1
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using dopamine receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1651-1666. [PMID: 37378887 PMCID: PMC10349733 DOI: 10.1007/s00213-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE Dopaminergic dysfunction is implicated in disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) has been used to quantify changes in attention and impulsivity. OBJECTIVE To examine the roles of dopamine receptors in attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval schedules (vITI) using DA receptor antagonists. METHODS Two cohorts of 35 and 36 female C57BL/6JRj mice were examined separately in the rCPT, vSD, and vITI schedules, respectively. Both cohorts received antagonists of the following receptors: D1/5 (SCH23390, SCH: 0.01, 0.02, 0.04 mg/kg) and D2/3 (raclopride, RAC 0.03, 0.10, 0.30 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS SCH showed similar effects in both schedules, and the effects were reference-dependent in the vITI schedule. SCH reduced responding, but improved response accuracy, impulsivity, discriminability, and locomotor activity. RAC showed mixed effects on responsivity, but improved accuracy and discriminability. The discriminability improvement was driven by an increase in hit rate in the vITI schedule and a reduction in false alarm rate in the vSD schedule. RAC also decreased locomotor activity. CONCLUSION Both D1/5 and D2/3 receptor antagonism reduced responding, but the outcome on discriminability differed, stemming from individual effects on hit and false alarm rate, and the weight of omissions within the calculation. The effects of SCH and RAC suggest that endogenous DA increases responding and impulsivity, but reduces accuracy and shows mixed effects on discriminability.
Collapse
Affiliation(s)
- L Klem
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using noradrenaline receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1629-1650. [PMID: 37329343 PMCID: PMC10349758 DOI: 10.1007/s00213-023-06385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023]
Abstract
RATIONALE Noradrenergic dysfunction is associated with disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) quantifies changes in attention and impulsivity. OBJECTIVE To use NA receptor antagonists to examine the roles of NA on attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval (vITI) schedules. METHODS Two cohorts of 36 female C57BL/6JRj mice were examined separately in the rCPT vSD and vITI schedules. Both cohorts received antagonists of the following adrenoceptors: α1 (doxazosin, DOX: 1.0, 3.0, 10.0 mg/kg), α2 (yohimbine, YOH: 0.1, 0.3, 1.0 mg/kg), and β1/2 (propranolol, PRO: 1.0, 3.0, 10.0 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS DOX showed similar effects in both schedules, improving discriminability and accuracy, and reducing responding and impulsivity, and DOX also reduced locomotor activity. YOH showed prominent effects in the vSD schedule to increase responding and impulsivity, while impairing discriminability and accuracy. YOH did not affect locomotor activity. PRO increased responding and impulsivity, decreased accuracy, but did not affect discriminability or locomotor activity. CONCLUSION Antagonism of α2 or β1/2 adrenoceptors caused similar increases in responding and impulsivity and worsened attentional performance, while α1 adrenoceptor antagonism showed the opposite effects. Our results suggest that endogenous NA exerts bidirectional control of most behaviours in the rCPT. The parallel vSD and vITI studies showed a substantial overlap in effects, but also some differences that indicate differing sensitivity towards noradrenergic manipulations.
