1
|
Huang S, Henderson TR, Dojo Soeandy C, Lezhanska A, Henderson JT. An efficient low cost means of biophysical gene transfection in primary cells. Sci Rep 2024; 14:13179. [PMID: 38849388 PMCID: PMC11161637 DOI: 10.1038/s41598-024-62996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Efficient, facile gene modification of cells has become an indispensable part of modern molecular biology. For the majority of cell lines and several primary populations, such modifications can be readily performed through a variety of methods. However, many primary cell lines such as stem cells frequently suffer from poor transfection efficiency. Though several physical approaches have been introduced to circumvent these issues, they often require expensive/specialized equipment and/or consumables, utilize substantial cell numbers and often still suffer from poor efficiency. Viral methods are capable of transducing difficult cellular populations, however such methods can be time consuming for large arrays of gene targets, present biohazard concerns, and result in expression of viral proteins; issues of concern for certain experimental approaches. We report here a widely applicable, low-cost (< $100 CAD) method of electroporation, applicable to small (1-10 μl) cell volumes and composed of equipment readily available to the average investigator. Using this system we observe a sixfold increase in transfection efficiency in embryonic stem cell lines compared to commercial devices. Due to efficiency gains and reductions in volume and applied voltage, this process improves the survival of sensitive stem cell populations while reducing reagent requirements for protocols such as Cas9/gRNAs transfections.
Collapse
Affiliation(s)
- Shudi Huang
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St. Rm 962, Toronto, ON, M5S 3M2, Canada
| | - Tyler R Henderson
- Department of Medical Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chesarahmia Dojo Soeandy
- Tumour Immunotherapy Program Cell Manufacturing Team, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Rm 8-207, Toronto, ON, M5G 2M9, Canada
| | - Anastasiya Lezhanska
- Department of Medicine, Queen's University, 94 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St. Rm 962, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
2
|
Chao YW, Lee YL, Tseng CS, Wang LUH, Hsia KC, Chen H, Fustin JM, Azeem S, Chang TT, Chen CY, Kung FC, Hsueh YP, Huang YS, Chao HW. Improved CaP Nanoparticles for Nucleic Acid and Protein Delivery to Neural Primary Cultures and Stem Cells. ACS NANO 2024; 18:4822-4839. [PMID: 38285698 PMCID: PMC10867895 DOI: 10.1021/acsnano.3c09608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Efficiently delivering exogenous materials into primary neurons and neural stem cells (NSCs) has long been a challenge in neurobiology. Existing methods have struggled with complex protocols, unreliable reproducibility, high immunogenicity, and cytotoxicity, causing a huge conundrum and hindering in-depth analyses. Here, we establish a cutting-edge method for transfecting primary neurons and NSCs, named teleofection, by a two-step process to enhance the formation of biocompatible calcium phosphate (CaP) nanoparticles. Teleofection enables both nucleic acid and protein transfection into primary neurons and NSCs, eliminating the need for specialized skills and equipment. It can easily fine-tune transfection efficiency by adjusting the incubation time and nanoparticle quantity, catering to various experimental requirements. Teleofection's versatility allows for the delivery of different cargos into the same cell culture, whether simultaneously or sequentially. This flexibility proves invaluable for long-term studies, enabling the monitoring of neural development and synapse plasticity. Moreover, teleofection ensures the consistent and robust expression of delivered genes, facilitating molecular and biochemical investigations. Teleofection represents a significant advancement in neurobiology, which has promise to transcend the limitations of current gene delivery methods. It offers a user-friendly, cost-effective, and reproducible approach for researchers, potentially revolutionizing our understanding of brain function and development.
