1
|
Piccirillo G, Aroso R, Baptista JA, A E Castro R, da Silva GJ, Calvete MJF, Pereira MM, Canotilho J, Ermelinda S Eusébio M. Trimethoprim-Based multicomponent solid Systems: Mechanochemical Screening, characterization and antibacterial activity assessment. Int J Pharm 2024; 661:124416. [PMID: 38964490 DOI: 10.1016/j.ijpharm.2024.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
In this work, multicomponent trimethoprim-based pharmaceutical solid systems were developed by mechanochemistry, using coformers from the GRAS list and other active pharmaceutical ingredients. The choice of coformers took into account their potential to increase the aqueous solubility/dissolution rate of TMP or its antibacterial activity. All the binary systems were characterized by thermal analysis, powder X-ray diffraction and infrared spectroscopy, and 3 equimolar systems with FTIR pointing to salts, and 4 eutectic mixtures were identified. The intrinsic dissolution rate of TMP in combination with nicotinic acid (a salt) and with paracetamol (eutectic mixture) were 25% and 5% higher than for pure TMP, respectively. For both Gram-positive and -negative strains, the antibacterial activity of TMP with some of the coformers was improved, since the dosage used was lower than the TMP control. A significant increase in antibacterial activity against E. coli was found for the eutectic mixture with curcumin, with the best results being obtained for the eutectic and equimolar mixtures with ciprofloxacin. Combining trimethoprim with coformers offers an interesting alternative to using trimethoprim alone: multicomponent forms with enhanced TMP dissolution rates were identified, as well as combinations showing enhanced antibacterial activity relatively to the pure drug.
Collapse
Affiliation(s)
- Giusi Piccirillo
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Rafael Aroso
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - João A Baptista
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Ricardo A E Castro
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal
| | - Gabriela J da Silva
- University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal; Center for Neurosciences and Cell Biology of the University of Coimbra, 3004-535, Coimbra, Portugal
| | - Mário J F Calvete
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Mariette M Pereira
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - João Canotilho
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal
| | - M Ermelinda S Eusébio
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
2
|
Khan S, Zahoor M, Rahman MU, Gul Z. Cocrystals; basic concepts, properties and formation strategies. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
Cocrystallization is an old technique and remains the focus of several research groups working in the field of Chemistry and Pharmacy. This technique is basically in field for improving physicochemical properties of material which can be active pharmaceutical ingredients (APIs) or other chemicals with poor profile. So this review article has been presented in order to combine various concepts for scientists working in the field of chemistry, pharmacy or crystal engineering, also it was attempt to elaborate concepts belonging to crystal designing, their structures and applications. A handsome efforts have been made to bring scientists together working in different fields and to make chemistry easier for a pharmacist and pharmacy for chemists pertaining to cocrystals. Various aspects of chemicals being used as co-formers have been explored which predict the formation of co-crystals or molecular salts and even inorganic cocrystals.
Collapse
Affiliation(s)
- Shahab Khan
- Department of Chemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| | - Mudassir Ur Rahman
- Department of Chemistry , Government Degree College Lundkhwar , Mardan 23130 , Khyber Pakhtunkhwa , Pakistan
| | - Zarif Gul
- Department of Chemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
3
|
Pharmaceutical cocrystal of antibiotic drugs: A comprehensive review. Heliyon 2022; 8:e11872. [DOI: 10.1016/j.heliyon.2022.e11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
|
4
|
Hansen solubility parameters and green nanocarrier based removal of trimethoprim from contaminated aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Alaa Eldin Refat L, O’Malley C, Simmie JM, McArdle P, Erxleben A. Differences in Coformer Interactions of the 2,4-Diaminopyrimidines Pyrimethamine and Trimethoprim. CRYSTAL GROWTH & DESIGN 2022; 22:3163-3173. [PMID: 35529062 PMCID: PMC9073935 DOI: 10.1021/acs.cgd.2c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/25/2022] [Indexed: 05/27/2023]
Abstract
The identification and study of supramolecular synthons is a fundamental task in the design of pharmaceutical cocrystals. The malaria drug pyrimethamine (pyr) and the antibiotic trimethoprim (tmp) are both 2,4-diaminopyrimidine derivatives, providing the same C-NH2/N=C/C-NH2 and C-NH2/N=C interaction sites. In this article, we analyze and compare the synthons observed in the crystal structures of tmp and pyr cocrystals and molecular salts with sulfamethazine (smz), α-ketoglutaric acid (keto), oxalic acid (ox), sebacic acid (seb), and azeliac acid (az). We show that the same coformer interacts with different binding sites of the 2,4-diaminopyrimidine ring in the respective tmp and pyr cocrystals or binds at the same site but gives H bonding patterns with different graph set notions. Pyr·smz·CH3OH is the first crystal structure in which the interaction of the sulfa drug at the C-NH2/N=C/C-NH2 site with three parallel NH2···N, N···NHsulfonamide, and NH2···O=S H bonds is observed. The main synthon in (tmp+)(keto-).0.5H2O and (tmp+)2(ox2-)·2CH3OH is the motif of fused R 2 1(6) and R 1 2(5) rings instead of the R 2 2(8) motif typically observed in tmp+ and pyr+ carboxylates. Tmp/az is a rare example of cocrystal-salt polymorphism where the two solid-state forms have the same composition, stoichiometry, and main synthon. Theoretical calculations were performed to understand the order of stability, which is tmp·az cocrystal > (tmp+)(az-) salt. Finally, two three-component tmp/sulfa drug/carboxylate cocrystals with a unique ternary synthon are described.
