1
|
Hernández-Delgado P, Felix-Portillo M, Martínez-Quintana JA. ADAMTS Proteases: Importance in Animal Reproduction. Genes (Basel) 2023; 14:1181. [PMID: 37372361 DOI: 10.3390/genes14061181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Many reproductive physiological processes, such as folliculogenesis, ovulation, implantation, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix (ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family genes code for key metalloproteinases in the remodeling process of different ECM. Several genes of this family encode for proteins with important functions in reproductive processes; in particular, ADAMTS1, 4, 5 and 9 are genes that are differentially expressed in cell types and the physiological stages of reproductive tissues. ADAMTS enzymes degrade proteoglycans in the ECM of the follicles so that the oocytes can be released and regulate follicle development during folliculogenesis, favoring the action of essential growth factors, such as FGF-2, FGF-7 and GDF-9. The transcriptional regulation of ADAMTS1 and 9 in preovulatory follicles occurs because of the gonadotropin surge in preovulatory follicles, via the progesterone/progesterone receptor complex. In addition, in the case of ADAMTS1, pathways involving protein kinase A (PKA), extracellular signal regulated protein kinase (ERK1/2) and the epidermal growth factor receptor (EGFR) might contribute to ECM regulation. Different Omic studies indicate the importance of genes of the ADAMTS family from a reproductive aspect. ADAMTS genes could serve as biomarkers for genetic improvement and contribute to enhance fertility and animal reproduction; however, more research related to these genes, the synthesis of proteins encoded by these genes, and regulation in farm animals is needed.
Collapse
|
2
|
Tu YA, Chou CH, Yang PK, Shun CT, Wen WF, Tsao PN, Chen SU, Yang JH. Intentional endometrial injury enhances angiogenesis through increased production and activation of MMP-9 by TNF-α and MMP-3 in a mouse model. Mol Hum Reprod 2021; 27:gaab055. [PMID: 34463765 DOI: 10.1093/molehr/gaab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/08/2021] [Indexed: 11/12/2022] Open
Abstract
There have been reports of improved pregnancy rates after performing intentional endometrial injuries, also known as endometrial scratching, in patients with recurrent implantation failure. In our previous study on intentional endometrial injury, we found an increased expression of matrix metalloproteinase (MMP)-3 following induced injuries to the mice endometrium. In the current study, we further examine whether the rise in MMP-3 could contribute to increased angiogenesis. Female C57B1/6 mice were obtained at 12 weeks of age, and intentional endometrial injuries were induced mechanically in the left uterine horns. Using the appropriate media, uterine-washes were performed on the injured and uninjured (control) horns of the harvested uteri. The uterine tissues were further processed for tissue lysates, histopathology and immunohistochemistry. The results show that intentional endometrial injuries caused an increase in secreted LPA in the injured horns, which were detected in the uterine-washes. In addition, LPA induced increased production of TNF-α in human endometrial epithelial cells (hEEpCs). Furthermore, TNF-α appeared to induce differential and cell-specific upregulation of the MMPs: MMP-3 was upregulated in the epithelial (hEEpCs), while MMP-9 was upregulated in the endothelial cells (human endometrial endothelial cells; hEEnCs). The upregulation of MMP-3 appeared to be necessary for the activation of MMP-9, whose active form stimulated the formation of vessel-like structure by the hEEnCs. The results of this study suggest that there may be enhanced angiogenesis following intentional endometrial injuries, which is mediated in part by TNF-α-induced and MMP-3-activated MMP-9 production.
Collapse
Affiliation(s)
- Yi-An Tu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jehn-Hsiahn Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
3
|
Park M, Park SH, Park H, Kim HR, Lim HJ, Song H. ADAMTS-1: a novel target gene of an estrogen-induced transcription factor, EGR1, critical for embryo implantation in the mouse uterus. Cell Biosci 2021; 11:155. [PMID: 34348778 PMCID: PMC8336340 DOI: 10.1186/s13578-021-00672-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we demonstrated that estrogen (E2) induces early growth response 1 (Egr1) to mediate its actions on the uterine epithelium by controlling progesterone receptor signaling for successful embryo implantation. EGR1 is a transcription factor that regulates the spectrum of target genes in many different tissues, including the uterus. E2-induced EGR1 regulates a set of genes involved in epithelial cell remodeling during embryo implantation in the uterus. However, only few target genes of EGR1 in the uterus have been identified. RESULT The expression of ADAM metallopeptidase with thrombospondin type 1 motif 1 (Adamts-1) was significantly downregulated in the uteri of E2-treated ovariectomized (OVX) Egr1(-/-) mice. Immunostaining of ADAMTS-1 revealed its exclusive expression in the uterine epithelium of OVX wild-type but not Egr1(-/-) mice treated with E2. The expression profiles of Adamts-1 and Egr1 were similar in the uteri of E2-treated OVX mice at various time points tested. Pre-treatment with ICI 182, 780, a nuclear estrogen receptor (ER) antagonist, effectively inhibited the E2-dependent induction of Egr1 and Adamts-1. Pharmacologic inhibition of E2-induced ERK1/2 or p38 phosphorylation interfered with the induction of EGR1 and ADAMTS-1. Furthermore, ADAMTS-1, as well as EGR1, was induced in stroma cells surrounding the implanting blastocyst during embryo implantation. Transient transfection with EGR1 expression vectors significantly induced the expression of ADAMTS-1. Luciferase activity of the Adamts-1 promoter containing EGR1 binding sites (EBSs) was increased by EGR1 in a dose-dependent manner, suggesting functional regulation of Adamts-1 transcription by EGR1. Site-directed mutagenesis of EBS on the Adamts-1 promoter demonstrated that EGR1 directly binds to the EBS at -1151/-1134 among four putative EBSs. CONCLUSIONS Collectively, we have demonstrated that Adamts-1 is a novel target gene of E2-ER-MAPK-EGR1, which is critical for embryo implantation in the mouse uterus during early pregnancy.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hyunsun Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hyunjung J Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
4
|
Li Z, Jing Q, Wu L, Chen J, Huang M, Qin Y, Wang T. The prognostic and diagnostic value of tissue inhibitor of metalloproteinases gene family and potential function in gastric cancer. J Cancer 2021; 12:4086-4098. [PMID: 34093812 PMCID: PMC8176236 DOI: 10.7150/jca.57808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Tissue inhibitor of metalloproteinases (TIMP) gene family, including TIMP1, TIMP2, TIMP3 and TIMP4, was found to be correlated with serval cancers. Still the diagnostic and prognostic study of it in gastric cancer (GC) have few reports. Methods and materials: In this study, the gene expression and clinical data were acquired from the Cancer Gene Atlas (TCGA), function enrichment was used by several databases for verifying known function. Operating characteristic (ROC) curves with area under the curve (AUC) used to assess diagnostic value. Survival analysis and joint-effects survival analysis was performed by the Kaplan-Meier curve. The results were adjusted by cox-regression model. Nomogram is used to directly predict the survival rate for individual GC patient. The potential mechanism for diagnostic and prognostic value was assessed by gene set enrichment analysis (GSEA). Further functions of gene were verified by cell proliferation, migration and invasion assays in human gastric cancer cell line. Results:TIMP1 was expressed in GC tissue was higher than normal gastric tissue. TIMP3 and TIMP4 have expressed in normal gastric tissue were higher than GC tissue. TIMP1, TIMP3 and TIMP4 have potential diagnostic value (AUC=0.842, 0.729, 0.786 respectively; all P<0.01). Low expression of TIMP2 and TIMP3 associated with favorable overall survival (all P<0.05). TIMP2 and TIMP3, which had significantly affection of prognosis were found having some function such as tRNA processing, cell cycle pathway ncRNA processing. The silencing of TIMP3 could inhibit the migration and invasion of gastric cancer cell. Conclusion: We analyzed the TIMP gene family in GC, and the prognostic and diagnostic value. TIMP1 and TIMP2 could be used as diagnostic biomarkers in GC. TIMP2 and TIMP3 could be used as potential biomarkers for GC's prognosis.
Collapse
Affiliation(s)
- Zhao Li
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qinwen Jing
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Liucheng Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mingwei Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tingan Wang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Song Y, Zhou F, Tan X, Liu X, Ding J, Zhang C, Li F, Zhu W, Ma W, Hu R, Zhang M. Bushen Huoxue recipe attenuates early pregnancy loss via activating endometrial COX2-PGE2 angiogenic signaling in mice. BMC Complement Med Ther 2021; 21:36. [PMID: 33446182 PMCID: PMC7809844 DOI: 10.1186/s12906-021-03201-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During the fresh cycles of in vitro fertilization and embryo transfer, a disturbance in the reproductive endocrine environment following controlled ovarian hyperstimulation (COH) is closely related to compromised endometrial receptivity. This is a major disadvantage for women during pregnancy. Based on the theory of traditional Chinese medicine, Bushen Huoxue recipe (BSHXR) has been indicated to facilitate embryo implantation. METHODS The COH model (Kunming breed) was induced by injecting mice with pregnant mare serum gonadotrophin (0.4 IU/g) and human chorionic gonadotropin (1 IU/g), followed by treatment with BSHXR at three different concentrations (5.7, 11.4, and 22.8 g/kg), Bushen recipe (BSR) (5.7 g/kg), and Huoxue recipe (HXR) (5.7 g/kg). After successful mating, the pregnancy rate and implantation sites were examined on embryo day 8 (ED8), and the weight ratio of endometrium was calculated on ED4 midnight. Serum estrogen, progesterone, and endometrial PGE2 levels were measured using enzyme-linked immunosorbent assay. The endometrial microvasculature was evaluated using CD31 immunostaining. The protein and mRNA levels of the angiogenic factors in the endometrium were evaluated using western blot, immunohistochemistry, and polymerase chain reaction. RESULTS In the COH group, the pregnancy rate and implantation sites were significantly decreased, and abnormal serum hormone levels and impaired endometrial vascular development were observed. After BSHXR treatment, the supraphysiological serum progesterone level in COH mice was restored to normalcy. Moreover, the abnormal expression of the endometrial pro-angiogenic factors, including HIF1α, COX2-PGE2 pathway, and the down-stream factors, namely, MMP2, MMP9, TIMP2, and FGF2 after subjecting mice to COH was significantly improved after BSHXR treatment. CONCLUSION BSHXR could improve embryo implantation by regulating hormonal balance and modulating endometrial angiogenesis in mice, without inducing any side effects in normal pregnancy.
