1
|
Dynamic changes in c-Fos and NF-κB gene expression and Ca, Fe, Cu, Zn and Mg content due to brain injury in irradiated rats. Neuroreport 2021; 32:1241-1247. [PMID: 34406994 DOI: 10.1097/wnr.0000000000001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study aims to investigate the dynamic changes of c-Fos and NF-κB expression, and to evaluate the Ca, Fe, Cu, Zn and Mg content of hippocampal tissues in rat brains injured by 20 Gy of electron beam irradiation. MATERIALS AND METHODS A single dose of 5 MeV is administered to the whole brains of rats to establish animal model of radiation-induced brain injury (RBI). Hematoxylin and eosin staining is performed to observe the pathological changes in brain microvascular endothelial cells. Quantitative reverse transcription-PCR and western blotting assays are utilized to test c-Fos and NF-κB gene expression levels in brain tissue. Inductively coupled plasma-atomic emission spectrometry is leveraged to detect the Ca, Fe, Cu, Zn and Mg contents of the hippocampi. RESULTS The c-Fos and NF-κB gene expression levels in protective group are lower than those in the irradiated group after MgSO4 treatment. In the irradiated group, Ca content at several time points and Fe content on days 1, 3 and 7 are higher than those in the blank group. Additionally, in the irradiated group, Cu and Zn contents on days 1, 7, 14 and 60 are less than those in the blank group. CONCLUSION In RBI model, adding Mg2+ may relieve RBI. The protective mechanisms of Mg2+ in the hippocampi from a variety of brain activity indicators including the c-Fos and NF-κB genes.
Collapse
|
2
|
Kukoamine A Prevents Radiation-Induced Neuroinflammation and Preserves Hippocampal Neurogenesis in Rats by Inhibiting Activation of NF-κB and AP-1. Neurotox Res 2016; 31:259-268. [DOI: 10.1007/s12640-016-9679-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
|
3
|
Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, Gilardi MC, Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 2015; 12:14. [PMID: 25705130 PMCID: PMC4336767 DOI: 10.1186/s12950-015-0058-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/29/2015] [Indexed: 01/05/2023] Open
Abstract
Ionizing radiation (IR) activates both pro-and anti-proliferative signal pathways producing an imbalance in cell fate decision. IR is able to regulate several genes and factors involved in cell-cycle progression, survival and/or cell death, DNA repair and inflammation modulating an intracellular radiation-dependent response. Radiation therapy can modulate anti-tumour immune responses, modifying tumour and its microenvironment. In this review, we report how IR could stimulate inflammatory factors to affect cell fate via multiple pathways, describing their roles on gene expression regulation, fibrosis and invasive processes. Understanding the complex relationship between IR, inflammation and immune responses in cancer, opens up new avenues for radiation research and therapy in order to optimize and personalize radiation therapy treatment for each patient.
Collapse
Affiliation(s)
- Federica Maria Di Maggio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Luigi Minafra
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Giusi Irma Forte
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | | | - Domenico Lio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Bravatà
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| |
Collapse
|
4
|
Peng Y, Lu K, Li Z, Zhao Y, Wang Y, Hu B, Xu P, Shi X, Zhou B, Pennington M, Chandy KG, Tang Y. Blockade of Kv1.3 channels ameliorates radiation-induced brain injury. Neuro Oncol 2013; 16:528-39. [PMID: 24305723 DOI: 10.1093/neuonc/not221] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Tumors affecting the head, neck, and brain account for significant morbidity and mortality. The curative efficacy of radiotherapy for these tumors is well established, but radiation carries a significant risk of neurologic injury. So far, neuroprotective therapies for radiation-induced brain injury are still limited. In this study we demonstrate that Stichodactyla helianthus (ShK)-170, a specific inhibitor of the voltage-gated potassium (Kv)1.3 channel, protected mice from radiation-induced brain injury. METHODS Mice were treated with ShK-170 for 3 days immediately after brain irradiation. Radiation-induced brain injury was assessed by MRI scans and a Morris water maze. Pathophysiological change of the brain was measured by immunofluorescence. Gene and protein expressions of Kv1.3 and inflammatory factors were measured by quantitative real-time PCR, reverse transcription PCR, ELISA assay, and western blot analyses. Kv currents were recorded in the whole-cell configuration of the patch-clamp technique. RESULTS Radiation increased Kv1.3 mRNA and protein expression in microglia. Genetic silencing of Kv1.3 by specific short interference RNAs or pharmacological blockade with ShK-170 suppressed radiation-induced production of the proinflammatory factors interleukin-6, cyclooxygenase-2, and tumor necrosis factor-α by microglia. ShK-170 also inhibited neurotoxicity mediated by radiation-activated microglia and promoted neurogenesis by increasing the proliferation of neural progenitor cells. CONCLUSIONS The therapeutic effect of ShK-170 is mediated by suppression of microglial activation and microglia-mediated neurotoxicity and enhanced neurorestoration by promoting proliferation of neural progenitor cells.