Collapse
Affiliation(s)
- Lamis Alaa Eldin Refat
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland
| | - Ciaran O’Malley
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
| | - John M. Simmie
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
| | - Patrick McArdle
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
| | - Andrea Erxleben
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Tanaka R, Hattori Y, Otsuka M, Ashizawa K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev Ind Pharm 2020; 46:179-187. [PMID: 31937148 DOI: 10.1080/03639045.2020.1716367] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spray freeze drying (SFD) produces suitable particles for the pharmaceutical formulation of dry powders used in dry powder inhalers (DPIs). However, SFD particles have large specific surface area and are partially made up of amorphous solids; this state is hygroscopic and would lead to changes in physicochemical properties by humidity when the particles are stored over the long-term or under high humidity conditions such as in the lungs. This study focused on the application of SFD with a cocrystal technique which can add humidity resistance to the active pharmaceutical ingredients (APIs), and the investigation of the physicochemical properties under high humidity conditions. Cocrystal samples containing theophylline anhydrate (THA) and oxalic acid (OXA) in a molar ratio of 2:1 were prepared by SFD. The crystalline structure, thermal behavior, solid-state, hygroscopicity, stability, and aerodynamic properties were evaluated. Simultaneous in situ measurement by near-infrared and Raman (NIR-Raman) spectroscopy was performed to analyze the humidification process. The SFD sample had a porous particle and an optimal aerodynamic particle size (3.03 µm) although the geometric particle diameter was 7.20 µm. In addition, the sample formed the THAOXA cocrystal with partial coamorphous. The hydration capacity and pseudopolymorphic transformation rate of the SFD sample were much lower than those of THA under conditions of 96.4% relative humidity and 40.0°C temperature because of the cocrystal formation. The reasons were discussed based on the crystalline structure and energy. The SFD technology for cocrystallization would enable the pharmaceutical preparation of DPI products under environmentally friendly conditions.
Collapse
Affiliation(s)
- Ryoma Tanaka
- Graduate School of Pharmaceutical Sciences, Musashino University, Tokyo, Japan.,Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Yusuke Hattori
- Graduate School of Pharmaceutical Sciences, Musashino University, Tokyo, Japan.,Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Makoto Otsuka
- Graduate School of Pharmaceutical Sciences, Musashino University, Tokyo, Japan.,Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Kazuhide Ashizawa
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
7
|
Fukami T. Current status and promising future of pharmaceutical cocrystals in development of oral dosage forms. Nihon Yakurigaku Zasshi 2017; 150:36-40. [PMID: 28690273 DOI: 10.1254/fpj.150.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21:481-90. [DOI: 10.1016/j.drudis.2016.02.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/14/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
9
|
Huang Z, Xia J, Li J, Gao X, Wang Y, Shen Q. Optimization and bioavailability evaluation of self-microemulsifying drug delivery system of the daidzein–nicotinamide complex. RSC Adv 2016. [DOI: 10.1039/c6ra22767h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a DDZ–NCT complex SMEDDS was prepared and optimized to improve the oral bioavailability of the poorly water-soluble drug.