Collapse
Affiliation(s)
- Yu-Wen Chao
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yen-Lurk Lee
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Ching-San Tseng
- Department
of Anatomy, School of Medicine, China Medical
University, Taichung 40402, Taiwan
| | - Lily Ueh-Hsi Wang
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Kuo-Chiang Hsia
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Huatao Chen
- Department
of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key
Laboratory of Animal Biotechnology of the Ministry of Agriculture
and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jean-Michel Fustin
- The
University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester M13 9PL, U.K.
| | - Sayma Azeem
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia
Sinica, Taipei 115201, Taiwan
| | - Tzu-Tung Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Chiung-Ya Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Fan-Che Kung
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Yi-Ping Hsueh
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Yi-Shuian Huang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia
Sinica, Taipei 115201, Taiwan
- Institute
of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsu-Wen Chao
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department
of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Munir A, Ali M, Qari SH, Munawar N, Saleem MS, Ahmad A. CRISPR workflow solutions: Cargos and versatile delivery platforms in genome editing. CRISPRIZED HORTICULTURE CROPS 2024:67-90. [DOI: 10.1016/b978-0-443-13229-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
5
|
Transfection of Neuronal Cultures. Methods Mol Biol 2021. [PMID: 34033082 DOI: 10.1007/978-1-0716-1437-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Efficient transfection of genes into the neurons is a crucial step for the study of neuronal cell biology and functions. These include but not limited to investigating gene function by overexpression of target proteins via expression plasmids and knocking down the expression levels of neuronal genes by RNA interference (RNAi). In addition, reporter gene constructs are widely used to investigate the promoter activities of neuronal genes. Numerous transfection techniques have been established to deliver genes into the cells. However, efficient transfection of postmitotic cells, including neurons, still remains a challenging task. Here, we overview the advantages and disadvantages of various techniques for the transfection of primary neurons, and provide an optimized protocol for FuGENE-6 (Promega) which allows for a suitable transfection efficiency of primary neuronal cultures.
Collapse
|
6
|
Neuron Replating, a Powerful and Versatile Approach to Study Early Aspects of Neuron Differentiation. eNeuro 2021; 8:ENEURO.0536-20.2021. [PMID: 33958372 PMCID: PMC8143016 DOI: 10.1523/eneuro.0536-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Neuron differentiation includes formation and outgrowth of neurites that differentiate into axons or dendrites. Directed neurite outgrowth is controlled by growth cones that protrude and retract actin-rich structures to sense environmental cues. These cues control local actin filament dynamics, steer growth cones toward attractants and away from repellents, and navigate neurites through the developing brain. Rodent hippocampal neurons are widely used to study the mechanisms underlying neuron differentiation. Genetic manipulation of isolated neurons including gene inactivation or reporter gene expression can be achieved by classical transfections methods, but these methods are restricted to neurons cultured for several days, after neurite formation or outgrowth. Instead, electroporation allows gene manipulation before seeding. However, reporter gene expression usually takes up to 24 h, and time course of gene inactivation depends on the half live of the targeted mRNA and gene product. Hence, these methods do not allow to study early aspects of neuron differentiation. In the present study, we provide a detailed protocol in which we combined electroporation-based gene manipulation of mouse hippocampal neurons before initial seeding with a replating step after 2 d in vitro (DIV) that resets neurons into an undifferentiated stage. By categorizing neurons according to their differentiation stage, thorough morphometric analyses, live imaging of actin dynamics in growth cones as well as guidance cue-mediated growth cone morphologic changes, we demonstrate that differentiation and function of replated neurons did not differ from non-replated neurons. In summary, we provide a protocol that allows to thoroughly characterize differentiation of mouse primary hippocampal neurons.
Collapse
|
7
|
Hyperactivity of Rac1-GTPase pathway impairs neuritogenesis of cortical neurons by altering actin dynamics. Sci Rep 2018; 8:7254. [PMID: 29740022 PMCID: PMC5940682 DOI: 10.1038/s41598-018-25354-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
The small-GTPase Rac1 is a key molecular regulator linking extracellular signals to actin cytoskeleton dynamics. Loss-of-function mutations in RAC1 and other genes of the Rac signaling pathway have been implicated in the pathogenesis of Intellectual Disability (ID). The Rac1 activity is negatively controlled by GAP proteins, however the effect of Rac1 hyperactivity on neuronal networking in vivo has been poorly studied. ArhGAP15 is a Rac-specific negative regulator, expressed in the main subtypes of pyramidal cortical neurons. In the absence of ArhGAP15, cortical pyramidal neurons show defective neuritogenesis, delayed axonal elongation, reduced dendritic branching, both in vitro and in vivo. These phenotypes are associated with altered actin dynamics at the growth cone due to increased activity of the PAK-LIMK pathway and hyperphosphorylation of ADF/cofilin. These results can be explained by shootin1 hypo-phosphorylation and uncoupling with the adhesion system. Functionally, ArhGAP15−/− mice exhibit decreased synaptic density, altered electroencephalographic rhythms and cognitive deficits. These data suggest that both hypo- and hyperactivation of the Rac pathway due to mutations in Rac1 regulators can result in conditions of ID, and that a tight regulation of Rac1 activity is required to attain the full complexity of the cortical networks.