Collapse
Affiliation(s)
- Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiujuan Tan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xia Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiahui Ding
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Chu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenxin Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenwen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
6
|
The transcriptional repressor Blimp1/PRDM1 regulates the maternal decidual response in mice. Nat Commun 2020; 11:2782. [PMID: 32493987 PMCID: PMC7270082 DOI: 10.1038/s41467-020-16603-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcriptional repressor Blimp1 controls cell fate decisions in the developing embryo and adult tissues. Here we describe Blimp1 expression and functional requirements within maternal uterine tissues during pregnancy. Expression is robustly up-regulated at early post-implantation stages in the primary decidual zone (PDZ) surrounding the embryo. Conditional inactivation results in defective formation of the PDZ barrier and abnormal trophectoderm invasion. RNA-Seq analysis demonstrates down-regulated expression of genes involved in cell adhesion and markers of decidualisation. In contrast, genes controlling immune responses including IFNγ are up-regulated. ChIP-Seq experiments identify candidate targets unique to the decidua as well as those shared across diverse cell types including a highly conserved peak at the Csf-1 gene promoter. Interestingly Blimp1 inactivation results in up-regulated Csf1 expression and macrophage recruitment into maternal decidual tissues. These results identify Blimp1 as a critical regulator of tissue remodelling and maternal tolerance during early stages of pregnancy.
Collapse
|
7
|
Cao X, Xu C, Zhang Y, Wei H, Liu Y, Cao J, Zhao W, Bao K, Wu Q. Comparative transcriptome analysis of embryo invasion in the mink uterus. Placenta 2019; 75:16-22. [PMID: 30712661 DOI: 10.1016/j.placenta.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION In mink, as many as 65% of embryos die during gestation. The causes and the mechanisms of embryonic mortality remain unclear. The purpose of our study was to examine global gene expression changes during embryo invasion in mink, and thereby to identify potential signaling pathways involved in implantation failure and early pregnancy loss. METHODS Illumina's next-generation sequencing technology (RNA-Seq) was used to analyze the differentially expressed genes (DEGs) in implantation (IMs) and inter-implantation sites (inter-IMs) of uterine tissue. RESULTS We identified a total of 606 DEGs, including 420 up- and 186 down-regulated genes in IMs compared to inter-IMs. Gene annotation analysis indicated multiple biological pathways to be significantly enriched for DEGs, including immune response, ECM complex, cytokine activity, chemokine activity and protein binding. The KEGG pathway including cytokine-cytokine receptor interaction, Jak-STAT, TNF and the chemokine signaling pathway were the most enriched. A gene network was constructed, and hub nodes such as CSF3, ICAM1, FOS, IL1B, IL8, CD14 and MYC were found through network analysis. DISCUSSION This report provides a valuable resource for understanding the mechanisms of embryo implantation in mink.
Collapse
Affiliation(s)
- Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yufei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haijun Wei
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College, Fuyang, China
| | - Junguo Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kun Bao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiong Wu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
8
|
Yue L, Yu HF, Yang ZQ, Tian XC, Zheng LW, Guo B. Egr2 mediates the differentiation of mouse uterine stromal cells responsiveness to HB-EGF during decidualization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:215-224. [PMID: 29781132 DOI: 10.1002/jez.b.22807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/01/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Although Egr2 is involved in regulating the folliculogenesis and ovulation, there is almost no data describing its physiological function in embryo implantation and decidualization. Here, we showed that Egr2 mRNA was distinctly accumulated in subluminal stromal cells around implanting blastocyst on day 5 of pregnancy as well as in estrogen-activated implantation uterus. Estrogen induced the expression of Egr2 in uterine epithelia. Elevated expression of Egr2 mRNA was also observed in the decidual cells. Silencing of Egr2 by specific siRNA weakened the proliferation of uterine stromal cells and reduced the expression of Ccnd1, Ccnd3, Cdk4, and Cdk6. Furthermore, Egr2 advanced the expression of Prl8a2, Prl3c1, and Pgr, the well-established differentiation markers for decidualization. Administration of exogenous recombinant heparin-binding EGF-like growth factor (rHB-EGF) to uterine stromal cells resulted in an increase in the level of Egr2 mRNA. Moreover, siRNA-mediated attenuation of Egr2 impeded the stimulation of HB-EGF on stromal cell differentiation. Knockdown of Egr2 led to a reduction in the expression of Cox-2, mPGES-1, Vegf, Trp53, and Mmp2. Further analysis found that Egr2 may serve as an intermediate to mediate the regulation of HB-EGF on Cox-2, mPGES-1, Vegf, Trp53, Mmp2, and Ccnd3. Collectively, Egr2 may play an important role during embryo implantation and decidualization.
Collapse
Affiliation(s)
- Liang Yue
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
- College of Clinical Medicine, Jilin University, Changchun, P. R. China
| | - Hai-Fan Yu
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Xue-Chao Tian
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Lian-Wen Zheng
- Reproductive Medical Center, the Second Hospital of Jilin University, Changchun, P. R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| |
Collapse
|
9
|
Benkhalifa M, Zayani Y, Bach V, Copin H, Feki M, Benkhalifa M, Allal-Elasmi M. Does the dysregulation of matrix metalloproteinases contribute to recurrent implantation failure? Expert Rev Proteomics 2018; 15:311-323. [PMID: 29648896 DOI: 10.1080/14789450.2018.1464915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The progress in in vitro fertilization (IVF) techniques for infertility management has led to the investigation of embryo implantation site proteins such as Matrix metalloproteinases (MMPs), which may have a key role in embryo-endometrium crosstalk and in the molecular mechanisms of the embryo implantation. Areas covered: Numerous studies have generated much information concerning the relation between the different proteins at the site of implantation such as cytokines, growth factors, adhesion molecules and MMPs. However, the exact role of the MMPs in embryo implantation and the impact of their dysregulation in recurrent implantation failure have yet to be characterized. Expert commentary: The proteomic investigation of the MMPs and their molecular pathways may enable scientists and clinicians to correct this dysregulation (via appropriate means of prevention and treatment), better manage embryo transfer during IVF cycles, and thus increase the ongoing pregnancy rate.
Collapse
Affiliation(s)
- Mustapha Benkhalifa
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia.,b Faculty of sciences of Bizerte , Carthage University , Jarzouna Bizerte , Tunisia
| | - Yosra Zayani
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia
| | - Véronique Bach
- c PERITOX-INERIS laboratory, CURS , Picardie University Jules Verne , Amiens , France
| | - Henri Copin
- d Reproductive Medicine and developmental Biology , University Hospital and School of Medicine Picardie University Jules Verne , Amiens , France
| | - Moncef Feki
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia
| | - Moncef Benkhalifa
- c PERITOX-INERIS laboratory, CURS , Picardie University Jules Verne , Amiens , France.,d Reproductive Medicine and developmental Biology , University Hospital and School of Medicine Picardie University Jules Verne , Amiens , France
| | - Monia Allal-Elasmi
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
10
|
Lombardi A, Makieva S, Rinaldi SF, Arcuri F, Petraglia F, Norman JE. Expression of Matrix Metalloproteinases in the Mouse Uterus and Human Myometrium During Pregnancy, Labor, and Preterm Labor. Reprod Sci 2017; 25:938-949. [PMID: 28950743 DOI: 10.1177/1933719117732158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Uterine extracellular matrix (ECM) remodeling occurs throughout pregnancy and at parturition. Imbalanced availability of key mediators in ECM degradation, namely, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), is implicated in the pathogenesis of preterm labor (PTL). OBJECTIVES Examine the expression of MMPs and their inhibitors TIMPs in (a) the mouse uterus throughout normal gestation, at labor, and during inflammation-induced PTL and (b) the human term and preterm myometrium. METHODS The expression of Mmp-2/9/3/10 and Timp-1/2 was determined in the uterus of C57BL/6 mice (n = 6/group) during pregnancy (on days (d) 5, 8, 12, 15, 17, and 18), at normal labor, and during lipopolysaccharide-induced PTL (n = 6/group). The expression of MMP-10 and TIMP-1 was determined in human term and preterm myometrium before the onset of labor (TNL, n = 7; PTNL, n = 7) and during active labor (TL, n = 8; PTL, n = 8). Gene expression and tissue localization were assessed by quantitative polymerase chain reaction and immunohistochemistry, respectively. RESULTS Mmp-10 was higher during murine labor (53-fold vs early pregnancy) in contrast to Mmp-2/3/9 and Timp-1, the expression of which reached a nadir at labor ( P < .001 vs d5 [ Mmp-2/ 9] or P < .05 vs d8 [ Mmp-3 and Timp-1]). The Mmp-3/10 and Timp-1 were localized to the uterine epithelium and stroma/myometrium. In the human myometrium, TIMP-1 messenger RNA was higher and MMP-10 was lower in TL versus TNL ( P < .05), PTL ( P < .001), and PTNL ( P < .001). MMP-10 and TIMP-1 were localized to the myometrial smooth muscle cells, interstitial fibroblasts, and inflammatory cells. CONCLUSIONS These data implicate MMP-3, TIMP-1, and MMP-10 in the uterine ECM remodeling during physiological and pathological parturition.