Collapse
Affiliation(s)
- Zun Huang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jing Xia
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jing Li
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xuan Gao
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yiyue Wang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Qi Shen
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
10
|
Ton QC, Egert E. Cocrystals of the antibiotic trimethoprim with glutarimide and 3,3-dimethylglutarimide held together by three hydrogen bonds. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:75-9. [PMID: 25567580 DOI: 10.1107/s2053229614027193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/11/2022]
Abstract
The antibiotic trimethoprim [5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine] was cocrystallized with glutarimide (piperidine-2,6-dione) and its 3,3-dimethyl derivative (4,4-dimethylpiperidine-2,6-dione). The cocrystals, viz. trimethoprim-glutarimide (1/1), C14H18N4O3·C5H7NO2, (I), and trimethoprim-3,3-dimethylglutarimide (1/1), C14H18N4O3·C7H11NO2, (II), are held together by three neighbouring hydrogen bonds (one central N-H...N and two N-H...O) between the pyrimidine ring of trimethoprim and the imide group of glutarimide, with an ADA/DAD pattern (A = acceptor and D = donor). These heterodimers resemble two known cocrystals of trimethoprim with barbituric acid and its 5,5-diethyl derivative. Trimethoprim shows a conformation in which the planes of the pyrimidine and benzene rings are approximately perpendicular to one another. In its glutarimide coformer, five of the six ring atoms lie in a common plane; the C atom opposite the N atom deviates by about 0.6 Å. The crystal packing of each of the two cocrystals is characterized by an extended network of hydrogen bonds and contains centrosymmetrically related trimethoprim homodimers formed by a pair of N-H...N hydrogen bonds. This structural motif occurs in five of the nine published crystal structures in which neutral trimethoprim is present.
Collapse
Affiliation(s)
- Quoc Cuong Ton
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Ernst Egert
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Aitipamula S, Wong ABH, Chow PS, Tan RBH. Cocrystallization with flufenamic acid: comparison of physicochemical properties of two pharmaceutical cocrystals. CrystEngComm 2014. [DOI: 10.1039/c3ce42182a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Seth SK, Das NK, Aich K, Sen D, Fun HK, Goswami S. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.05.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Braga D, Dichiarante E, Grepioni F, Lampronti GI, Maini L, Mazzeo PP, D'Agostino S. Mechanical Preparation of Crystalline Materials. An Oxymoron? Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal 2011; 55:618-44. [DOI: 10.1016/j.jpba.2010.12.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
15
|
Elbagerma MA, Edwards HGM, Munshi T, Scowen IJ. Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance. CrystEngComm 2011. [DOI: 10.1039/c0ce00461h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ji BM, Deng DS, Wang WZ, Miao SB. Hydrogen bond-directed co-crystals of (±)-1,1′-binaphthalene-2,2′-diol with aromatic diimines: Structures and selectivity. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals–an opportunity for drug product enhancement. Expert Opin Drug Deliv 2009; 6:333-41. [PMID: 19348603 DOI: 10.1517/17425240902828304] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Delori A, Suresh E, Pedireddi VR. pKa-Directed Host-Guest Assemblies: Rational Analysis of Molecular Adducts of 2,4-Diamino-6-methyl-1,3,5-triazine with Various Aliphatic Dicarboxylic Acids. Chemistry 2008; 14:6967-77. [PMID: 18624302 DOI: 10.1002/chem.200800649] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amit Delori
- Solid State & Supramolecular Structural Chemistry Unit, Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India
| | | | | |
Collapse
|
19
|
Abstract
The physical interaction between 2 substances frequently occurs along the mixing and manufacturing of solid drug dosage forms. The physical interaction is generally based on coarrangement of crystal lattice of drug combination. The cold contact method has been developed as a simple technique to detect physical interaction between 2 drugs. This method is performed by observing new habits of cocrystal that appear on contact area of crystallization by polarization microscope and characterize this cocrystal behavior by melting point determination. Has been evaluated by DSC, this method is proved suitable to identify eutecticum interaction of pseudoephedrine HCl-acetaminophen, peritecticum interaction of methampyrone-phenylbutazon, and solid solution interaction of amoxicillin-clavulanate, respectively.
Collapse
|
20
|
Meanwell NA. The Emerging Utility of Co-Crystals in Drug Discovery and Development. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
21
|
|
22
|
Zhang GGZ, Henry RF, Borchardt TB, Lou X. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci 2007; 96:990-5. [PMID: 17455356 DOI: 10.1002/jps.20949] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have extended the established physical stability treatment for hydrates/solvates to co-crystals with solid co-crystal formers. Based on the proposed treatment, a suspension/slurry screening technique is developed and tested in sixteen pharmaceutical co-crystal systems with success. The theoretical treatment and the practical screening technique should benefit the researchers in the field of co-crystallization in improving the screening efficiency.