Collapse
Affiliation(s)
- L Klem
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Navarro D, Gasparyan A, Martí Martínez S, Díaz Marín C, Navarrete F, García Gutiérrez MS, Manzanares J. Methods to Identify Cognitive Alterations from Animals to Humans: A Translational Approach. Int J Mol Sci 2023; 24:ijms24087653. [PMID: 37108813 PMCID: PMC10143375 DOI: 10.3390/ijms24087653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing prevalence of cognitive dysfunction and dementia in developed countries, associated with population aging, has generated great interest in characterizing and quantifying cognitive deficits in these patients. An essential tool for accurate diagnosis is cognitive assessment, a lengthy process that depends on the cognitive domains analyzed. Cognitive tests, functional capacity scales, and advanced neuroimaging studies explore the different mental functions in clinical practice. On the other hand, animal models of human diseases with cognitive impairment are essential for understanding disease pathophysiology. The study of cognitive function using animal models encompasses multiple dimensions, and deciding which ones to investigate is necessary to select the most appropriate and specific tests. Therefore, this review studies the main cognitive tests for assessing cognitive deficits in patients with neurodegenerative diseases. Cognitive tests, the most commonly used functional capacity scales, and those resulting from previous evidence are considered. In addition, the leading behavioral tests that assess cognitive functions in animal models of disorders with cognitive impairment are highlighted.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Silvia Martí Martínez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Servicio de Neurología, Hospital General Dr. Balmis, 03010 Alicante, Spain
| | - Carmen Díaz Marín
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Servicio de Neurología, Hospital General Dr. Balmis, 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
4
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
5
|
Birtalan E, Bánhidi A, Sanders JI, Balázsfi D, Hangya B. Efficient training of mice on the 5-choice serial reaction time task in an automated rodent training system. Sci Rep 2020; 10:22362. [PMID: 33349672 PMCID: PMC7752912 DOI: 10.1038/s41598-020-79290-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Experiments aiming to understand sensory-motor systems, cognition and behavior necessitate training animals to perform complex tasks. Traditional training protocols require lab personnel to move the animals between home cages and training chambers, to start and end training sessions, and in some cases, to hand-control each training trial. Human labor not only limits the amount of training per day, but also introduces several sources of variability and may increase animal stress. Here we present an automated training system for the 5-choice serial reaction time task (5CSRTT), a classic rodent task often used to test sensory detection, sustained attention and impulsivity. We found that full automation without human intervention allowed rapid, cost-efficient training, and decreased stress as measured by corticosterone levels. Training breaks introduced only a transient drop in performance, and mice readily generalized across training systems when transferred from automated to manual protocols. We further validated our automated training system with wireless optogenetics and pharmacology experiments, expanding the breadth of experimental needs our system may fulfill. Our automated 5CSRTT system can serve as a prototype for fully automated behavioral training, with methods and principles transferrable to a range of rodent tasks.
Collapse
Affiliation(s)
- Eszter Birtalan
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Anita Bánhidi
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Diána Balázsfi
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
6
|
Callahan PM, Plagenhoef MR, Blake DT, Terry AV. Atomoxetine improves memory and other components of executive function in young-adult rats and aged rhesus monkeys. Neuropharmacology 2019; 155:65-75. [PMID: 31108108 PMCID: PMC6839761 DOI: 10.1016/j.neuropharm.2019.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 02/04/2023]
Abstract
Atomoxetine is a norepinephrine reuptake inhibitor and FDA-approved treatment for attention deficit/hyperactivity disorder (ADHD) in children, adolescents, and adults. While there is some evidence that atomoxetine may improve additional domains of cognition beyond attention in both young adults and aged individuals, this subject has not been extensively investigated. Here, we evaluated atomoxetine (in low mg/kg doses) in a variable stimulus duration (vSD) and a variable intertrial interval (vITI) version of the five choice-serial reaction time task (5C-SRTT), and an eight-arm radial arm maze (RAM) procedure in young-adult rats. The compound was further evaluated (in μg/kg-low mg/kg doses) along with nicotine (as a reference compound) and the Alzheimer's disease treatment donepezil in a distractor version of a delayed match to sample task (DMTS-D) in aged monkeys (mean age = 21.8 years). Atomoxetine (depending on the dose) improved accuracy (sustained attention) as well as behaviors related to impulsivity, compulsivity and cognitive inflexibility in both the vSD and vITI tasks and it improved spatial reference memory in the RAM. In the DMTS-D task, both nicotine and atomoxetine, but not donepezil attenuated the effects of the distractor on accuracy at short delays (non-spatial working/short term memory). However, combining sub-effective doses of atomoxetine and donepezil did enhance DMTS-D accuracy indicating the potential of using atomoxetine as an adjunctive treatment with donepezil. Collectively, these animal studies support the further evaluation of atomoxetine as a repurposed drug for younger adults as well older individuals who suffer from deficits in attention, memory and other components of executive function.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Marc R Plagenhoef
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
7
|
Anshu K, Nair AK, Kumaresan UD, Kutty BM, Srinath S, Laxmi TR. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Res 2017; 10:1929-1944. [PMID: 28851114 DOI: 10.1002/aur.1852] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 02/03/2023]
Abstract