Collapse
Affiliation(s)
- Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.P., K.L., Z.L., Y.W., B.H., P.X., X.S., Y.T.); Department of Neurosurgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China (Y.Z., B.Z.); Peptides International, Louisville, Kentucky (M.P.); Department of Physiology and Biophysics, University of California, Irvine, Irvine, California (K.G.C.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Inhibition of NF- κ B by Dehydroxymethylepoxyquinomicin Suppresses Invasion and Synergistically Potentiates Temozolomide and γ -Radiation Cytotoxicity in Glioblastoma Cells. CHEMOTHERAPY RESEARCH AND PRACTICE 2013; 2013:593020. [PMID: 23533755 PMCID: PMC3594939 DOI: 10.1155/2013/593020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/16/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022]
Abstract
Despite advances in neurosurgery and aggressive treatment with temozolomide (TMZ) and radiation, the overall survival of patients with glioblastoma (GBM) remains poor. Vast evidence has indicated that the nuclear factor NF-κB is constitutively activated in cancer cells, playing key roles in growth and survival. Recently, Dehydroxymethylepoxyquinomicin (DHMEQ) has shown to be a selective NF-κB inhibitor with antiproliferative properties in GBM. In the present study, the ability of DHMEQ to surmount tumor's invasive nature and therapy resistance were further explored. Corroborating results showed that DHMEQ impaired cell growth in dose- and time-dependent manners with G2/M arrest when compared with control. Clonogenicity was also significantly diminished with increased apoptosis, though necrotic cell death was also observed at comparable levels. Notably, migration and invasion were inhibited accordingly with lowered expression of invasion-related genes. Moreover, concurrent combination with TMZ synergistically inhibited cell growth in all cell lines, as determined by proliferation and caspase-3 activation assays, though in those that express O6-methylguanine-DNA methyltransferase, the synergistic effects were schedule dependent. Pretreatment with DHMEQ equally sensitized cells to ionizing radiation. Taken together, our results strengthen the potential usefulness of DHMEQ in future therapeutic strategies for tumors that do not respond to conventional approaches.
Collapse
|
6
|
Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: A review. Front Oncol 2012; 2:73. [PMID: 22833841 PMCID: PMC3400082 DOI: 10.3389/fonc.2012.00073] [Citation(s) in RCA: 453] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 12/03/2022] Open
Abstract
Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules. Recently developed techniques in neuroscience and neuroimaging provide not only an opportunity to accomplish this, but they also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects.
Collapse
Affiliation(s)
- Dana Greene-Schloesser
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
7
|
Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010; 80:1904-14. [PMID: 20599771 PMCID: PMC3090731 DOI: 10.1016/j.bcp.2010.06.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 12/16/2022]
Abstract
Although radiation therapy (RT) is an integral component of treatment of patients with many types of cancer, inherent and/or acquired resistance to the cytotoxic effects of RT is increasingly recognized as a significant impediment to effective cancer treatment. Inherent resistance is mediated by constitutively activated oncogenic, proliferative and anti-apoptotic proteins/pathways whereas acquired resistance refers to transient induction of proteins/pathways following radiation exposure. To realize the full potential of RT, it is essential to understand the signaling pathways that mediate inducible radiation resistance, a poorly characterized phenomenon, and identify druggable targets for radiosensitization. Ionizing radiation induces a multilayered signaling response in mammalian cells by activating many pro-survival pathways that converge to transiently activate a few important transcription factors (TFs), including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs), the central mediators of inflammatory and carcinogenic signaling. Together, these TFs activate a wide spectrum of pro-survival genes regulating inflammation, anti-apoptosis, invasion and angiogenesis pathways, which confer tumor cell radioresistance. Equally, radiation-induced activation of pro-inflammatory cytokine network (including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α) has been shown to mediate symptom burden (pain, fatigue, local inflammation) in cancer patients. Thus, targeting radiation-induced inflammatory pathways may exert a dual effect of accentuating the tumor radioresponse and reducing normal tissue side-effects, thereby increasing the therapeutic window of cancer treatment. We review recent data demonstrating the pivotal role played by inflammatory pathways in cancer progression and modulation of radiation response.