Collapse
Affiliation(s)
- Annalia Lombardi
- 1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sofia Makieva
- 2 Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara F Rinaldi
- 2 Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Felice Arcuri
- 1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- 1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Jane E Norman
- 2 Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Haneda S, Nagaoka K, Nambo Y, Kikuchi M, Nakano Y, Li J, Matsui M, Miyake YI, Imakawa K. Expression of uterine lipocalin 2 and its receptor during early- to mid-pregnancy period in mares. J Reprod Dev 2016; 63:127-133. [PMID: 27980236 PMCID: PMC5401805 DOI: 10.1262/jrd.2016-096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
From previous cDNA subtraction studies analyzing gene expression in equine endometrium, high lipocalin 2 (LCN2) mRNA expression was found in the gravid endometrium. In the uterus, LCN2 may transport hydrophobic
molecules and siderophores with iron, or may form a complex with another protein, however, the expression of uterine LCN2 beyond day 20 of equine pregnancy and its receptor has not been characterized. To study the expression and
potential roles of uterine LCN2 from pre-implantation to mid-gestation period, stage-specific endometrial samples were obtained from day 13 (day 0 = ovulation) cyclic and days 13, 19, 25, and 60 to 131 pregnant mares. Expression
of LCN2 mRNA increased in day 19 gravid endometrium and was abundant from day 60 onward. The expression of LCN2 mRNA was localized to the glandular epithelium. LCN2 protein was detected in day 25
gravid endometrium and luminal fluid, and the protein was localized to the glandular epithelium and luminal cavity, whereas LCN2 receptor expression was found in luminal and glandular epithelium and trophectoderm throughout the
experimental period. The presence of matrix metalloproteinase-9 (MMP9) was also examined because MMP9 is known to form a complex with LCN2. Although MMP9 and LCN2 were both found in luminal fluid from day 25 pregnant uterus, the
complex of these proteins was not detected. Localization of the receptor in the trophectoderm suggests that endometrial LCN2 could play a role in carrying small substances from the mother to fetus in the equine species.
Collapse
Affiliation(s)
- Shingo Haneda
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-0057, Japan
| | - Yasuo Nambo
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Masato Kikuchi
- Chiba Agricultural Insurance Association, Chiba 260-0031, Japan
| | - Yasuko Nakano
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | - Motozumi Matsui
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Yo-Ichi Miyake
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| |
Collapse
|
12
|
Scolari SC, Pugliesi G, Strefezzi RDF, Andrade SC, Coutinho LL, Binelli M. Dynamic remodeling of endometrial extracellular matrix regulates embryo receptivity in cattle. Reproduction 2016; 153:REP-16-0237. [PMID: 27754873 DOI: 10.1530/rep-16-0237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
Abstract
We aimed to evaluate in the bovine endometrium whether (1) key genes involved in endometrial extracellular matrix (ECM) remodeling are regulated by the endocrine peri-ovulatory milieu; and (2) specific endometrial ECM-related transcriptome can be linked to pregnancy outcome. In Experiment 1, pre-ovulatory follicle growth of cows was manipulated to obtain two groups with specific endocrine peri-ovulatory profiles: the Large Follicle-Large CL group (LF-LCL) served as a paradigm for greater receptivity and fertility and showed greater plasma pre-ovulatory estradiol and post-ovulatory progesterone concentrations when compared to the Small Follicle-Small CL group (SF-SCL). Endometrium was collected on days 4 and 7 of the estrous cycle. Histology revealed a greater abundance of total collagen content in SF-SCL on day 4 endometrium. In Experiment 2, cows were artificially inseminated and, six days later, endometrial biopsies were collected. Cows were retrospectively divided into pregnant and non-pregnant (P vs. NP) groups after diagnosis on day 30. In both experiments, expression of genes related to ECM remodeling in the endometrium was studied by RNAseq and qPCR. Gene ontology analysis showed an inhibition in the expression of ECM-related genes in the high receptivity groups (LF-LCL and P). Specifically, there was down-regulation of TGFB2, ADAMTS2, 5 and 14, TIMP3 and COL1A2, COL3A1, COL7A1 and COL3A3 in the LF-LCL and P groups. In summary, the overlapping set of genes differently expressed in both fertility models: (1) suggests that disregulation of ECM remodeling can impair receptivity and (2) can be used as markers to predict pregnancy outcome in cattle.
Collapse
Affiliation(s)
| | - Guilherme Pugliesi
- G Pugliesi, Department of Animal Reproduction, University of São Paulo, Pirassununga, Brazil
| | | | - Sónia Cristina Andrade
- S Andrade, Department of Animal Science, ESALQ-USP, University of São Paulo, Pirassununga, Brazil
| | - Luiz Lehmann Coutinho
- L Coutinho, Department of Animal Science, ESALQ-USP, University of São Paulo, Pirassununga, Brazil
| | - Mario Binelli
- M Binelli, Animal Reproduction, University of São Paulo, Pirassununga, 13635-900, Brazil
| |
Collapse
|
13
|
Bian F, Gao F, Kartashov AV, Jegga AG, Barski A, Das SK. Polycomb repressive complex 1 controls uterine decidualization. Sci Rep 2016; 6:26061. [PMID: 27181215 PMCID: PMC4867636 DOI: 10.1038/srep26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
Abstract
Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses revealed that PRC1 members are co-localized with its functional histone modifier H2AK119ub1 (mono ubiquitination of histone-H2A at lysine-119) in polyploid cell. A potent small-molecule inhibitor of Ring1A/B E3-ubiquitin ligase or siRNA-mediated suppression of Cbx4 caused inhibition of H2AK119ub1, in conjunction with perturbation of decidualization and polyploidy development, suggesting a role for Cbx4/Ring1B-containing PRC1 in these processes. Analyses of genetic signatures by RNA-seq studies showed that the inhibition of PRC1 function affects 238 genes (154 up and 84 down) during decidualization. Functional enrichment analyses identified that about 38% genes primarily involved in extracellular processes are specifically targeted by PRC1. Furthermore, ~15% of upregulated genes exhibited a significant overlap with the upregulated Bmp2 null-induced genes in mice. Overall, Cbx4/Ring1B-containing PRC1 controls decidualization via regulation of extracellular gene remodeling functions and sheds new insights into underlying molecular mechanism(s) through transcriptional repression regulation.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Fei Gao
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrey V Kartashov
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anil G Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sanjoy K Das
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Marshall SA, Ng L, Unemori EN, Girling JE, Parry LJ. Relaxin deficiency results in increased expression of angiogenesis- and remodelling-related genes in the uterus of early pregnant mice but does not affect endometrial angiogenesis prior to implantation. Reprod Biol Endocrinol 2016; 14:11. [PMID: 27005936 PMCID: PMC4802869 DOI: 10.1186/s12958-016-0148-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Extensive uterine adaptations, including angiogenesis, occur prior to implantation in early pregnancy and are potentially regulated by the peptide hormone relaxin. This was investigated in two studies. First, we took a microarray approach using human endometrial stromal (HES) cells treated with relaxin in vitro to screen for target genes. Then we aimed to investigate whether or not relaxin deficiency in mice affected uterine expression of representative genes associated with angiogenesis and uterine remodeling, and also blood vessel proliferation in the pre-implantation mouse endometrium. METHODS Normal HES cells were isolated and treated with recombinant human relaxin (10 ng/ml) for 24 h before microarray analysis. Reverse transcriptase PCR was used to analyze gene expression of relaxin and its receptor (Rxfp1) in ovaries and uteri; quantitative PCR was used to analyze steroid receptor, angiogenesis and extracellular matrix remodeling genes in the uteri of wild type (Rln+/+) and Rln-/- mice on days 1-4 of pregnancy. Immunohistochemistry localized endometrial endothelial cell proliferation and mass spectrometry measured steroid hormones in the plasma. RESULTS Microarray analysis identified 63 well-characterized genes that were differentially regulated in HES cells after relaxin treatment. Expression of some of these genes was increased in the uterus of Rln+/+ mice by day 4 of pregnancy. There was significantly higher vascular endothelial growth factor A (VegfA), estrogen receptor 1 (Esr1), progesterone receptor (Pgr), Rxfp1, egl-9 family hypoxia-inducible factor 1 (Egln1), hypoxia inducible factor 1 alpha (Hif1α), matrix metalloproteinase 14 (Mmp14) and ankryn repeat domain 37 (Ankrd37) in Rln-/- compared to Rln+/+ mice on day 1. Progesterone receptor expression and plasma progesterone levels were higher in Rln-/- mice compared to Rln+/+ mice. However, endometrial angiogenesis was not advanced as pre-implantation endothelial cell proliferation did not differ between genotypes. CONCLUSIONS Relaxin treatment modulates expression of a variety of angiogenesis-related genes in HES cells. However, despite accelerated uterine gene expression of steroid receptor, progesterone and angiogenesis and extracellular matrix remodeling genes in Rln-/- mice, there was no impact on angiogenesis. We conclude that although relaxin deficiency results in phenotypic changes in the pre-implantation uterus, endogenous relaxin does not play a major role in pre-implantation angiogenesis in the mouse uterus.
Collapse
Affiliation(s)
- Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, Victoria Australia
| | - Leelee Ng
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, Victoria Australia
| | | | - Jane E. Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynecology, The University of Melbourne and Royal Women’s Hospital, Parkville, Victoria Australia
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, Victoria Australia
| |
Collapse
|
15
|
Sun X, Park CB, Deng W, Potter SS, Dey SK. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. FASEB J 2015; 30:1425-35. [PMID: 26667042 DOI: 10.1096/fj.15-282798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Embryo implantation requires that the uterus differentiate into the receptive state. Failure to attain uterine receptivity will impede blastocyst attachment and result in a compromised pregnancy. The molecular mechanism by which the uterus transitions from the prereceptive to the receptive stage is complex, involving an intricate interplay of various molecules. We recently found that mice with uterine deletion ofMsxgenes (Msx1(d/d)/Msx2(d/d)) are infertile because of implantation failure associated with heightened apicobasal polarity of luminal epithelial cells during the receptive period. However, information on Msx's roles in regulating epithelial polarity remains limited. To gain further insight, we analyzed cell-type-specific gene expression by RNA sequencing of separated luminal epithelial and stromal cells by laser capture microdissection fromMsx1(d/d)/Msx2(d/d)and floxed mouse uteri on d 4 of pseudopregnancy. We found that claudin-1, a tight junction protein, and small proline-rich (Sprr2) protein, a major component of cornified envelopes in keratinized epidermis, were substantially up-regulated inMsx1(d/d)/Msx2(d/d)uterine epithelia. These factors also exhibited unique epithelial expression patterns at the implantation chamber (crypt) inMsx1(f/f)/Msx2(f/f)females; the patterns were lost inMsx1(d/d)/Msx2(d/d)epithelia on d 5, suggesting important roles during implantation. The results suggest thatMsxgenes play important roles during uterine receptivity including modulation of epithelial junctional activity.-Sun, X., Park, C. B., Deng, W., Potter, S. S., Dey, S. K. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation.