Attention is foundational to efficient perception and optimal goal driven behavior. Intact attentional processing is crucial for the development of social and communication skills. Deficits in attention are therefore likely contributors to the core pathophysiology of autism spectrum disorder (ASD). Clinical evidence in ASD is suggestive of impairments in attention and its control, but the underlying mechanisms remain elusive. We examined sustained, spatially divided attention in a prenatal valproic acid (VPA) model of ASD using the 5-choice serial reaction time task (5-CSRTT). As compared to controls, male and female VPA rats had progressively lower accuracy and higher omissions with increasing attentional demands during 5-CSRTT training, and showed further performance decrements when subjected to parametric task manipulations. It is noteworthy that although VPA exposure induced attentional deficits in both sexes, there were task parameter specific sex differences. Importantly, we did not find evidence of impulsivity or motivational deficits in VPA rats but we did find reduced social preference, as well as sensorimotor deficits that suggest pre-attentional information processing impairments. Importantly, with fixed rules, graded difficulty levels, and more time, VPA rats could be successfully trained on the attentional task. To the best of our knowledge, this is the first study examining attentional functions in a VPA model. Our work underscores the need for studying both sexes in ASD animal models and validates the use of the VPA model in the quest for mechanistic understanding of aberrant attentional functions and for evaluating suitable therapeutic targets. Autism Res 2017, 10: 1929-1944. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We studied rats prenatally exposed to valproic acid (VPA), an established rodent model of autism. Both male and female VPA rats had a range of attentional impairments with sex-specific characteristics. Importantly, with fixed rules, graded difficulty levels, and more time, VPA rats could be successfully trained on the attentional task. Our work validates the use of the VPA model in the quest for evaluating suitable therapeutic targets for improving attentional performance.
Collapse
Affiliation(s)
- Kumari Anshu
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Ajay Kumar Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - U D Kumaresan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Shoba Srinath
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - T Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| |
Collapse
|
8
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
9
|
Berkowicz SR, Featherby TJ, Whisstock JC, Bird PI. Mice Lacking Brinp2 or Brinp3, or Both, Exhibit Behaviors Consistent with Neurodevelopmental Disorders. Front Behav Neurosci 2016; 10:196. [PMID: 27826231 PMCID: PMC5079073 DOI: 10.3389/fnbeh.2016.00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
Background:Brinps 1–3, and Astrotactins (Astn) 1 and 2, are members of the Membrane Attack Complex/Perforin (MACPF) superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1−/− mice exhibit behavior reminiscent of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Method: We created Brinp2−/− mice and Brinp3−/− mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behavior. Additionally, Brinp2−/−Brinp3−/− double knock-out mice were generated by interbreeding Brinp2−/− and Brinp3−/− mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioral examination. Brinp1−/−Brinp2−/−Brinp3−/− triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1−/− mice, and examined by weight and histological analysis. Results:Brinp2−/− and Brinp3−/− mice differ in their behavior: Brinp2−/− mice are hyperactive, whereas Brinp3−/− mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3−/− mice also show evidence of altered sociability. Both Brinp2−/− and Brinp3−/− mice have normal short-term memory, olfactory responses, pre-pulse inhibition, and motor learning. The double knock-out mice show behaviors of Brinp2−/− and Brinp3−/− mice, without evidence of new or exacerbated phenotypes. Conclusion:Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2−/− and Brinp3−/− genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.
Collapse
Affiliation(s)
- Susan R Berkowicz
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Travis J Featherby
- Melbourne Brain Centre, Florey Neuroscience Institute Parkville, VIC, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClayton, VIC, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash UniversityClayton, VIC, Australia
| | - Phillip I Bird
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
10
|
Maguire DR, Henson C, France CP. Daily morphine administration increases impulsivity in rats responding under a 5-choice serial reaction time task. Br J Pharmacol 2016; 173:1350-62. [PMID: 26776751 PMCID: PMC4940812 DOI: 10.1111/bph.13434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/22/2015] [Accepted: 01/07/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Repeated administration of a μ opioid receptor agonist can enhance some forms of impulsivity, such as delay discounting. However, it is unclear whether repeated administration alters motor impulsivity. EXPERIMENTAL APPROACH We examined the effects of acute administration of morphine and amphetamine prior to and during daily morphine administration in rats responding under a five-choice serial reaction time task. Rats (n = 5) were trained to detect a brief flash of light presented randomly in one of five response holes; responding in the target hole delivered food, whereas responding in the wrong hole or responding prior to illumination of the target stimulus (premature response) initiated a timeout. Premature responding served as an index of motor impulsivity. KEY RESULTS Administered acutely, morphine (0.1-10 mg·kg(-1) , i.p.) increased omissions and modestly, although not significantly, premature responding without affecting response accuracy; amphetamine (0.1-1.78 mg·kg(-1) , i.p.) increased premature responding without changing omissions or response accuracy. After 3 weeks of 10 mg·kg(-1) ·day(-1) morphine, tolerance developed to its effects on omissions whereas premature responding increased approximately fourfold, compared with baseline. Effects of amphetamine were not significantly affected by daily morphine administration. CONCLUSIONS AND IMPLICATIONS These data suggest that repeated administration of morphine increased effects of morphine on motor impulsivity, although tolerance developed to other effects, such as omissions. To the extent that impulsivity is a risk factor for drug abuse, repeated administration of μ opioid receptor agonists, for recreational or therapeutic purposes, might increase impulsivity and thus the risk for drug abuse.