Collapse
Affiliation(s)
- Amit Deorukhkar
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
8
|
Ramanan S, Zhao W, Riddle DR, Robbins ME. Role of PPARs in Radiation-Induced Brain Injury. PPAR Res 2009; 2010:234975. [PMID: 19789638 PMCID: PMC2748193 DOI: 10.1155/2010/234975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/15/2009] [Indexed: 11/17/2022] Open
Abstract
Whole-brain irradiation (WBI) represents the primary mode of treatment for brain metastases; about 200 000 patients receive WBI each year in the USA. Up to 50% of adult and 100% of pediatric brain cancer patients who survive >6 months post-WBI will suffer from a progressive, cognitive impairment. At present, there are no proven long-term treatments or preventive strategies for this significant radiation-induced late effect. Recent studies suggest that the pathogenesis of radiation-induced brain injury involves WBI-mediated increases in oxidative stress and/or inflammatory responses in the brain. Therefore, anti-inflammatory strategies can be employed to modulate radiation-induced brain injury. Peroxisomal proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the steroid/thyroid hormone nuclear receptor superfamily. Although traditionally known to play a role in metabolism, increasing evidence suggests a role for PPARs in regulating the response to inflammation and oxidative injury. PPAR agonists have been shown to cross the blood-brain barrier and confer neuroprotection in animal models of CNS disorders such as stroke, multiple sclerosis and Parkinson's disease. However, the role of PPARs in radiation-induced brain injury is unclear. In this manuscript, we review the current knowledge and the emerging insights about the role of PPARs in modulating radiation-induced brain injury.
Collapse
Affiliation(s)
- Sriram Ramanan
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Weiling Zhao
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - David R. Riddle
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Neurobiology and Anatomy, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E. Robbins
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Ramanan S, Kooshki M, Zhao W, Hsu FC, Robbins ME. PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 2008; 45:1695-704. [PMID: 18852043 PMCID: PMC2648135 DOI: 10.1016/j.freeradbiomed.2008.09.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/30/2008] [Accepted: 09/03/2008] [Indexed: 12/17/2022]
Abstract
Whole-brain irradiation (WBI) can lead to cognitive impairment several months to years after irradiation. Studies on rodents have shown a rapid and sustained increase in activated microglia (brain macrophages) following brain irradiation, contributing to a chronic inflammatory response and a corresponding decrease in hippocampal neurogenesis. Thus, alleviating microglial activation following radiation represents a key strategy to minimize WBI-induced morbidity. We hypothesized that pretreatment with peroxisomal proliferator-activated receptor (PPAR)alpha agonists would ameliorate the proinflammatory responses seen in the microglia following in vitro radiation. Irradiating BV-2 cells (a murine microglial cell line) with single doses (2-10 Gy) of (137)Cs gamma-rays led to increases in (1) the gene expression of IL-1beta and TNFalpha, (2) Cox-2 protein levels, and (3) intracellular ROS generation. In addition, an increase in the DNA-binding activity of redox-regulated proinflammatory transcription factors AP-1 and NF-kappaB was observed. Pretreating BV-2 cells with the PPARalpha agonists GW7647 and Fenofibrate significantly inhibited the radiation-induced microglial proinflammatory response, in part, via decreasing (i) the nuclear translocation of the NF-kappaB p65 subunit and (ii) phosphorylation of the c-jun subunit of AP-1 in the nucleus. Taken together, these data support the hypothesis that activation of PPARalpha can modulate the radiation-induced microglial proinflammatory response.