Collapse
Affiliation(s)
- Xiaofei Sun
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig B Park
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenbo Deng
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - S Steven Potter
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sudhansu K Dey
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Amirchaghmaghi E, Rezaei A, Moini A, Roghaei MA, Hafezi M, Aflatoonian R. Gene expression analysis of VEGF and its receptors and assessment of its serum level in unexplained recurrent spontaneous abortion. CELL JOURNAL 2015; 16:538-45. [PMID: 25685744 PMCID: PMC4297492 DOI: 10.22074/cellj.2015.498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/16/2014] [Indexed: 11/09/2022]
Abstract
Objective Unexplained recurrent spontaneous abortion (URSA) is one of the main complications of pregnancy which is usually defined as three or more consecutive pregnancy
losses before the 20th week of gestation without a known cause. Vascular endothelial
growth factor (VEGF) is a potent angiogenic factor and shown, along with its receptors
(VEGFR1, 2), to play important roles in several physiologic processes including reproduction. The aim of the present study was to analyze gene expression of VEGF and VEGF
receptors in endometrium of patients with a history of URSA compared with normal fertile
women. In addition, serum VEGF concentration was assessed and compared between
the two groups at the same time.
Materials and Methods In this case control study, endometrial and blood samples were
obtained between day 19thand 24th of menstrual cycle (window of implantation) from 10
women with a history of URSA (case group) and 6 fertile women who had at least one
successful pregnancy (control group). Expression of VEGF and VEGFRs was studied by
reverse transcription- polymerase chain reaction (RT-PCR) and then quantified by real
time PCR. Normalization of expression levels was done by comparison with beta-actin
expression level as an internal control. Relative VEGF, VEGFR1 and VEGFR2 expression
quantities were compared between the two groups. Enzyme linked immunosorbent assay
(ELISA) was used for serum VEGF assay.
Results VEGF, VEGFR1 and VEGFR2 gene expression was detected in endometrial samples of both groups. The mean relative expression of VEGF gene was lower in the case group
compared with control women, however, both VEGF receptors were expressed higher in endometrium of the case group. In addition, the serum level of VEGF was significantly higher in the
case group compared with the controls.
Conclusion Alteration in gene expression of VEGF and its receptors in endometrium
and changes of serum VEGF might play important roles in pathogenesis of unexplained RSA.
Collapse
Affiliation(s)
- Elham Amirchaghmaghi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Roghaei
- Department of Gynecology and Obstetrics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hafezi
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Seminal Fluid Signalling in the Female Reproductive Tract: Implications for Reproductive Success and Offspring Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:127-58. [PMID: 26178848 DOI: 10.1007/978-3-319-18881-2_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carriage of sperm is not the only function of seminal fluid in mammals. Studies in mice show that at conception, seminal fluid interacts with the female reproductive tract to induce responses which influence whether or not pregnancy will occur, and to set in train effects that help shape subsequent fetal development. In particular, seminal fluid initiates female immune adaptation processes required to tolerate male transplantation antigens present in seminal fluid and inherited by the conceptus. A tolerogenic immune environment to facilitate pregnancy depends on regulatory T cells (Treg cells), which recognise male antigens and function to suppress inflammation and immune rejection responses. The female response to seminal fluid stimulates the generation of Treg cells that protect the conceptus from inflammatory damage, to support implantation and placental development. Seminal fluid also elicits molecular and cellular changes in the oviduct and endometrium that directly promote embryo development and implantation competence. The plasma fraction of seminal fluid plays a key role in this process with soluble factors, including TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the peri-conception immune environment. Recent studies show that conception in the absence of seminal plasma in mice impairs embryo development and alters fetal development to impact the phenotype of offspring, with adverse effects on adult metabolic function particularly in males. This review summarises our current understanding of the molecular responses to seminal fluid and how this contributes to the establishment of pregnancy, generation of an immune-regulatory environment and programming long-term offspring health.
Collapse
|
18
|
Aujla PK, Huntley GW. Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry. J Comp Neurol 2014; 522:1249-63. [PMID: 24114974 DOI: 10.1002/cne.23468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes that contribute to pericellular remodeling in a variety of tissues, including brain, where they function in adult hippocampal synaptic structural and functional plasticity. Synaptic plasticity and remodeling are also important for development of connectivity, but it is unclear whether MMPs--particularly MMP-2 and -9, the major MMPs operative in brain--contribute at these stages. Here, we use a combination of biochemical and anatomical methods to characterize expression and localization of MMP-2 and MMP-9 in early postnatal and adult rat hippocampus. Gene and protein expression of these MMPs were evident throughout hippocampus at all ages examined, but expression levels were highest during the first postnatal week. MMP-2 and MMP-9 immunolocalized to punctate structures within the neuropil that codistributed with foci of proteolytic activity, as well as with markers of growing axons and synapses. Taken together, discrete foci of MMP proteolysis are likely important for actively shaping and remodeling cellular and connectional architecture as hippocampal circuitry is becoming established during early postnatal life.
Collapse
Affiliation(s)
- Paven K Aujla
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | |
Collapse
|
19
|
Uterine Rbpj is required for embryonic-uterine orientation and decidual remodeling via Notch pathway-independent and -dependent mechanisms. Cell Res 2014; 24:925-42. [PMID: 24971735 PMCID: PMC4123295 DOI: 10.1038/cr.2014.82] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/14/2014] [Accepted: 05/13/2014] [Indexed: 12/29/2022] Open
Abstract
Coordinated uterine-embryonic axis formation and decidual remodeling are hallmarks of mammalian post-implantation embryo development. Embryonic-uterine orientation is determined at initial implantation and synchronized with decidual development. However, the molecular mechanisms controlling these events remain elusive despite its discovery a long time ago. In the present study, we found that uterine-specific deletion of Rbpj, the nuclear transducer of Notch signaling, resulted in abnormal embryonic-uterine orientation and decidual patterning at post-implantation stages, leading to substantial embryo loss. We further revealed that prior to embryo attachment, Rbpj confers on-time uterine lumen shape transformation via physically interacting with uterine estrogen receptor (ERα) in a Notch pathway-independent manner, which is essential for the initial establishment of embryo orientation in alignment with uterine axis. While at post-implantation stages, Rbpj directly regulates the expression of uterine matrix metalloproteinase in a Notch pathway-dependent manner, which is required for normal post-implantation decidual remodeling. These results demonstrate that uterine Rbpj is essential for normal embryo development via instructing the initial embryonic-uterine orientation and ensuring normal decidual patterning in a stage-specific manner. Our data also substantiate the concept that normal mammalian embryonic-uterine orientation requires proper guidance from developmentally controlled uterine signaling.
Collapse
|
20
|
Diverse roles of prostaglandins in blastocyst implantation. ScientificWorldJournal 2014; 2014:968141. [PMID: 24616654 PMCID: PMC3925584 DOI: 10.1155/2014/968141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023] Open
Abstract
Prostaglandins (PGs), derivatives of arachidonic acid, play an indispensable role in embryo implantation. PGs have been reported to participate in the increase in vascular permeability, stromal decidualization, blastocyst growth and development, leukocyte recruitment, embryo transport, trophoblast invasion, and extracellular matrix remodeling during implantation. Deranged PGs syntheses and actions will result in implantation failure. This review summarizes up-to-date literatures on the role of PGs in blastocyst implantation which could provide a broad perspective to guide further research in this field.
Collapse
|
21
|
Hofmann AP, Gerber SA, Croy BA. Uterine natural killer cells pace early development of mouse decidua basalis. Mol Hum Reprod 2013; 20:66-76. [DOI: 10.1093/molehr/gat060] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Imakawa K, Yasuda J, Kobayashi T, Miyazawa T. Changes in Gene Expression Associated with Conceptus Implantation to the Maternal Endometrium. ACTA ACUST UNITED AC 2013. [DOI: 10.1274/jmor.30.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Mishra B, Kizaki K, Sato T, Ito A, Hashizume K. The role of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of bovine endometrial cell functions. Biol Reprod 2012; 87:149. [PMID: 23115270 DOI: 10.1095/biolreprod.112.102152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein that stimulates the production of several matrix metalloproteinases (MMPs) for tissue remodeling. Previously, we detected EMMPRIN in the bovine endometrium, and it is mainly expressed in the luminal and glandular epithelium whereas MMPs are expressed in the underlying stroma. From this expression pattern, we hypothesized that EMMPRIN may regulate stromal MMPs in endometrial cell functions. To test this hypothesis, a coculture of epithelial and stromal cells was performed using a transwell system. In the coculture, epithelial cells were cultured on the insert membrane and stromal cell on the surface of well plates. Expression of stromal MMP-2 and MMP-14 was significantly higher in coculture with epithelial cell. Further, with the addition of anti-EMMPRIN antibody into the epithelial cell compartment, the expression of stromal EMMPRIN and MMP-2 and MMP-14 was decreased. To identify the active site of EMMPRIN for the augmentation of MMPs, EMMPRIN synthetic peptides that correspond to the extracellular loop domain-I (EM1, EM2, EM3, and EM4) were added into the epithelial cell compartment, and only EM2 at a higher dose interfered with EMMPRIN-mediated expression of MMP-14. Next, we examined the effects of progesterone and/or estrogen on the expression of EMMPRIN, MMP-2, and MMP-14. Progesterone (300 nM) significantly stimulated the expression of EMMPRIN but had no effects on any of the MMPs. These results suggest that EMMPRIN derived from epithelial cells regulates MMPs in the endometrium under progesterone-rich conditions and may thereby modulate bovine endometrial cell functions during gestation.