Collapse
Affiliation(s)
- D R Maguire
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - C Henson
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - C P France
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
11
|
ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice. Behav Pharmacol 2015; 26:241-8. [PMID: 25426579 DOI: 10.1097/fbp.0000000000000111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotine withdrawal produces cognitive deficits that can predict relapse. Amelioration of these cognitive deficits emerges as a target in current smoking cessation therapies. In rodents, withdrawal from chronic nicotine disrupts contextual fear conditioning (CFC), whereas acute nicotine enhances this hippocampus-specific learning and memory. These modifications are mediated by β2-subunit-containing (β2*) nicotinic acetylcholine receptors in the hippocampus. We aimed to test ABT-089, a partial agonist of α4β2*, and ABT-107, an α7 nicotinic acetylcholine receptor agonist, for amelioration of cognitive deficits induced by withdrawal from chronic nicotine in mice. Mice underwent chronic nicotine administration (12.6 mg/kg/day or saline for 12 days), followed by 24 h of withdrawal. At the end of withdrawal, mice received 0.3 or 0.6 mg/kg ABT-089 or 0.3 mg/kg ABT-107 (doses were determined through initial dose-response experiments and prior studies) and were trained and tested for CFC. Nicotine withdrawal produced deficits in CFC that were reversed by acute ABT-089, but not ABT-107. Cued conditioning was not affected. Taken together, our results suggest that modulation of hippocampal learning and memory using ABT-089 may be an effective component of novel therapeutic strategies for nicotine addiction.
Collapse
|
12
|
Braida D, Ponzoni L, Matteoli M, Sala M M. Different attentional abilities among inbred mice strains using virtual object recognition task (VORT): SNAP25⁺/⁻ mice as a model of attentional deficit. Behav Brain Res 2015; 296:393-400. [PMID: 26300453 DOI: 10.1016/j.bbr.2015.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, Alzheimer's and Parkinson's disease are characterized by attentional deficits. In the present study we first applied the virtual object recognition test (VORT), where 3D objects were replaced with highly discriminated geometrical shapes and presented on two 3.5-inch widescreen displays, in different inbred mice strains (C57BL/6N, DBA/2J, BALB/cJ), in comparison with the standard object recognition test (NOR). In both NOR and VORT, there was a progressive decay of performance in terms of reduced discrimination index from 5 min to 72 h of inter-trial delay in all strains. However, BALB/cJ inbred mice showed a better long lasting performance than C57BL/6N and DBA/2J, when tested in NOR. In VORT, BALB/cJ showed the best performance. Total exploration time was always higher in BALB/cJ than C57BL/6N and DBA/2J mice. C57BL/6N were less explorative strain than DBA/2J and BALB/cJ mice. When VORT was applied to SNAP-25(+/-) mice, an impairment in both NOR and VORT was shown. However, when moving shapes were applied, these heterozygous mice improved their performance, suggesting that the introduction of motion is a strong cue that makes the task more valuable to study attention deficits. Taken together, these data indicate that VORT provides a useful and rapid tool to identify the attentional deficit in different inbred strains and genetically modified mice, enhancing the value of psychiatric mouse models.