Collapse
Affiliation(s)
- Sriram Ramanan
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
10
|
Ahmed KM, Li JJ. NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med 2008; 44:1-13. [PMID: 17967430 PMCID: PMC2266095 DOI: 10.1016/j.freeradbiomed.2007.09.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 01/05/2023]
Abstract
Ionizing radiation (IR) began to be a powerful medical modality soon after Wilhelm Röntgen's discovery of X-rays in 1895. Today, more than 50% of cancer patients receive radiotherapy at some time during the course of their disease. Recent technical developments have significantly increased the precision of dose delivery to the target tumor, making radiotherapy more efficient in cancer treatment. However, tumor cells have been shown to acquire a radioresistance that has been linked to increased recurrence and failure in many patients. The exact mechanisms by which tumor cells develop an adaptive resistance to therapeutic fractional irradiation are unknown, although low-dose IR has been well defined for radioadaptive protection of normal cells. This review will address the radioadaptive response, emphasizing recent studies of molecular-level reactions. A prosurvival signaling network initiated by the transcription factor NF-kappa B, DNA-damage sensor ATM, oncoprotein HER-2, cell cyclin elements (cyclin B1), and mitochondrial functions in radioadaptive resistance is discussed. Further elucidation of the key elements in this prosurvival network may generate novel targets for resensitizing the radioresistant tumor cells.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Division of Molecular Radiobiology and Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| | | |
Collapse
|
11
|
Mahmoud-Ahmed AS, Atkinson S, Wong CS. Early gene expression profile in mouse brain after exposure to ionizing radiation. Radiat Res 2006; 165:142-54. [PMID: 16435913 DOI: 10.1667/rr3485.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute changes in the gene expression profile in mouse brain after exposure to ionizing radiation were studied using microarray analysis. RNA was isolated at 0.25, 1, 5 and 24 h after exposure to 20 Gy and at 5 h after exposure of the whole brain of adult mice to 2 or 10 Gy. RNA was hybridized onto 15K cDNA microarrays, and data were analyzed using GeneSpring and Significant Analysis of Microarray. Radiation modulated the expression of 128, 334, 325 and 155 genes and ESTs at 0.25, 1, 5 and 24 h after 20 Gy and 60 and 168 at 5 h after 2 and 10 Gy, respectively. The expression profiles showed dose- and time-dependent changes in both expression levels and numbers of differentially modulated genes and ESTs. Seventy-eight genes were modulated at two or more times. Differentially modulated genes were associated with 12 different classes of molecular function and 24 different biological pathways and showed time- and dose-dependent changes. The change in expression of four genes (Jak3, Dffb, Nsep1 and Terf1) after irradiation was validated using quantitative real-time PCR. Up-regulation of Jak3 was observed in another mouse strain. In mouse brain, there was an increase of Jak3 immunoreactivity after irradiation. In conclusion, changes in the gene profile in the brain after irradiation are complex and are dependent on time and dose, and genes with diverse functions and pathways are modulated.
Collapse
Affiliation(s)
- Ashraf S Mahmoud-Ahmed
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5 Canada
| | | | | |
Collapse
|
12
|
Magné N, Toillon RA, Bottero V, Didelot C, Houtte PV, Gérard JP, Peyron JF. NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett 2006; 231:158-68. [PMID: 16399220 DOI: 10.1016/j.canlet.2005.01.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 01/19/2005] [Indexed: 01/04/2023]
Abstract
NF-kappaB transcription factor regulates important cellular processes ranging from establishment of the immune and inflammatory responses to regulation of cell proliferation or apoptosis, through the induction of a large array of target genes. NF-kappaB is now considered as an important actor in the tumorigenic process mainly because it exerts strong anti-apoptotic functions in cancer cells. NF-kappaB is triggered by chimio- and radio-therapeutic strategies that are intended to eliminate cancerous cells through induction of apoptosis. Numerous studies have demonstrated that inhibition of NF-kappaB by different means increased sensitivity of cancer cells to the apoptotic action of diverses effectors such as TNFalpha or chemo- or radio-therapies. From these studies as emerged the concept that NF-kappaB blockade could be associated to conventional therapies in order to increase their efficiency. This review focuses on the current knowledge on NF-kappaB regulation and discusses the therapeutic potential of targeting NF-kappaB in cancer in particular during radiotherapy.