Collapse
Affiliation(s)
- Birendra Mishra
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Iwate University, Morioka, Japan
| | | | | | | | | |
Collapse
|
24
|
Fontana V, Coll TA, Sobarzo CMA, Tito LP, Calvo JC, Cebral E. Matrix metalloproteinase expression and activity in trophoblast-decidual tissues at organogenesis in CF-1 mouse. J Mol Histol 2012; 43:487-96. [PMID: 22714107 DOI: 10.1007/s10735-012-9429-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/28/2012] [Indexed: 01/04/2023]
Abstract
During early placentation, matrix metalloproteinases (MMPs) play important roles in decidualization, trophoblast migration, invasion, angiogenesis, vascularization and extracellular matrix (ECM) remodeling of the endometrium. The aim of our study was to analyze the localization, distribution and differential expression of MMP-2 and -9 in the organogenic implantation site and to evaluate in vivo and in vitro decidual MMP-2 and -9 activities on day 10 of gestation in CF-1 mouse. Whole extracts for Western blotting of organogenic E10-decidua expressed MMP-2 and -9 isoforms. MMP-2 immunoreactivity was found in a granular and discrete pattern in ECM of mesometrial decidua (MD) near maternal blood vessels and slightly in non-decidualized endometrium (NDE). Immunoexpression of MMP-9 was also detected in NDE, in cytoplasm of decidual cells and ECM of vascular MD, in trophoblastic area and in growing antimesometrial deciduum. Gelatin zymography showed that MMP-9 activity was significantly lower in CM compared to the active form of direct (not cultured) and cultured decidua. The decidual active MMP-9 was significantly higher than the active MMP-2. These results show differential localization, protein expression and enzymatic activation of MMPs, suggesting specific roles for MMP-2 and MMP-9 in decidual and trophoblast tissues related to organogenic ECM remodeling and vascularization during early establishment of mouse placentation.
Collapse
Affiliation(s)
- Vanina Fontana
- Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Depto. de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Ding X, Fang L, Zhang H, Qiao H, Wang ZB. Invasiveness of mouse embryos to human ovarian cancer cells HO8910PM and the role of MMP-9. Cancer Cell Int 2012; 12:23. [PMID: 22672566 PMCID: PMC3480839 DOI: 10.1186/1475-2867-12-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/16/2012] [Indexed: 11/16/2022] Open
Abstract
Background Our previous work found that mouse embryos could invade malignant cancer cells. In the process of implantation, embryo trophoblast cells express matrix metalloproteinases and the invasive ability of trophoblast cells is proportional to matrix metalloproteinase-9 protein expression. So the purpose of this study is to observe the effects of mouse embryos on human ovarian cancer cells in the co-culture environment in vitro and explore the possible mechanism of matrix metalloproteinase-9. Methods Several groups of human ovarian cancer cells HO8910PM were co-cultured with mouse embryos for different time duration, after which the effects of mouse embryos on morphology and growth behavior of HO8910PM were observed under the light microscope real-time or by H.E staining. Apoptosis was detected under laser confocal microscope by Annexin V-EGFP/PI staining in situ. Invasion ability of tumor cells was studied by transwell experiments. After matrix metalloproteinase 9 (MMP −9) activity was inhibited by MMP-9 Inhibitor I, the interaction between mouse embryos and human ovarian cancer cells HO8910PM was observed. Results Mouse embryos were able to invade co-cultured human ovarian cancer cell layer which extended in the bottom of the culture dish, and gradually pushed away tumor cells to form their own growth space. The number of apoptosis tumor cells surrounding the embryo increased under laser confocal microscope. After co-cultured with mouse embryos, tumor cells invasive ability was lowered compared with the control group. After MMP-9 activity was inhibited, the interaction between mouse embryos and HO8910PM cells had no significant difference compared with the normal MMP-9 activity group. Conclusion Mouse embryos were able to invade human ovarian cancer cells in vitro and form their own growth space, promote apoptosis of human ovarian cancer cells and lower their invasive ability. The mouse embryo was still able to invade human ovarian cancer cells after MMP-9 activity was inhibited.
Collapse
Affiliation(s)
- Xiaoyan Ding
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | | | | | | | | |
Collapse
|
26
|
Altered matrix metalloproteinases and tissue inhibitors of metalloproteinases in embryos from diabetic rats during early organogenesis. Reprod Toxicol 2011; 32:449-62. [DOI: 10.1016/j.reprotox.2011.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/11/2011] [Accepted: 09/17/2011] [Indexed: 12/31/2022]
|
27
|
Vazquez-Alaniz F, Galaviz-Hernandez C, Marchat LA, Salas-Pacheco JM, Chairez-Hernandez I, Guijarro-Bustillos JJ, Mireles-Ordaz A. Comparative expression profiles for KiSS-1 and REN genes in preeclamptic and healthy placental tissues. Eur J Obstet Gynecol Reprod Biol 2011; 159:67-71. [PMID: 21831501 DOI: 10.1016/j.ejogrb.2011.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the present work was to look at differences in the placental tissue expression of KiSS-1 and REN genes from preeclamptic and healthy pregnant women, that could account for a possible synergistic function for both genes in the pathogenesis of preeclampsia. STUDY DESIGN This case-control study involved 27 preeclamptic women and 27 normoevolutive pregnant women. cDNA was obtained from placental tissue to carry out qPCR for both KiSS-1 and REN genes in order to compare mRNA expression levels in the studied groups. Statistical analysis showed expression differences that correlate with clinical and/or biochemical variables. RESULTS Higher expression for KiSS-1 in PEE vs. control woman (p=0.001) was observed, whereas no difference was observed for REN expression (p=0.300) when all the subjects were included. However, REN expression was significant higher when the samples were stratified according to preeclampsia severity. For 18 mild preeclamptic patients the p-value was p=0.001 compared to their controls, while for the remaining nine with severe preeclampsia the expression became significant (p=0.001). CONCLUSION Our results suggest that the high KiSS-1 expression seen in preeclamptic patients is in accordance with its role as an inhibitor of trophoblast invasiveness and maintained until the end of gestation. On the other hand, aggressive therapeutic management and/or severity status of patients have a direct effect on placental REN expression levels, masking the natural high expression of this gene on preeclamptic placental tissue. Therefore it was not possible to establish a real concordant expression profile for KiSS-1 and REN genes.
Collapse
Affiliation(s)
- Fernando Vazquez-Alaniz
- Academia de Genómica, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN Unidad Dgo., Durango, Zip Code 34220, Mexico
| | | | | | | | | | | | | |
Collapse
|
28
|
QIU XIAOYAN, XIE YI, CHEN LINGLING, GEMZELL-DANIELSSON KRISTINA. Expression of matrix metalloproteinases and their inhibitors at the feto-maternal interface in unruptured ectopic tubal pregnancy. Acta Obstet Gynecol Scand 2011; 90:966-71. [DOI: 10.1111/j.1600-0412.2011.01206.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Miko E, Halasz M, Jericevic-Mulac B, Wicherek L, Arck P, Arató G, Skret Magierlo J, Rukavina D, Szekeres-Bartho J. Progesterone-induced blocking factor (PIBF) and trophoblast invasiveness. J Reprod Immunol 2011; 90:50-7. [PMID: 21632119 DOI: 10.1016/j.jri.2011.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 12/31/2022]
Abstract
Controlled trophoblast invasion is a key process during human placentation and a prerequisite for successful pregnancy. Progesterone is one of the factors to regulate trophoblast invasiveness. Progesterone-induced blocking factor (PIBF) is a progesterone-induced molecule expressed by the trophoblast, and also by tumors. The distribution of PIBF within the first-trimester decidua coincides with sites of trophoblast invasion. Another molecule that has been implicated in the control of trophoblast invasiveness is placental leptin. Leptin inhibits the secretion of progesterone by cytotrophoblast. The aim of this work was to investigate the possible interaction of PIBF and leptins in regulating trophoblast invasion. Paraffin-embedded sections from normal first-trimester placentae, partial moles, complete moles, and choriocarcinomas were reacted with PIBF, leptin, and leptin receptor specific antibodies. PIBF-deficient trophoblast cells were generated using siRNA and leptin receptor was detected on Western blot analysis. The lysates of PIBF-treated cells were used for detecting leptin expression in a protein array. PIBF was expressed in both normal first-trimester villous trophoblast and in partial mole. Compared with this, PIBF expression was markedly decreased in complete mole and absent in choriocarcinoma. Neither leptinR nor leptin were detected in partial mole, whereas both of these molecules were present in complete mole and choriocarcinoma. Leptin receptor expression was upregulated in PIBF-deficient cells, while leptin expression was decreased in PIBF-treated cells. These data suggest that PIBF affects the expression of leptin and its receptor, and that PIBF expression is inversely related to trophoblast invasiveness.
Collapse
Affiliation(s)
- E Miko
- Department of Medical Microbiology and Immunology, Medical School, Pecs University, 12 Szigeti Street, H-7624 Pecs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mukhi S, Brown DD. Transdifferentiation of tadpole pancreatic acinar cells to duct cells mediated by Notch and stromelysin-3. Dev Biol 2010; 351:311-7. [PMID: 21194527 DOI: 10.1016/j.ydbio.2010.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022]
Abstract
The tadpole pancreas has differentiated acinar cells but an underdeveloped ductal system. At the climax of metamorphosis thyroid hormone (TH) induces the tadpole acinar cells to dedifferentiate to a progenitor state. After metamorphosis is complete the exocrine pancreas redifferentiates in the growing frog forming a typical vertebrate pancreas including a complex ductal system. A micro array analysis found that TH up regulates stromelysin 3 (ST3, matrix metalloproteinase 11) in the exocrine pancreas at metamorphic climax. Transgenic tadpoles were prepared with an elastase promoter driving either the ST3 gene or the constitutively active form of Notch (IC). Expression of the transgenes was controlled by the tetracycline system. A few days after either of these transgenes is activated by doxycycline the pancreatic acinar cells turn into duct-like cells. This transdetermination occurs without cell division since both acinar and ductal markers can be visualized transiently in the same cell. We propose that remodeling of the tadpole acinar cells is initiated when ST3 is up regulated by TH. Stromelysin-3 then cleaves and activates Notch.