Collapse
Affiliation(s)
- Daniela Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20129 Milan, Italy; Fondazione Don Gnocchi IRCCS, Milan, Italy
| | - Luisa Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20129 Milan, Italy
| | - Michela Matteoli
- CNR-Neuroscience Institute, 20129 Milan, Italy; Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mariaelvina Sala M
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20129 Milan, Italy; CNR-Neuroscience Institute, 20129 Milan, Italy.
| |
Collapse
|
13
|
Higgins GA, Silenieks LB, Van Niekerk A, Desnoyer J, Patrick A, Lau W, Thevarkunnel S. Enduring attentional deficits in rats treated with a peripheral nerve injury. Behav Brain Res 2015; 286:347-55. [DOI: 10.1016/j.bbr.2015.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/01/2022]
|
14
|
Schneider JS, Williams C, Ault M, Guilarte TR. Effects of chronic manganese exposure on attention and working memory in non-human primates. Neurotoxicology 2015; 48:217-22. [PMID: 25917687 DOI: 10.1016/j.neuro.2015.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is essential for a variety of physiological processes, but at elevated levels, can be neurotoxic. While cognitive dysfunction has been recently appreciated to occur as a result of chronic Mn exposures, it is still unclear as to which cognitive domains are most susceptible to disruption by Mn exposure. We previously described early appearing Mn-induced changes in performance on a paired associate learning task in monkeys chronically exposed to Mn and suggested that performance of this task might be a sensitive tool for detecting cognitive dysfunction resulting from Mn exposure. As chronic Mn exposure has been suggested to be associated with attention, working memory and executive function deficits, the present study was conducted to assess the extent to which detrimental effects of chronic Mn exposure could be detected using tasks specifically designed to preferentially assess attention, working memory, and executive function. Six cynomolgus monkeys received Mn exposure over an approximate 12 month period and three served as control animals. All animals were trained to perform a self-ordered spatial search (SOSS) task and a five choice serial reaction time (5-CSRT) task. Deficits in performance of the SOSS task began to appear by the fourth month of Mn exposure but only became consistently significantly impaired beginning at the ninth month of Mn exposure. Performance on the 5-CSRT became significantly affected by the third month of Mn exposure. These data suggest that in addition to the paired associate learning task, cognitive processing speed (as measured by the 5-CSRT) may be a sensitive measure of Mn toxicity and that brain circuits involved in performance of the SOSS task may be somewhat less sensitive to disruption by chronic Mn exposure.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - C Williams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Ault
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - T R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Abstract
The ability to focus one's attention on important environmental stimuli while ignoring irrelevant stimuli is fundamental to human cognition and intellectual function. Attention is inextricably linked to perception, learning and memory, and executive function; however, it is often impaired in a variety of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, depression, and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is considered as an important therapeutic target in these disorders. The purpose of this chapter is to provide an overview of the most common behavioral paradigms of attention that have been used in animals (particularly rodents) and to review the literature where these tasks have been employed to elucidate neurobiological substrates of attention as well as to evaluate novel pharmacological agents for their potential as treatments for disorders of attention. These paradigms include two tasks of sustained attention that were developed as rodent analogues of the human Continuous Performance Task (CPT), the Five-Choice Serial Reaction Time Task (5-CSRTT) and the more recently introduced Five-Choice Continuous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which was designed to emphasize temporal components of attention.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, CB-3545, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA, 30912-2450, USA
| | | |
Collapse
|
16
|
Beurel E, Jope RS. Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits. Transl Psychiatry 2014; 4:e488. [PMID: 25514751 PMCID: PMC4270310 DOI: 10.1038/tp.2014.129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 10/26/2014] [Indexed: 12/15/2022] Open
Abstract
Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3.