Collapse
|
23
|
Abstract
A review of several aspects of cocrystallization involving sulfonamide drugs is presented, with a focus on other drug molecules as cocrystallization partners. Some earlier exploratory studies outlined here led to more recent systematic investigation of processes such as cocrystal preparation by solid-state cogrinding of individual components, selective cocrystal formation in competition experiments, and exchange reactions. These are discussed with reference to the drug sulfadimidine, which featured prominently as a model cocrystal former. Apart from their potential as medicinal agents, cocrystals and salts of sulfa drugs frequently display multiple related physicochemical phenomena including polymorphism, crystal isostructurality, and solvate formation, justifying past and current interest in their solid-state chemistry.
Collapse
Affiliation(s)
- Mino R Caira
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
24
|
Chen AM, Ellison ME, Peresypkin A, Wenslow RM, Variankaval N, Savarin CG, Natishan TK, Mathre DJ, Dormer PG, Euler DH, Ball RG, Ye Z, Wang Y, Santos I. Development of a pharmaceutical cocrystal of a monophosphate salt with phosphoric acid. Chem Commun (Camb) 2006:419-21. [PMID: 17220990 DOI: 10.1039/b612353h] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first case of a pharmaceutical cocrystal formed between an inorganic acid and an active pharmaceutical ingredient (API), which enabled us to develop a stable crystalline and bioavailable solid dosage form for pharmaceutical development where otherwise only unstable amorphous free form or salts could have been used.
Collapse
Affiliation(s)
- Alex M Chen
- Merck & Co. Inc., PO Box 2000, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodríguez-Hornedo N. Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase. Pharm Res 2006; 23:2381-92. [PMID: 16988890 DOI: 10.1007/s11095-006-9110-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this work was to investigate the mechanisms of cocrystal formation during cogrinding and storage of solid reactants, and to establish the effects of water by cogrinding with hydrated form of reactants and varying RH conditions during storage. METHODS The hydrogen bonded 1:1 carbamazepine-saccharin cocrystal (CBZ-SAC) was used as a model compound. Cogrinding of solid reactants was studied under ambient and cryogenic conditions. The anhydrous, CBZ (III), and dihydrate forms of CBZ were studied. Coground samples were stored at room temperature at 0% and 75% RH. Samples were analyzed by XRPD, FTIR and DSC. RESULTS Cocrystals prepared by cogrinding and during storage were similar to those prepared by solvent methods. The rate of cocrystallization was increased by cogrinding the hydrated form of CBZ and by increasing RH during storage. Cryogenic cogrinding led to higher levels of amorphization than room temperature cogrinding. The amorphous phase exhibited a T (g) around 41 degrees C and transformed to cocrystal during storage. CONCLUSIONS Amorphous phases generated by pharmaceutical processes lead to cocrystal formation under conditions where there is increased molecular mobility and complementarity. Water, a potent plasticizer, enhances the rate of cocrystallization. This has powerful implications to control process induced transformations.
Collapse
Affiliation(s)
- Adivaraha Jayasankar
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
27
|
Rodríguez-Hornedo N, Nehm SJ, Seefeldt KF, Pagan-Torres Y, Falkiewicz CJ. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm 2006; 3:362-7. [PMID: 16749868 DOI: 10.1021/mp050099m] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mechanism for cocrystal synthesis is reported whereby nucleation and growth of cocrystals are directed by the effect of the cocrystal components on reducing the solubility of the molecular complex to be crystallized. The carbamazepine:nicotinamide cocrystal (CBZ:NCT) was chosen as a model system to study the reaction cocrystallization pathways and kinetics in aqueous and organic solvents. Fiber optic Raman spectroscopy and Raman microscopy were used for in situ monitoring of the cocrystallization in macroscopic and microscopic scales in solutions, suspensions, slurries, and wet solid phases of cocrystal components. This study demonstrates the advantages of reaction cocrystallization methods to develop rational approaches for high-throughput screening of cocrystals that can be transferable to control batch and continuous cocrystallization processes.
Collapse
Affiliation(s)
- Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109-1065, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Crystal engineering has evolved in such a manner that it is now synonymous with the paradigm of supramolecular synthesis, that is, it invokes self-assembly of existing molecules to generate a wide range of new solid forms without the need to break or form covalent bonds. This review addresses how crystal engineering has been applied to active pharmaceutical ingredients, API's, with emphasis upon how pharmaceutical co-crystals, a long known but little explored alternative to the four traditionally known forms of API, can be generated in a rational fashion. Case studies on Carbamazepine (CBZ) and Piracetam are presented which illustrate the relative ease with which pharmaceutical co-crystals can be prepared and their diversity in terms of composition and physical properties.