Collapse
Affiliation(s)
- Sandeep Mukhi
- Carnegie Institution, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | | |
Collapse
|
31
|
Su RW, Lei W, Liu JL, Zhang ZR, Jia B, Feng XH, Ren G, Hu SJ, Yang ZM. The integrative analysis of microRNA and mRNA expression in mouse uterus under delayed implantation and activation. PLoS One 2010; 5:e15513. [PMID: 21124741 PMCID: PMC2993968 DOI: 10.1371/journal.pone.0015513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/09/2010] [Indexed: 12/18/2022] Open
Abstract
Background Delayed implantation is a developmental arrest at the blastocyst stage and a good model for embryo implantation. MicroRNAs (miRNAs) have been shown to be involved in mouse embryo implantation through regulating uterine gene expression. This study was to have an integrative analysis on global miRNA and mRNA expression in mouse uterus under delayed implantation and activation through Illumina sequencing. Methodology/Principal Findings By deep sequencing and analysis, we found that there are 20 miRNAs up-regulated and 42 miRNAs down-regulated at least 1.2 folds, and 268 genes up-regulated and 295 genes down-regulated at least 2 folds under activation compared to delayed implantation, respectively. Many different forms of editing in mature miRNAs are detected. The percentage of editing at positions 4 and 5 of mature miRNAs is significantly higher under delayed implantation than under activation. Although the number of miR-21 reference sequence under activation is slightly lower than that under delayed implantation, the total level of miR-21 under activation is higher than that under delayed implantation. Six novel miRNAs are predicted and confirmed. The target genes of significantly up-regulated miRNAs under activation are significantly enriched. Conclusions miRNA and mRNA expression patterns are closely related. The target genes of up-regulated miRNAs are significantly enriched. A high level of editing at positions 4 and 5 of mature miRNAs is detected under delayed implantation than under activation. Our data should be valuable for future study on delayed implantation.
Collapse
Affiliation(s)
- Ren-Wei Su
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Wei Lei
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Ji-Long Liu
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhi-Rong Zhang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
| | - Bo Jia
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
| | - Xu-Hui Feng
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
| | - Gang Ren
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Shi-Jun Hu
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Zeng-Ming Yang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
32
|
Martínez-Hernández MG, Baiza-Gutman LA, Castillo-Trápala A, Armant DR. Regulation of proteinases during mouse peri-implantation development: urokinase-type plasminogen activator expression and cross talk with matrix metalloproteinase 9. Reproduction 2010; 141:227-39. [PMID: 21075828 DOI: 10.1530/rep-10-0334] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Trophoblast cells express urokinase-type plasminogen activator (PLAU) and may depend on its activity for endometrial invasion and tissue remodeling during peri-implantation development. However, the developmental regulation, tissue distribution, and function of PLAU are not completely understood. In this study, the expression of PLAU and its regulation by extracellular matrix proteins was examined by RT-PCR, immunocytochemistry, and plasminogen-casein zymography in cultured mouse embryos. There was a progressive increase in Plau mRNA expression in blastocysts cultured on gestation days 4-8. Tissue-type plasminogen activator (55 kDa) and PLAU (a triplet of 40, 37, and 31 kDa) were present in conditioned medium and embryo lysates, and were adsorbed to the culture plate surface. The temporal expression pattern of PLAU, according to semi-quantitative gel zymography, was similar in non-adhering embryos and embryos cultured on fibronectin, laminin, or type IV collagen, although type IV collagen and laminin upregulated Plau mRNA expression. Immunofluorescence revealed PLAU on the surface of the mural trophectoderm and in non-spreading giant trophoblast cells. Exogenous human plasminogen was transformed to plasmin by cultured embryos and activated endogenous matrix metalloproteinase 9 (MMP9). Indeed, the developmental expression profile of MMP9 was similar to that of PLAU. Our data suggest that the intrinsic developmental program predominantly regulates PLAU expression during implantation, and that PLAU could be responsible for activation of MMP9, leading to localized matrix proteolysis as trophoblast invasion commences.
Collapse
Affiliation(s)
- M G Martínez-Hernández
- Obstetrics and Gynecology and Anatomy and Cell Biology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock Avenue, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
33
|
Fesenko EE, Mezhevikina LM, Osipenko MA, Gordon RY, Khutzian SS. Effect of the “zero” Magnetic Field on Early Embryogenesis in Mice. Electromagn Biol Med 2010; 29:1-8. [DOI: 10.3109/15368371003627290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
High matrix metalloproteinase production correlates with immune activation and leukocyte migration in leprosy reactional lesions. Infect Immun 2009; 78:1012-21. [PMID: 20008541 DOI: 10.1128/iai.00896-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gelatinases A and B (matrix metalloproteinase 2 [MMP-2] and MMP-9, respectively) can induce basal membrane breakdown and leukocyte migration, but their role in leprosy skin inflammation remains unclear. In this study, we analyzed clinical specimens from leprosy patients taken from stable, untreated skin lesions and during reactional episodes (reversal reaction [RR] and erythema nodosum leprosum [ENL]). The participation of MMPs in disease was suggested by (i) increased MMP mRNA expression levels in skin biopsy specimens correlating with the expression of gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha), (ii) the detection of the MMP protein and enzymatic activity within the inflammatory infiltrate, (iii) increased MMP levels in patient sera, and (iv) the in vitro induction of MMP-9 by Mycobacterium leprae and/or TNF-alpha. It was observed that IFN-gamma, TNF-alpha, MMP-2, and MMP-9 mRNA levels were higher in tuberculoid than lepromatous lesions. In contrast, interleukin-10 and tissue inhibitor of MMP (TIMP-1) message were not differentially modulated. These data correlated with the detection of the MMP protein evidenced by immunohistochemistry and confocal microscopy. When RR and ENL lesions were analyzed, an increase in TNF-alpha, MMP-2, and MMP-9, but not TIMP-1, mRNA levels was observed together with stronger MMP activity (zymography/in situ zymography). Moreover, following in vitro stimulation of peripheral blood cells, M. leprae induced the expression of MMP-9 (mRNA and protein) in cultured cells. Overall, the present data demonstrate an enhanced MMP/TIMP-1 ratio in the inflammatory states of leprosy and point to potential mechanisms for tissue damage. These results pave the way toward the application of new therapeutic interventions for leprosy reactions.
Collapse
|
35
|
Tsai JH, Hwang JM, Ying TH, Shyu JC, Tsai CC, Hsieh YS, Wang YW, Liu JY, Kao SH. The activation of matrix metalloproteinase-2 induced by protein kinase C alpha in decidualization. J Cell Biochem 2009; 108:547-54. [PMID: 19693770 DOI: 10.1002/jcb.22285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigated the protein kinase C (PKC) and matrix metalloproteinase-2 (MMP-2) in the development of deciduomata in pseudo-pregnant and pregnant rats. The results showed that the expression of MMP-2 was significantly increased from day 2 to day 5 in pseudo-pregnancy and from day 7 to day 9 in pregnancy. To further investigate the correlation between MMP-2 and protein kinase C alpha (PKC alpha), the expression of MMP-2 in the 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated organotypic culture of decidual tissue was determined. The results showed that the active form of MMP-2 was significantly increased in the TPA-treated cultures. Moreover, this response was inhibited by the PKC inhibitor H7, the PKC alpha specific inhibitor Gö-6976 and the translation inhibitor cycloheximide, but not by the transcription inhibitor actinomycin D or the replication inhibitor mitomycin C. In addition, TPA also reversed the MMP-2 expression after by progesterone pretreatment in the primary decidual cells. These findings indicate that PKC alpha may play an important role in the regulation of the MMP-2 expression during decidualization.
Collapse
Affiliation(s)
- Jen-Hsiang Tsai
- Department of Physical Therapy, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Costello I, Biondi CA, Taylor JM, Bikoff EK, Robertson EJ. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:54. [PMID: 19849841 PMCID: PMC2773778 DOI: 10.1186/1471-213x-9-54] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/22/2009] [Indexed: 01/04/2023]
Abstract
Background Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-β signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES) cells and day 4 embryoid bodies (EBs). Results Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-β/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (Pramel7, Tbx3, Zscan4), germ cell markers (Aire, Tuba3a, Dnmt3l) as well as early endoderm markers (Dpp4, H19, Dcn). Additionally, expression of the extracellular matrix (ECM) remodelling enzymes Mmp14 and Mmp9 was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of laminin alpha1, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM) associated with the thickened endoderm layer. Conclusion Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and overlying visceral endoderm required for gastrulation.
Collapse
Affiliation(s)
- Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
37
|
Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefes Arch Clin Exp Ophthalmol 2009; 247:1691-700. [PMID: 19693529 DOI: 10.1007/s00417-009-1162-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/19/2009] [Accepted: 07/22/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cryopreserved amniotic membrane (Cryo-AM) is widely used in ocular surface surgery because of its positive effect on wound healing and its anti-inflammatory properties. A new peracetic acid/ethanol sterilized air-dried amniotic membrane (AD-AM) recently became available which might be an alternative to Cryo-AM. Our aim was to compare AM preserved with both methods with regard to the release of wound-healing modulating proteins, the preservation of basement membrane components, and the ability to serve as a substrate for the cultivation of human limbal epithelial cells (HLECs). METHODS Pieces of Cryo-AM and AD-AM from three different donors were incubated in DMEM for five days. The culture supernatant was collected after an incubation period of 0.1, 24, 48, 72 and 120 h; in the case of AD-AM, this period was extended up to 14 days. TIMP-1, IL-1ra, CTGF and TGF-beta1 were detected in the culture supernatant using Western blotting. Twenty human limbal epithelial cultures were initiated on both AD- and Cryo-AM. The cultures were analyzed morphologically, and the outgrowth area was measured in 3-day intervals. Cryosections of Cryo- and AD-AM from three different donors were analyzed histochemically to detect the basement membrane components collagen IV, collagen VII, laminin, laminin 5 and fibronectin. RESULTS The release of TIMP-1, IL-1ra and TGF-beta1 from Cryo-AM was constant for the studied period. CTGF showed a stronger signal after 120 h. None of the analyzed proteins, except for a small amount of IL-1ra, could be detected in the supernatant of AD-AM. An outgrowth of HLEC was observed in all cultures on Cryo-AM, but in only 30% of cultures on AD-AM. The outgrowth area on Cryo-AM was at all time points significantly higher than on AD-AM (p < 0.0001). Collagen IV, -VII, laminins and fibronectin were detectable in the basement membrane of Cryo-AM, but only collagen IV and fibronectin in AD-AM. CONCLUSIONS Cryo-AM is a more suitable substrate for the cultivation of HLECs than AD-AM. The higher outgrowth rate of cultured limbal epithelium, release of intact soluble wound-healing modulating factors and a better preservation of basement membrane components suggest the superiority of Cryo-AM for use in ophthalmology in comparison to AD-AM.