Collapse
Affiliation(s)
- E Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - R S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA,Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building Room 416, Miami, FL 33136, USA. E-mail:
| |
Collapse
|
17
|
Krauzlis RJ, Bollimunta A, Arcizet F, Wang L. Attention as an effect not a cause. Trends Cogn Sci 2014; 18:457-64. [PMID: 24953964 PMCID: PMC4186707 DOI: 10.1016/j.tics.2014.05.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022]
Abstract
Attention is commonly thought to be important for managing the limited resources available in sensory areas of the neocortex. Here we present an alternative view that attention arises as a byproduct of circuits centered on the basal ganglia involved in value-based decision making. The central idea is that decision making depends on properly estimating the current state of the animal and its environment and that the weighted inputs to the currently prevailing estimate give rise to the filter-like properties of attention. After outlining this new framework, we describe findings from physiological, anatomical, computational, and clinical work that support this point of view. We conclude that the brain mechanisms responsible for attention employ a conserved circuit motif that predates the emergence of the neocortex.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| | - Fabrice Arcizet
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| | - Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Asinof SK, Paine TA. The 5-choice serial reaction time task: a task of attention and impulse control for rodents. J Vis Exp 2014:e51574. [PMID: 25146934 DOI: 10.3791/51574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Collapse
|
19
|
Terry AV, Callahan PM, Beck WD, Vandenhuerk L, Sinha S, Bouchard K, Schade R, Waller JL. Repeated exposures to diisopropylfluorophosphate result in impairments of sustained attention and persistent alterations of inhibitory response control in rats. Neurotoxicol Teratol 2014; 44:18-29. [PMID: 24819591 PMCID: PMC4099306 DOI: 10.1016/j.ntt.2014.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/30/2022]
Abstract
Organophosphate (OP)-based chemicals are used worldwide for many purposes and they have likely saved millions of people from starvation and disease. However, due to their toxicity they can also pose a significant environmental risk. While considerable research has focused on the acute symptoms and long-term consequences of overtly toxic exposures to OPs, less attention has been given to the subject of repeated exposures to levels that are not associated with acute symptoms (subthreshold exposures). There is clinical evidence indicating that this type of OP exposure can lead to prolonged deficits in cognition; however only a few studies have addressed this issue prospectively in animal models. In this study, repeated subthreshold exposures to the OP nerve agent diisopropylfluorophosphate (DFP) were evaluated in a 5-Choice Serial Reaction Time Task (5C-SRTT), an animal model of sustained attention. Adult rats were trained to stably perform the 5C-SRTT and then injected subcutaneously with vehicle or DFP of 0.5mg/kg every other day for 30days. Behavioral testing occurred daily during the DFP-exposure period and throughout a 45day (OP-free) washout period. Compared to vehicle-treated controls, DFP-treated rats exhibited deficits in accuracy, increases in omissions and timeout responses during the OP exposure period, while no significant effects on premature responses, perseverative responses, or response latencies were noted. While the increase in timeout responses remained detectible during washout, all other DFP-related alterations in 5C-SRTT performance abated. When the demands of the task were increased by the presentation of variable intertrial intervals, premature responses were also elevated in DFP-treated rats during the washout period. These results indicate that repeated exposures to subthreshold doses of DFP lead to reversible impairments in sustained attention as well as persistent impairments of inhibitory response control in rats.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States; Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States.
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States; Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Leah Vandenhuerk
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Samantha Sinha
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Kristy Bouchard
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Rose Schade
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Jennifer L Waller
- Department of Biostatistics, Georgia Regents University, Augusta, GA 30912, United States
| |
Collapse
|
20
|
Scott D, Taylor JR. Chronic nicotine attenuates phencyclidine-induced impulsivity in a mouse serial reaction time task. Behav Brain Res 2013; 259:164-73. [PMID: 24239695 DOI: 10.1016/j.bbr.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a disorder characterized by positive, negative, and cognitive symptoms. While positive symptoms can be effectively treated with typical antipsychotic medication, which generally affects the dopaminergic system, negative and cognitive symptoms, including attentional deficits and impulsive behavior, are less sensitive to standard treatments. It has further been well documented that schizophrenic patients use tobacco products at a rate much higher than the general population, and this persists despite treatment. It has been argued this behavior may be a form of self-medication, to alleviate some symptoms of schizophrenia. It has further been posited that prefrontal glutamatergic hypofunction may underlie some aspects of schizophrenia, and in accordance with this model, systemic phencyclidine has been used to model the disease. We employed a modified 5-choice serial reaction time test, a paradigm that is often used to investigate many of the treatment-resistant symptoms of schizophrenia including impulsivity, selective attention, and sustained attention/cognitive vigilance, to determine the medicinal effects of nicotine. We demonstrate that chronic oral, but not acute injections of nicotine can selectively attenuate phencyclidine-induced increases in impulsivity without affecting other measures of attention. This suggests that nicotine use by schizophrenics may provide some relief of distinct symptoms that involve impulsive behaviors.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States
| | - Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States.
| |
Collapse
|
21
|
Mitchinson B, Prescott TJ. Whisker movements reveal spatial attention: a unified computational model of active sensing control in the rat. PLoS Comput Biol 2013; 9:e1003236. [PMID: 24086120 PMCID: PMC3784505 DOI: 10.1371/journal.pcbi.1003236] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention.