Collapse
Affiliation(s)
- Nicolas Magné
- Département de Radiothérapie, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgique.
| | | | | | | | | | | | | |
Collapse
|
13
|
Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 2005; 62:279-87. [PMID: 15850934 DOI: 10.1016/j.ijrobp.2005.01.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Robert A Nordal
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario Canada
| | | |
Collapse
|
14
|
Magné N, Didelot C, Toillon RA, Van Houtte P, Peyron JF. [Biomodulation of transcriptional factor NF-kappa B by ionizing radiation]. Cancer Radiother 2004; 8:315-21. [PMID: 15561597 DOI: 10.1016/j.canrad.2004.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 08/31/2004] [Indexed: 01/04/2023]
Abstract
NF-kappaB (Nuclear Factor-kappaB) was described for the first time in 1986 as a nuclear protein binding to the kappa immunoglobulin-light chain enhancer. Since then, NF-kappaB has emerged as an ubiquitous factor involved in the regulation of numerous important processes as diverse as immune and inflammatory responses, apoptosis and cell proliferation. These last two properties explain the implication of NF-kappaB in the tumorigenic process as well as the promise of a targeted therapeutic intervention. This review focuses on the current knowledge on NF-kappaB regulation and discusses the therapeutic potential of targeting NF-kappaB in cancer in particular during radiotherapy.
Collapse
Affiliation(s)
- N Magné
- Département de radiothérapie, institut Jules-Bordet, 121, boulevard de Waterloo, 1000 Bruxelles, Belgique.
| | | | | | | | | |
Collapse
|
15
|
Nordal RA, Wong CS. Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol 2004; 63:474-83. [PMID: 15198126 DOI: 10.1093/jnen/63.5.474] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Central nervous system (CNS) injury is a major dose-limiting toxicity that limits the effectiveness of radiation therapy. Blood-brain barrier (BBB) disruption and white matter necrosis are prominent features. Increased expression of intercellular adhesion molecule-1 (ICAM-1) accompanies and is believed to be important in BBB disruption in other CNS injuries. Our aim was to assess the expression of ICAM-1 and its relationship to regions of blood-spinal cord barrier (BSCB) disruption in the irradiated rat spinal cord. ICAM-1 protein was detected by immunohistochemistry and quantified by digital image analysis. Cells expressing ICAM-1 were identified. BSCB disruption was assessed by immunohistochemical detection of serum albumin. ICAM-1 expression localized predominantly to vascular endothelium and increased in white matter but not in grey matter at 24 hours and 17 to 20 weeks after 22 Gy. A dose response was observed from 16 to 20 Gy. ICAM-1 expression colocalized with regions of BSCB disruption. ICAM-1 expression was also observed in glia, a majority of which were astrocytes. The parallel dose response, time course, and spatial distribution of ICAM-1 expression and albumin leakage suggest a role for ICAM-1 in late BSCB disruption after radiation.
