pellis SM. Mechanisms underlying the absence of the pubertal shift in the playful defense of female rats. Dev Psychobiol 1998. [DOI: 10.1002/(sici)1098-2302(199809)33:2<147::aid-dev5>3.0.co;2-j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Smith LK, Forgie ML, Pellis SM. The postpubertal change in the playful defense of male rats depends upon neonatal exposure to gonadal hormones. Physiol Behav 1997; 63:151-5. [PMID: 9402629 DOI: 10.1016/s0031-9384(97)00397-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pattern of playful defense used during play fighting by male rats (Rattus norvegicus) castrated at birth was compared to that of sham-operated and untreated controls during the juvenile phase and after puberty. The neonatal castrates failed to exhibit the age-related changes in playful defense present in intact male rats of the same age. Following puberty, control rats, but not neonatal castrates, switched from juvenile to more adult-typical defensive tactics. That the neonatal castrations were effective was independently shown by the animals' failure to exhibit the asymmetries in weight and play behavior indicative of dominance-subordinance relationships present in normal adult males. A previous study found that castration following weaning did not prevent the pubertal change in playful defense, but did block the formation of dominance-subordinance relationships. Therefore, it appears that the age-related shift in playful defense is a feature of the development of play fighting in males that is likely preprogrammed by gonadal hormone exposure in the perinatal period.
Collapse
Affiliation(s)
- L K Smith
- Department of Psychology and Neuroscience, University of Lethbridge, Canada
| | | | | |
Collapse
|
27
|
|
28
|
Pellis SM, Field EF, Smith LK, Pellis VC. Multiple differences in the play fighting of male and female rats. Implications for the causes and functions of play. Neurosci Biobehav Rev 1997; 21:105-20. [PMID: 8994213 DOI: 10.1016/0149-7634(95)00060-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Play fighting is the most commonly occurring form of social play in juvenile mammals. Typically, males engage in more play fighting than females, and this difference has been shown to depend on the action of androgens perinatally. It is generally believed that the differences in play fighting between the sexes are quantitative and do not involve qualitative differences in the behavior performed. We show that this is an incorrect characterization of sex difference in play fighting. For example, in laboratory rats, there are at least five different mechanisms that contribute to the observed sex differences in play fighting. These mechanisms involve (I) the motivation to initiate play, (II) the sensory capacity to detect and respond to a play partner, (III) the organization of the motor patterns used to interact with a partner, (IV) age-related changes at puberty in initiating play and in responding to playful contact, and (V) dominance-related changes in adulthood in the pattern of playful interaction. Sex differences in the play fighting of rats are due to an interaction of all of these mechanisms, some of which are sex-typical not play-typical, and involve both quantitative and qualitative differences. This is clearly different from the prevailing view that play fighting is a unitary behavior which is masculinized perinatally. Indeed, even though all five mechanisms are androgenized perinatally, the sensorimotor differences also involve defeminization (i.e. reduction of female-typical qualities). This expanded view of the mechanisms contributing to the sex differences in play fighting has implications for both the analysis of the neural systems involved, and for the functional significance of this activity in childhood and adulthood.
Collapse
Affiliation(s)
- S M Pellis
- Department of Psychology, University of Lethbridge, Alberta, Canada
| | | | | | | |
Collapse
|
29
|
A guide to the literature on aggressive behavior. Aggress Behav 1996. [DOI: 10.1002/1098-2337(1996)22:6<469::aid-ab2480220602>3.0.co;2-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|