Collapse
Affiliation(s)
- Ben Mitchinson
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| | - Tony J. Prescott
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol 2013; 216:99-112. [PMID: 23225872 PMCID: PMC3515034 DOI: 10.1242/jeb.074716] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
We examine the role of the protozoan Toxoplasma gondii as a manipulatory parasite and question what role study of infections in its natural intermediate rodent hosts and other secondary hosts, including humans, may elucidate in terms of the epidemiology, evolution and clinical applications of infection. In particular, we focus on the potential association between T. gondii and schizophrenia. We introduce the novel term 'T. gondii-rat manipulation-schizophrenia model' and propose how future behavioural research on this model should be performed from a biological, clinical and ethically appropriate perspective.
Collapse
Affiliation(s)
- Joanne P. Webster
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Maya Kaushik
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Greg C. Bristow
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Glenn A. McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
23
|
Müller M, Triaca V, Besusso D, Costanzi M, Horn JM, Koudelka J, Geibel M, Cestari V, Minichiello L. Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci 2012; 32:14885-98. [PMID: 23100411 PMCID: PMC6704821 DOI: 10.1523/jneurosci.2849-12.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 01/19/2023] Open
Abstract
Many molecules expressed in the CNS contribute to cognitive functions either by modulating neuronal activity or by mediating neuronal trophic support and/or connectivity. An ongoing discussion is whether signaling of nerve growth factor (NGF) through its high-affinity receptor TrkA contributes to attention behavior and/or learning and memory, based on its expression in relevant regions of the CNS such as the hippocampus, cerebral cortex, amygdala and basal forebrain. Previous animal models carrying either a null allele or transgenic manipulation of Ngf or Trka have proved difficult in addressing this question. To overcome this problem, we conditionally deleted Ngf or Trka from the CNS. Our findings confirm that NGF-TrkA signaling supports survival of only a small proportion of cholinergic neurons during development; however, this signaling is not required for trophic support or connectivity of the remaining basal forebrain cholinergic neurons. Moreover, comprehensive behavioral analysis of young adult and intermediate-aged mice lacking NGF-TrkA signaling demonstrates that this signaling is dispensable for both attention behavior and various aspects of learning and memory.
Collapse
Affiliation(s)
- Markus Müller
- Mouse Biology Unit, European Molecular Biology Laboratory, 00015 Monterotondo, Italy
| | - Viviana Triaca
- Mouse Biology Unit, European Molecular Biology Laboratory, 00015 Monterotondo, Italy
| | - Dario Besusso
- Mouse Biology Unit, European Molecular Biology Laboratory, 00015 Monterotondo, Italy
- Centre for Neuroregeneration, University of Edinburgh, EH16 4SB Edinburgh, United Kingdom
| | - Marco Costanzi
- Cellular Biology and Neurobiology Institute, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
- Department of Human Science, Lumsa University, 00193 Rome, Italy
| | - Jacqueline M. Horn
- Centre for Neuroregeneration, University of Edinburgh, EH16 4SB Edinburgh, United Kingdom
| | - Juraj Koudelka
- Centre for Neuroregeneration, University of Edinburgh, EH16 4SB Edinburgh, United Kingdom
| | - Mirjam Geibel
- Centre for Neuroregeneration, University of Edinburgh, EH16 4SB Edinburgh, United Kingdom
| | - Vincenzo Cestari
- Cellular Biology and Neurobiology Institute, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
- Department of Human Science, Lumsa University, 00193 Rome, Italy
| | - Liliana Minichiello
- Mouse Biology Unit, European Molecular Biology Laboratory, 00015 Monterotondo, Italy
- Centre for Neuroregeneration, University of Edinburgh, EH16 4SB Edinburgh, United Kingdom
| |
Collapse
|
24
|
Autism spectrum disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Wilson CA, Schade R, Terry AV. Variable prenatal stress results in impairments of sustained attention and inhibitory response control in a 5-choice serial reaction time task in rats. Neuroscience 2012; 218:126-37. [PMID: 22634506 DOI: 10.1016/j.neuroscience.2012.05.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 12/19/2022]
Abstract