Collapse
|
38
|
Chen L, Belton RJ, Nowak RA. Basigin-mediated gene expression changes in mouse uterine stromal cells during implantation. Endocrinology 2009; 150:966-76. [PMID: 18832103 PMCID: PMC2646530 DOI: 10.1210/en.2008-0571] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Implantation of mouse embryos is dependent on the proliferation and differentiation of uterine stromal cells in a process called decidualization. Decidualization both supports and limits the invasion of the implanting embryo and is regulated in part by the expression of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Molecules that alter the balance between MMP and TIMP expression could prevent implantation of the embryo. The membrane glycoprotein basigin (CD147/EMMPRIN), a known inducer of MMPs, is necessary for normal implantation in the mouse. The purpose of this study was to investigate the potential roles of basigin during implantation in the mouse. Using an in vitro stromal cell culture system, we found that recombinant human basigin protein (rBSG) increases MMP-3 and MMP-9 expression without altering TIMP-3 expression. Our results also showed rBSG induces expression of cytokines IL-1alpha/beta and leukocyte chemoattractants, CCL3, CCL20, CXCL2, and CXCL5. More importantly, rBSG significantly suppressed stromal cell decidualization as shown by the inhibition of alkaline phosphatase-2 expression and activity by rBSG. However, rBSG did not affect stromal cell proliferation. Taken together, our data indicate that basigin mediates gene expression changes in mouse uterine stromal cells and suggests that temporal and spatial regulation of basigin expression may be involved in the recruitment of leukocytes to the mouse uterus during early pregnancy.
Collapse
Affiliation(s)
- Li Chen
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
39
|
Kizaki K, Ushizawa K, Takahashi T, Yamada O, Todoroki J, Sato T, Ito A, Hashizume K. Gelatinase (MMP-2 and -9) expression profiles during gestation in the bovine endometrium. Reprod Biol Endocrinol 2008; 6:66. [PMID: 19116037 PMCID: PMC2615774 DOI: 10.1186/1477-7827-6-66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 12/31/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Various molecules participate in implantation and maintaining endometrial function during gestation. The remodeling of endometrial matrices is a necessary process in the coordination of gestational progress. Matrix-metalloproteinases (MMPs) like gelatinases (MMP-2 and -9) and collagenase (MMP-1) are considered to play important roles in this process. We examined MMP-2 and -9 expression using zymography, in situ hybridization, real-time PCR, and microarray analysis to clarify their roles in the bovine endometrium during gestation. METHODS Endometria, placentomes, and fetal membranes were collected from Japanese black cows that were killed on day 15 to 252 of gestation or during their estrous cycle. The gene expression of MMP-related molecules (mainly MMP-2 and -9) was examined using a custom-made microarray, real-time RT-PCR, and in-situ hybridization. Gelatinase activity was detected by zymography and film in situ zymography. RESULTS Both gelatinases were expressed in the endometrium and fetal tissues throughout gestation. MMP-2 gene expression declined with the progress of gestation, but its intensity was maintained at a high level during the peri-implantation period and increased in late gestation. The expression level of MMP-9 was stably maintained, but was relatively low compared to that of MMP-2. These gene expression patterns matched those detected by zymography for the proteins. Microarray analysis suggested that the functions of MMP-2 during implantation and the last part of gestation are closely related with those of other molecules such as tissue inhibitors of metalloproteinase (TIMP)-2, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1, membrane type 1 (MT1)-MMP, and extracellular matrix metalloproteinase inducer (EMMPRIN). CONCLUSION We detected MMP-2 and -9 gene expression in the bovine endometrium and placentome throughout gestation. These data suggest that MMP-2 is one of the main endometrial remodeling factors for implantation and pre-partum in cattle. In cows, as is the case in humans and rodents, gelatinases participate in endometrial remodeling, and their activities depend on the balance of activators and inhibitors; i.e., TIMP, MT-MMP, EMMPRIN, MMP-2, MMP-9, and so on.
Collapse
Affiliation(s)
- Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Koichi Ushizawa
- Department of Developmental Biology, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, Ibaraki 305-8602, Japan
| | - Toru Takahashi
- Department of Developmental Biology, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, Ibaraki 305-8602, Japan
| | - Osamu Yamada
- Miyagi Prefectural Animal Health Hygiene Ogawara Station, Miyagi 989-1243, Japan
| | - Junichi Todoroki
- Team Todoroki ARR, Kurahara, Miyakonojo, Miyazaki 855-0051, Japan
| | - Takashi Sato
- Department of Biochemistry and Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Akira Ito
- Department of Biochemistry and Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Kazuyoshi Hashizume
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
40
|
Shahed A, Young KA. Differential activity of matrix metalloproteinases (MMPs) during photoperiod induced uterine regression and recrudescence in Siberian hamsters (Phodopus sungorus). Mol Reprod Dev 2008; 75:1433-40. [PMID: 18213647 DOI: 10.1002/mrd.20879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Siberian hamsters adapt to seasonal changes by reducing their reproductive function during short days (SD). SD exposure reduces uterine mass and reproductive capacity, but underlying cellular mechanisms remain unknown. Because matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are important in uterine development, parturition, and postpartum remodeling, their expression in uterine tissue from Siberian hamsters undergoing photoperiod-mediated reproductive regression and recrudescence was investigated. Female hamsters were exposed to long day (LD, 16L:8D, controls) or SD (8L:16D) for 3-12 weeks (regression); a second group was exposed to SD or LD for 14 weeks and then transferred to LD for 0-8 weeks (recrudescence). Hamsters were euthanized, uteri collected, and homogenates analyzed by gelatin zymography or Western blotting for MMP and TIMP protein levels. Uterine weight decreased (67-75%) at SD weeks 12-14 and increased post-LD transfer (PT) reaching LD values by PT week 2. MMP-2, but not MMP-9 activity was reduced by SD week 12 or 14 but increased to LD levels at PT week 2. MMP-3 expression increased at SD week 9 compared to other SD and LD groups. MMP-14 and -13 protein levels decreased at SD week 3 but returned to LD levels by SD week 6. During recrudescence, MMP-3 (PT weeks 0-2), MMP-13 (PT week 4), and MMP-14 (PT weeks 2, 4) protein levels were higher than LD. TIMP-1 and 2 were present at low levels. Significant and differential variations in uterine MMP activity/expression during photoperiod-induced regression and recrudescence were observed. These changes likely reflect increases in tissue remodeling during both the adaptation to SD and the restoration of reproductive function.
Collapse
Affiliation(s)
- Asha Shahed
- Department of Biological Sciences, California State University Long Beach, Long Beach, California 90840, USA
| | | |
Collapse
|
41
|
Schuberth HJ, Taylor U, Zerbe H, Waberski D, Hunter R, Rath D. Immunological responses to semen in the female genital tract. Theriogenology 2008; 70:1174-81. [PMID: 18757083 DOI: 10.1016/j.theriogenology.2008.07.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When spermatozoa, seminal plasma and semen extender reach the uterus and interact with local leukocytes and endometrial cells, several immune mechanisms are initiated which have immediate, mid-term and long-term effects on ovulation, sperm cell selection, fertilization and pregnancy success by assuring the acceptance of fetal tissues. This report gives an overview on relevant key immune mechanisms following roughly the time axis after insemination. Detailed knowledge regarding these mechanisms will aid maximizing reproductive efficiency in livestock production. In the future, the many species involved will require a more comparative approach, since evidence is growing that endometrial physiology and the response to varying amounts and compositions of seminal plasma, various semen extenders, and variable numbers of spermatozoa also provoke different immune responses.
Collapse
Affiliation(s)
- H J Schuberth
- University of Veterinary Medicine, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Galewska Z, Romanowicz L, Jaworski S, Bańkowski E. Gelatinase matrix metalloproteinase (MMP)-2 and MMP-9 of the umbilical cord blood in preeclampsia. Clin Chem Lab Med 2008; 46:517-22. [PMID: 18298353 DOI: 10.1515/cclm.2008.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Preeclampsia is associated with accumulation of collagen and proteoglycans in the umbilical cord tissues as a result of increased biosynthesis and decreased degradation of these components. Matrix metalloproteinases (MMPs) are enzymes engaged in the degradation of collagen and the protein core structures of proteoglycans, including those which bind peptide growth factors. METHODS We used Western immunoblots, immunoenzymatic assay (ELISA) and zymography techniques for the detection of gelatinases and their inhibitors. RESULTS We found that both umbilical cord blood plasma and serum of controls and preeclamptic newborns contained MMP-2 and MMP-9, as well tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2. The umbilical cord plasma of preeclamptic subjects contained large amounts of MMP-9 in a form of complexes with other plasma components, and zymographic analysis demonstrated increased gelatinolytic activity at a position corresponding to MMP-9, compared to control samples. By contrast, MMP-2, TIMP-1 and TIMP-2 data showed no significant differences between preeclamptic and control samples. CONCLUSIONS The high activity of MMP-9 in preeclamptic plasma suggests its participation in the proteolytic release of peptide growth factors from their complexes with other matrix components, with subsequent stimulation of cell division and matrix biosynthesis. We suggest this might represent one of the mechanisms for matrix remodeling in the umbilical cord of preeclamptic newborns.