Collapse
Affiliation(s)
- Peddy Vishweshwar
- Department of Chemistry, University of South Florida, CHE205, Tampa, 33620, USA
| | | | | | | |
Collapse
|
29
|
Braga D, Giaffreda SL, Grepioni F, Pettersen A, Maini L, Curzi M, Polito M. Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. Dalton Trans 2006:1249-63. [PMID: 16505902 DOI: 10.1039/b516165g] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Dalton Perspective deals with solvent-free reactions taking place within solids or between solids or involving a solid and a vapour. The focus is on reactions involving organometallic and coordination compounds and occurring via reassembling of non-covalent bonding, e.g. hydrogen bonds, and/or formation of ligand-metal coordination bonds. It is argued that reactions activated by mechanical mixing of solid reactants as well as those obtained by exposing a crystalline solid to a vapour can be exploited to "make crystals", which is the quintessence of crystal engineering. It is demonstrated through a number of examples that solvent-free methods, such as co-grinding, kneading, milling of molecular solids, or reactions of solid with vapours represent viable alternative, when not unique, routes for the preparation of novel molecular and supramolecular solids as well as for the preparation of polymorphic or solvate modifications of a same species. The structural characterization of the products requires the preparation of single crystals suitable for X-ray diffraction, a goal often achieved by seeding.
Collapse
Affiliation(s)
- Dario Braga
- Dipartimento di Chimica G. Ciamician, Università degli Studi di Bologna, Via F. Selmi 2, 40126, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Vishweshwar P, McMahon JA, Peterson ML, Hickey MB, Shattock TR, Zaworotko MJ. Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. Chem Commun (Camb) 2005:4601-3. [PMID: 16158128 DOI: 10.1039/b501304f] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carboxylic acid-primary amide supramolecular heterosynthon is exploited for the generation of pharmaceutical co-crystals that contain two active pharmaceutical ingredients that are polymorphic in their pure forms.
Collapse
Affiliation(s)
- Peddy Vishweshwar
- Department of Chemistry, University of South Florida, SCA 400, 4202 E. Fowler Avenue, Tampa, Florida, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 2005; 126:13335-42. [PMID: 15479089 DOI: 10.1021/ja048114o] [Citation(s) in RCA: 518] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A crystal engineering strategy for designing cocrystals of pharmaceuticals is presented. The strategy increases the probability of discovering useful cocrystals and decreases the number of experiments that are needed by selecting API:guest combinations that have the greatest potential of forming energetically and structurally robust interactions. Our approach involves multicomponent cocrystallization of hydrochloride salts, wherein strong hydrogen bond donors are introduced to interact with chloride ions that are underutilized as hydrogen bond acceptors. The strategy is particularly effective in producing cocrystals of amine hydrochlorides with neutral organic acid guests. As an example of the approach, we report the discovery of three cocrystals containing fluoxetine hydrochloride (1), which is the active ingredient in the popular antidepressant Prozac. A 1:1 cocrystal was prepared with 1 and benzoic acid (2), while succinic acid and fumaric acid were each cocrystallized with 1 to provide 2:1 cocrystals of fluoxetine hydrochloride:succinic acid (3) and fluoxetine hydrochloride:fumaric acid (4). The presence of a guest molecule along with fluoxetine hydrochloride in the same crystal structure results in a solid phase with altered physical properties when compared to the known crystalline form of fluoxetine hydrochloride. On the basis of intrinsic dissolution rate experiments, cocrystals 2 and 4 dissolve more slowly than 1, and 3 dissolves more quickly than 1. Powder dissolution experiments demonstrated that the solid present at equilibrium corresponds to the cocrystal for 2 and 4, while 3 completely converted to 1 upon prolonged slurry in water.
Collapse
Affiliation(s)
- Scott L Childs
- Design Science Research, LLC, 1256 Briarcliff Road, Atlanta, Georgia 30306, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Merli M. Least-squares refinements of crystal structures: leverage analysis and the effects of truncating data. Z KRIST-CRYST MATER 2002. [DOI: 10.1524/zkri.217.3.103.20651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The treatment of weak intensities in the least-squares refinement of crystal structures is a quite controver-sial subject. According to the predominant opinion, all of the collected intensities should be used in the structure refinement process. Sometimes, however, the omission of the weakest data seems to be not influent, and sometimes it can even improve the refinement results. In the present work the effects of selectively excluding reflection with low I/u(I) ratio from both |Fo| and Fo
2 least-squares refinements are examined for Trimethopin-Sulfametoxypyridazine 1:1 and N′-(4-methoxyphenyl)-N-phenyl-N-oxyformamidinium. An interpretation of some observed features of the results of the least-squares refinements by means of the leverage analysis is proposed.
Collapse
|