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit schizophrenia-like behavioral signs such as social withdrawal, elevations in amphetamine-induced locomotor activity, deficits in sensory-motor gating, as well as impairments in memory-related task performance. However, to date there have been no studies designed to test the hypothesis that variable PNS would lead to disruptions in sustained attention and inhibitory response control (i.e., symptoms also commonly observed in schizophrenia and other neuropsychiatric disorders such as attention-deficit hyperactivity disorder). In the current study, the effects of variable PNS in rats were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a 5-choice serial reaction time task (5C-SRTT). In a separate series of experiments, the glutamate (N-methyl-d-aspartate [NMDA]) antagonist, MK-801 (0.025-0.05 mg/kg), and the norepinephrine reuptake inhibitor, atomoxetine (0.30-3.0mg/kg), were administered acutely to assess the sensitivity of PNS subjects to glutamatergic and noradrenergic manipulations. The results indicated that exposure to variable PNS significantly impaired accuracy in the VSD version of the 5C-SRTT and increased premature and timeout responses in the VITI version. In addition, both doses of MK-801 impaired accuracy, increased premature and timeout responses in PNS, but not control subjects. In contrast, atomoxetine decreased premature and timeout responses in both PNS and control subjects in the VITI version of the task and improved accuracy in the PNS subjects. The results suggest that exposure to variable PNS in rats results in impairments of sustained attention and inhibitory response control and that these deficits can be exacerbated by NMDA antagonism and improved by a norepinephrine uptake inhibitor. Collectively, these data further support the premise that variable PNS in rats is a valid model system for the study of neuropsychiatric disorders and their treatment.
Collapse
Affiliation(s)
- C A Wilson
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, United States
| | | | | |
Collapse
|
26
|
Higgins GA, Breysse N, Undzys E, Derksen DR, Jeffrey M, Scott BW, Xin T, Roucard C, Bressand K, Depaulis A, Burnham WM. Comparative study of five antiepileptic drugs on a translational cognitive measure in the rat: relationship to antiepileptic property. Psychopharmacology (Berl) 2010; 207:513-27. [PMID: 19841906 DOI: 10.1007/s00213-009-1682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/21/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE Antiepileptic drugs (AEDs) have been available for many years; yet, new members of this class continue to be identified and developed due to the limitations of existing drugs, which include a propensity for cognitive impairment. However, there is little preclinical information about the cognitive effects they produce, which clinically include deficits in attention and slowing of reaction time. OBJECTIVES The purpose of this study was to profile two first-generation AEDs, phenytoin and valproate, and three second-generation AEDs, levetiracetam, pregabalin and lacosamide. Initially, each drug was examined across a range of well characterised preclinical seizure tests, and then each drug was evaluated in the five-choice serial reaction time test (5-CSRTT) based on efficacious doses from the seizure tests. MATERIALS AND METHODS Each AED was tested for anti-seizure efficacy in either (1) the maximal electroshock seizure test, (2) s.c. PTZ seizure test, (3) amygdala-kindled seizures and (4) the genetic absence epilepsy rat of Strasbourg model of absence seizures. On completion of these studies, each drug was tested in rats trained to asymptotic performance in the 5-CSRTT (0.5 s SD, 5 s ITI, 100 trials). Male rats were used in all studies. RESULTS Each AED was active in at least one of the seizure tests, although only valproate was active in each test. In the 5-CSRT test, all drugs with the exception of levetiracetam, significantly slowed reaction time and increased omissions. Variable effects were seen on accuracy. The effect on omissions was reversed by increasing stimulus duration from 0.5 to 5 s, supporting a drug-induced attention deficit. Levetiracetam had no negative effect on performance; indeed, reaction time was slightly increased (i.e. faster). CONCLUSIONS These results highlight somewhat similar effects of phenytoin, valproate, pregabalin and lacosamide on attention and reaction time, and comparison to efficacious doses from the seizure tests support the view that there may be a better separation with the newer AEDs. Levetiracetam had no detrimental effect in the 5-CSRTT, which may be consistent with clinical experience where the drug is considered to be well tolerated amongst the AED class.
Collapse
Affiliation(s)
- Guy A Higgins
- NPS Pharmaceuticals, 101 College Street, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|