Collapse
Affiliation(s)
- Zofia Galewska
- Department of Medical Biochemistry, Medical Academy of Białystok, Białystok, Poland
| | | | | | | |
Collapse
|
43
|
Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW, Ma XH, Ni H, Lei W, Yang ZM. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 2008; 283:23473-84. [PMID: 18556655 DOI: 10.1074/jbc.m800406200] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 21-24-nucleotide non-coding RNAs found in diverse organisms. Although hundreds of miRNAs have been cloned or predicted, only very few miRNAs have been functionally characterized. Embryo implantation is a crucial step in mammalian reproduction. Many genes have been shown to be significantly changed in mouse uterus during embryo implantation. However, miRNA expression profiles in the mouse uterus between implantation sites and inter-implantation sites are still unknown. In this study, miRNA microarray was used to examine differential expression of miRNAs in the mouse uterus between implantation sites and inter-implantation sites. Compared with inter-implantation sites, there were 8 up-regulated miR-NAs at implantation sites, which were confirmed by both Northern blot and in situ hybridization. miR-21 was highly expressed in the subluminal stromal cells at implantation sites on day 5 of pregnancy. Because miR-21 was not detected in mouse uterus during pseudopregnancy and under delayed implantation, miR-21 expression at implantation sites was regulated by active blastocysts. Furthermore, we showed that Reck was the target gene of miR-21. Our data suggest that miR-21 may play a key role during embryo implantation.
Collapse
Affiliation(s)
- Shi-Jun Hu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, College of Life Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in healthy uterine growth and differentiation, blastocyst adhesion, invasion and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage and a synchronized dialogue between maternal and embryonic tissues. In addition to the main role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances of the normal expression and action of these cytokines result in absolute or partial failure of implantation and abnormal placental formation in mice and humans. Members of the gp130 cytokine family, interleukin (IL)-11 and leukaemia inhibitory factor, the transforming growth factor-beta superfamily, colony-stimulating factors, and the IL-1 and IL-15 systems are all crucial for successful implantation. In addition, chemokines are important both in recruiting specific cohorts of leukocytes to the implantation site, and in trophoblast trafficking and differentiation. This review provides discussion on embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine and/or juxtacrine manners at hormonal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
45
|
Wang H, Xie H, Sun X, Tranguch S, Zhang H, Jia X, Wang D, Das SK, Desvergne B, Wahli W, DuBois RN, Dey SK. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success. J Biol Chem 2007; 282:37770-82. [PMID: 17965409 DOI: 10.1074/jbc.m706577200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen Y, Antoniou E, Liu Z, Hearne LB, Roberts RM. A microarray analysis for genes regulated by interferon-tau in ovine luminal epithelial cells. Reproduction 2007; 134:123-35. [PMID: 17641094 DOI: 10.1530/rep-07-0387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferon-tau (IFNT) is released by preimplantation conceptuses of ruminant species and prepares the mother for pregnancy. Although one important function is to protect the corpus luteum from the luteolytic activity of prostaglandin-F 2alpha, IFNT most likely regulates a range of other physiological processes in endometrium. Here, an immortalized cell line from ovine uterine luminal epithelial cells was treated with IFNT for either 8 or 24 h. RNA was subjected to cDNA microarray analysis, with RNA from untreated cells as the reference standard. Of 15 634 genes, 1274 (8%) were IFNT responsive at P<0.01 and 585 at P<0.001 to at least one treatment. Of the latter, 356 were up-regulated and 229 down-regulated. Increasing IFNT concentrations from 10 ng/ml to 10 microg/ml had minor effects, and most genes up- or down-regulated at 8 h were regulated similarly at 24 h. Although IFNT influences many genes implicated in antiviral activity and apoptosis, its action also likely regulates prostaglandin metabolism, growth factors and their receptors, apoptosis and the nuclear factor (NF)-kappaB cascade, extracellular matrix accretion, angiogenesis, blood coagulation, and inflammation. In particular, it increased mRNA concentrations of genes related to the vascular endothelial growth factor R2 pathway of angiogenesis and down-regulated ones associated with hypoxia. Two genes implicated in the antiluteolytic actions of IFNT (encoding cyclooxygenase-2 and the oxytocin receptor respectively) were down-regulated in response to all treatments. IFNT targets a complex range of physiological processes during the establishment of pregnancy.
Collapse
Affiliation(s)
- Yizhen Chen
- Division of Animal Sciences, University of Missouri-Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
47
|
D'Souza SS, Daikoku T, Farach-Carson MC, Carson DD. Heparanase expression and function during early pregnancy in mice. Biol Reprod 2007; 77:433-41. [PMID: 17507691 DOI: 10.1095/biolreprod.107.061317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Embryo implantation is a complex process that involves interactions between cell-surface and extracellular components of the blastocyst and the uterus, including blastocyst adhesion to the uterine luminal epithelium, epithelial basement membrane penetration and stromal extracellular matrix remodeling, angiogenesis, and decidualization. These processes all involve interactions with heparan sulfate (HS) proteoglycans, which harbor various growth factors and cytokines and support cell adhesion. Heparanase (HPSE) is an endo-beta-glucuronidase that cleaves HS at specific sites. HPSE also can act as an adhesion molecule independent of its catalytic activity. Thus, HPSE is a multifunctional molecule contributing to and modulating HS-dependent processes. Exogenously added HPSE improves embryo implantation in mice; however, no information is available regarding the normal pattern of HPSE expression and activity during the implantation process in any system. Using several approaches, including real-time RT-PCR, in situ hybridization, and immunohistochemistry, we determined that uterine HPSE expression increases dramatically during early pregnancy in mice. Heparanase mRNA and protein were primarily expressed in decidua and were rapidly induced at the implantation site. Uterine HPSE activity was characterized and demonstrated to increase >40-fold during early pregnancy. Finally, we demonstrate that the HPSE inhibitor PI-88 severely inhibits embryo implantation in vivo. Collectively, these results indicate that HPSE plays a role in blastocyst implantation and complements previous studies showing a role for HS-dependent interactions in this process.
Collapse
Affiliation(s)
- Sonia S D'Souza
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
48
|
Bozdagi O, Nagy V, Kwei KT, Huntley GW. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol 2007; 98:334-44. [PMID: 17493927 PMCID: PMC4415272 DOI: 10.1152/jn.00202.2007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular proteolysis is an important regulatory nexus for coordinating synaptic functional and structural plasticity, but the identity of such proteases is incompletely understood. Matrix metalloproteinases (MMPs) have well-known, mostly deleterious roles in remodeling after injury or stroke, but their role in nonpathological synaptic plasticity and function in intact adult brains has not been extensively investigated. Here we address the role of MMP-9 in hippocampal synaptic plasticity using both gain- and loss-of-function approaches in urethane-anesthetized adult rats. Acute blockade of MMP-9 proteolytic activity with inhibitors or neutralizing antibodies impairs maintenance, but not induction, of long-term potentiation (LTP) at synapses formed between Schaffer-collaterals and area CA1 dendrites. LTP is associated with significant increases in levels of MMP-9 and proteolytic activity within the potentiated neuropil. By introducing a novel application of gelatin-substrate zymography in vivo, we find that LTP is associated with significantly elevated numbers of gelatinolytic puncta in the potentiated neuropil that codistribute with immunolabeling for MMP-9 and for markers of synapses and dendrites. Such increases in proteolytic activity require NMDA receptor activation. Exposing intact area CA1 neurons to recombinant-active MMP-9 induces a slow synaptic potentiation that mutually occludes, and is occluded by, tetanically evoked potentiation. Taken together, our data reveal novel roles for MMP-mediated proteolysis in regulating nonpathological synaptic function and plasticity in mature hippocampus.
Collapse
Affiliation(s)
- Ozlem Bozdagi
- Fishberg Dept of Neuroscience, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
49
|
Galewska Z, Romanowicz L, Gogiel T, Jaworski S, Bańkowski E. The inhibitory effect of preeclamptic umbilical cord blood serum on matrix metalloproteinase-1 in arterial slices incubated in vitro. Pathobiology 2007; 73:310-6. [PMID: 17374969 DOI: 10.1159/000099126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 12/05/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous studies demonstrated that preeclampsia is accompanied by significant alterations in the amounts of peptide growth factors in the umbilical cord serum. Some of these factors (especially IGF-1) are known as regulators of collagen metabolism. The umbilical cord arteries (UCAs) of newborns delivered by mothers with preeclampsia contain more than twice the amount of collagen in comparison to newborns delivered by healthy mothers. A significant role in collagen degradation is attributed to matrix metalloproteinase (MMP)-1 (collagenase 1) and tissue inhibitors of metalloproteinases (TIMPs). OBJECTIVE To compare the effects of umbilical cord (UC) blood serum of control and preeclamptic newborns on the content and activity of MMP-1, TIMP-1 and TIMP-2 in UCA wall slices incubated in vitro. METHODS Polyacrylamide gel electrophoresis (PAGE) followed by Western immunoblotting allowed to detect MMP-1 as well as TIMP-1 and TIMP-2. The amounts of MMP-1, TIMP-1 and TIMP-2 in UCA slices were measured by immunoenzymatic method (ELISA). MMP-1 activity in the arterial wall was measured using a collagenase-1-specific substrate. RESULTS Western immunoblot analyses detected MMP-1, TIMP-1 and TIMP-2 in the incubation fluids and in extracts from the UCA wall. Both 43- and 55-kDa (a zymogen) bands of MMP-1 were visible. The control UC serum stimulated both the amount as well as actual and potential activities of MMP-1 in the arterial wall in a time-dependent manner. In contrast to controls, the preeclamptic serum did not exert such an effect. CONCLUSIONS The small amount and low activity of MMP-1 accompanied by elevated amounts of TIMPs (especially TIMP-1) decelerate the degradation and enhance the accumulation of collagen in the preeclamptic UCA wall.
Collapse
Affiliation(s)
- Zofia Galewska
- Department of Medical Biochemistry, Medical Academy of Białystok, Białystok, Poland
| | | | | | | | | |
Collapse
|
50
|
Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation. BMC DEVELOPMENTAL BIOLOGY 2006; 6:61. [PMID: 17156484 PMCID: PMC1713233 DOI: 10.1186/1471-213x-6-61] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 12/11/2006] [Indexed: 11/13/2022]
Abstract
Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1) and uterus (ISP1 and ISP2). These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.
Collapse
|