Collapse
Affiliation(s)
- Robert A Nordal
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao YP. A Sense of Danger from Radiation1. Radiat Res 2004; 162:1-19. [PMID: 15222781 DOI: 10.1667/rr3196] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tissue damage caused by exposure to pathogens, chemicals and physical agents such as ionizing radiation triggers production of generic "danger" signals that mobilize the innate and acquired immune system to deal with the intrusion and effect tissue repair with the goal of maintaining the integrity of the tissue and the body. Ionizing radiation appears to do the same, but less is known about the role of "danger" signals in tissue responses to this agent. This review deals with the nature of putative "danger" signals that may be generated by exposure to ionizing radiation and their significance. There are a number of potential consequences of "danger" signaling in response to radiation exposure. "Danger" signals could mediate the pathogenesis of, or recovery from, radiation damage. They could alter intrinsic cellular radiosensitivity or initiate radioadaptive responses to subsequent exposure. They may spread outside the locally damaged site and mediate bystander or "out-of-field" radiation effects. Finally, an important aspect of classical "danger" signals is that they link initial nonspecific immune responses in a pathological site to the development of specific adaptive immunity. Interestingly, in the case of radiation, there is little evidence that "danger" signals efficiently translate radiation-induced tumor cell death into the generation of tumor-specific immunity or normal tissue damage into autoimmunity. The suggestion is that radiation-induced "danger" signals may be inadequate in this respect or that radiation interferes with the generation of specific immunity. There are many issues that need to be resolved regarding "danger" signaling after exposure to ionizing radiation. Evidence of their importance is, in some areas, scant, but the issues are worthy of consideration, if for no other reason than that manipulation of these pathways has the potential to improve the therapeutic benefit of radiation therapy. This article focuses on how normal tissues and tumors sense and respond to danger from ionizing radiation, on the nature of the signals that are sent, and on the impact on the eventual consequences of exposure.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1714, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 2004; 79:759-75. [PMID: 14630535 DOI: 10.1080/09553000310001610961] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To characterize the cellular functions associated with the altered transcript profiles of mouse brain exposed to low-dose in vivo gamma-irradiation. MATERIALS AND METHODS Cerebral RNA was isolated at 30 min and 4 h after whole-body irradiation at 0.1 or 2 Gy, hybridized to random oligonucleotide arrays, and evaluated for time and dose-response patterns by multifactorial analyses. RESULTS Brain irradiation modulated the expression patterns of 1574 genes, of which 855 showed more than 1.5-fold variation. about 30% of genes showed dose-dependent variations, including genes exclusively affected by 0.1 Gy. About 60% of genes showed time-dependent variation with more genes affected at 30 min than at 4 h. Early changes involved signal transduction, ion regulation and synaptic signalling. Later changes involved metabolic functions including myelin and protein synthesis. Low-dose radiation also modulated the expression of genes involved in stress response, cell-cycle control and DNA synthesis/repair. CONCLUSIONS Doses of 0.1 Gy induced changes in gene expression that were qualitatively different from those at 2 Gy. The findings suggest that low-dose irradiation of the brain induces the expression of genes involved in protective and reparative functions, while down-modulating genes involved in neural signalling activity.
Collapse
Affiliation(s)
- E Yin
- Biology and Biotechnology Research Program Lawrence Livermore National Laboratory Livermore CA 94 550 USA
| | | | | | | | | |
Collapse
|
18
|
Amundson SA, Bittner M, Fornace AJ. Functional genomics as a window on radiation stress signaling. Oncogene 2003; 22:5828-33. [PMID: 12947389 DOI: 10.1038/sj.onc.1206681] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exposure to ionizing radiation, as well as other stresses, results in the activation of complex signal transduction pathways, which eventually shape the response of cells and organisms. Some of the important pathways responding to radiation include the ATM/P53 pathway, MAPK cascades and NF-kappaB activation, as well as signaling events initiated at the cell membrane and within the cytoplasm. Alterations in gene expression play roles both as intermediaries in signaling and as downstream effector genes. Differences in cell type, interindividual genetic differences and crosstalk occurring between signaling pathways may help to channel radiation stress signals between cell cycle delay, enhanced DNA repair, and apoptosis. These differences may in turn help determine the likelihood of late effects of radiation exposure, including carcinogenesis and fibrosis. The tools of the postgenomic era enable high-throughput studies of the multiple changes resulting from the interplay of radiation signaling pathways. Gene expression profiling, in particular shows great promise, both in terms of insight into basic molecular mechanisms and for the future hope of biomarker development and individual tailoring of cancer therapy.
Collapse
Affiliation(s)
- Sally A Amundson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
19
|
Shi M, Wei LC, Cao R, Chen LW. Enhancement of nestin protein-immunoreactivity induced by ionizing radiation in the forebrain ependymal regions of rats. Neurosci Res 2002; 44:475-81. [PMID: 12445635 DOI: 10.1016/s0168-0102(02)00175-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of nestin was immunohistochemically examined in the forebrains of rats receiving ionizing radiation. Nestin-immunoreactive cells were predominately distributed in ependymal regions. Nestin-immunoreactivity in ependymal regions of irradiated rats increased significantly from 1 to 4 weeks after ionizing radiation compared with that of controls. Double immunofluorescence confirmed that about 94% of nestin-positive cells exhibited glial fibrillary acidic protein-immunoreactivity and a minor population of them showed Ki-67-immunoreactivity in these regions. The results have provided evidence for up-regulation of nestin expression induced by ionizing radiation in ependymal cells, suggesting that these reactive ependymal cells may be involved in remodeling and repairing processes of brain irradiation injury.
Collapse
Affiliation(s)
- Mei Shi
- Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|
20
|
Abstract
Nuclear factor-kappaB (NF-kappaB) is one of the key regulatory molecules in oxidative stress-induced cell activation. NF-kappaB is normally sequestered in the cytoplasm of nonstimulated cells and must translocate into the nucleus to regulate effector gene expression. A family of inhibitory proteins, IKBs, binds to NF-kappaB and masks its nuclear localization signal domain and therefore controls the translocation of NF-kappaB. Exposure of cells to extracellular stimuli that perturb redox balance results in rapid phosphorylation, ubiquitination, and proteolytic degradation of IkappaBs. This process frees NF-kappaB from the NF-KB/IKB complexes and enables NF-kappaB to translocate to the nucleus where it regulates gene transcription. Many effector genes including those encoding cytokines and adhesion molecules are in turn regulated by NF-kappaB. NF-kappaB is also an essential component of ionizing radiation (IR)-triggered signal transduction pathways that can lead to cell death or survival. The purpose of this review is to briefly summarize the recent progress in the studies of the role of reactive oxygen species (ROS), cytokines and ionizing radiation in NF-kappaB activation.
Collapse
Affiliation(s)
- Tieli Wang
- Department of Radiation Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | | | | |
Collapse
|
21
|
Hosoi Y, Miyachi H, Matsumoto Y, Enomoto A, Nakagawa K, Suzuki N, Ono T. Induction of interleukin-1beta and interleukin-6 mRNA by low doses of ionizing radiation in macrophages. Int J Cancer 2001; 96:270-6. [PMID: 11582579 DOI: 10.1002/ijc.1030] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously reported the antimetastatic effects and augmentation of immune responses, which would be a mechanism of the antimetastatic effects, of 0.1 to 0.2 Gy total body irradiation. To elucidate the cellular mechanisms of the augmentation of immune response, we investigated the effects of low-dose irradiation on gene expression of interleukin-1beta (IL-1beta) and IL-6 using mouse peritoneal macrophages in vitro. Absolute mRNA quantification was carried out using competitive polymerase chain reaction. Gene expression of IL-1beta and IL-6 was increased 1 to 2 hr after 2.0 Gy irradiation and then decreased to below the basal expression level 4 hr after irradiation. Irradiation with 0.1 Gy increased IL-6 expression 2 hr after irradiation, but it did not affect IL-1beta expression. Downregulation of IL-1beta and IL-6 observed 4 hr after 2.0 Gy irradiation was not observed with 0.1 Gy irradiation. The protein kinase C (PKC) inhibitor H7 and the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor wortmannin inhibited induction of IL-1beta and IL-6 expression, which suggests that radiation-induced IL-1beta and IL-6 expression is achieved by PKC- and PI3-kinase-mediated signaling.
Collapse
Affiliation(s)
- Y Hosoi
- Department of Radiation Oncology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Radiation continues to be a major treatment modality for tumors located within and close to the central nervous system (CNS). Consequently, alleviating or protecting against radiation-induced CNS injury would be of benefit in cancer treatment. However, the rational development of such interventional strategies will depend on a more complete understand-ing of the mechanisms responsible for the development of this form of normal tissue injury. Whereas the vasculature and the oligodendrocyte lineage have traditionally been considered the primary radiation targets in the CNS, in this review we suggest that other phenotypes as well as critical cellular interactions may also be involved in determining the radio-response of the CNS. Furthermore, based on the assumption that the CNS has a limited repertoire of responses to injury, the reaction of the CNS to other types of insults is used as a framework for modeling the pathogenesis of radiation-induced damage. Evidence is then provided suggesting that, in addition to acute cell death, radiation induces an intrinsic recovery/repair response in the form of specific cytokines and may
Collapse
Affiliation(s)
- P J Tofilon
- Department of Experimental Radiation Oncology and Neurosurgery, The U.T.M.D Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|