Collapse
|
8
|
Meckler X, Checler F. Presenilin 1 and Presenilin 2 Target γ-Secretase Complexes to Distinct Cellular Compartments. J Biol Chem 2016; 291:12821-12837. [PMID: 27059953 DOI: 10.1074/jbc.m115.708297] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
γ-Secretase complexes achieve the production of amyloid peptides playing a key role in Alzheimer disease. These proteases have many substrates involved in important physiological functions. They are composed of two constant subunits, nicastrin and PEN2, and two variable ones, presenilin (PS1 or PS2) and APH1 (APH1aL, APH1aS, or APH1b). Whether the composition of a given γ-secretase complex determines a specific cellular targeting remains unsolved. Here we combined a bidirectional inducible promoter and 2A peptide technology to generate constructs for the temporary, stoichiometric co-expression of six different combinations of the four γ-secretase subunits including EGFP-tagged nicastrin. These plasmids allow for the formation of functional γ-secretase complexes displaying specific activities and maturations. We show that PS1-containing γ-secretase complexes were targeted to the plasma membrane, whereas PS2-containing ones were addressed to the trans-Golgi network, to recycling endosomes, and, depending on the APH1-variant, to late endocytic compartments. Overall, these novel constructs unravel a presenilin-dependent subcellular targeting of γ-secretase complexes. These tools should prove useful to determine whether the cellular distribution of γ-secretase complexes contributes to substrate selectivity and to delineate regulations of their trafficking.
Collapse
Affiliation(s)
- Xavier Meckler
- From the Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR7275, Laboratoire d'Excellence Distalz, Sophia-Antipolis, 06560 Valbonne, France
| | - Frédéric Checler
- From the Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR7275, Laboratoire d'Excellence Distalz, Sophia-Antipolis, 06560 Valbonne, France.
| |
Collapse
|
9
|
Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis 2015; 6:e1811. [PMID: 26158517 PMCID: PMC4650722 DOI: 10.1038/cddis.2015.169] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022]
Abstract
Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered.
Collapse
|
10
|
Stilhano RS, Martins L, Ingham SJM, Pesquero JB, Huard J. Gene and cell therapy for muscle regeneration. Curr Rev Musculoskelet Med 2015; 8:182-187. [PMID: 25899573 DOI: 10.1007/s12178-015-9268-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle injury and healing are multifactorial processes, involving three steps of healing: (1) degeneration and inflammation, (2) regeneration, and (3) fibrosis. Fibrous tissue hinders the muscle's complete recovery and current therapies fail in achieving total muscle recovery. Gene and cell therapy (or both) are potential future treatments for severe muscular injuries. Stem cells' properties associated with growth factors or/and cytokines can improve muscle healing and permit long-term recovery.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | - Leonardo Martins
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | | | - João Bosco Pesquero
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
11
|
Use of a 3-Compartment Microfluidic Device to Study Activity Dependent Synaptic Competition. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2510-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Yong W, Peng D, Wang L, Dong Z, He B. Screening of HaCaT clones for CCL20 gene knockout and preliminary exploration of gene-targeting vector transfection approaches in this cell line. Med Sci Monit Basic Res 2015; 21:21-8. [PMID: 25672883 PMCID: PMC4335591 DOI: 10.12659/msmbr.893143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Inhibition of CC chemokine ligand 20 (CCL20), which is expressed by human keratinocytes after proinflammatory cytokine stimulation, may reduce migration of recipient Langerhans cells into tissue-engineered allogeneic skin grafts and minimize immune rejection by the recipient. Here, we screened CCL20 gene knockout clones in the human immortalized skin keratinocyte line HaCaT and tested multiple transfection methods for optimal efficiency. MATERIAL AND METHODS The CCL20 gene was PCR amplified from HaCaT genomic DNA. Both the short arm (1,969 bp) and long arm (2,356 bp) of human CCL20 were cloned into ploxP-targeting vectors at either side of the neomycin resistance cassette, respectively. The resulting ploxP-hCCL20-targeting vector was linearized and electroporated into HaCaT. The positive HaCaT clones were screened under the pressure of both G418 and GANC, and identified by PCR and Southern blot. The ploxP-hCCL20-EGFP fluorescent expression vector was also constructed and transfected into 293FT and HaCaT cells by jetPEI liposome and nucleofection electroporation for evaluating the transfect efficiency under fluorescent microscope. RESULTS The replacement targeting vector ploxP-hCCL20 (11.9 kb) for exon 2 of the human CCL20 gene was successfully constructed and transfected into HaCaT cells. The selected HaCaT clones did not show any evidence of CCL20 gene knockout by either PCR or Southern blot analysis. We also successfully constructed a fluorescent expression vector ploxP-hCCL20-EGFP (13.3 kb) to assess possible reasons for gene-targeting failure. Transfection efficiencies of ploxP-hCCL20-EGFP into 293FT and HaCaT cell lines by jetPEI liposome were 75.1 ± 3.4% and 1.3 ± 0.2%, respectively. The transfection efficiency of ploxP-hCCL20-EGFP into HaCaT cells using nucleofection electroporation was 0.3±0.1% (P=0.000), but the positive control vector pmaxGFP (3,490 bp) using the same method was 38.3 ± 2.8%. CONCLUSIONS Overall low transfection efficiencies of ploxP-hCCL20-EGFP into HaCaT cells, regardless of transfection method, may either be due to the high molecular weight of the vector or to the fact that this particular cell line may be inherently difficult to transfect.
Collapse
Affiliation(s)
- Wang Yong
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Daizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Lihua Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Zhengxue Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Bing He
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| |
Collapse
|
13
|
Coquinco A, Kojic L, Wen W, Wang YT, Jeon NL, Milnerwood AJ, Cynader M. A microfluidic based in vitro model of synaptic competition. Mol Cell Neurosci 2014; 60:43-52. [DOI: 10.1016/j.mcn.2014.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022] Open
|
14
|
Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: therapeutic applications inspired by synthetic biology. Annu Rev Pharmacol Toxicol 2013; 54:227-49. [PMID: 24160705 DOI: 10.1146/annurev-pharmtox-011613-135921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of cellular responses to hormones and neurotransmitters within the human body. They have much potential in the emerging field of synthetic biology, which is the rational, systematic design of biological systems with desired functionality. The responsiveness of GPCRs to a plethora of endogenous and exogenous ligands and stimuli make them ideal sensory receptor modules of synthetic gene networks. Such networks can activate target gene expression in response to a specific stimulus. Additionally, because GPCRs are important pharmacological targets of various human diseases, genes encoding their protein/peptide ligands can also be incorporated as target genes of the response output elements of synthetic gene networks. This review aims to critically examine the potential role of GPCRs in constructing therapeutic synthetic gene networks and to discuss various challenges in utilizing GPCRs for synthetic biology applications.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland;
| | | | | |
Collapse
|
15
|
Abstract
Efficient transfection of genes into neurons is a crucial step for the study of neuronal cell biology and functions. These include but are not limited to investigating gene function by overexpression of target proteins via expression plasmids and knocking down the expression levels of neuronal genes by RNA interference (RNAi). In addition, reporter gene constructs are widely used to investigate the promoter activities of neuronal genes. Numerous transfection techniques have been established to deliver genes into the cells. However, efficient transfection of post-mitotic cells, including neurons, still remains a challenging task. Here, we overview the advantages and disadvantages of various techniques for the transfection of primary neurons, and provide an optimized protocol for FuGENE-6 (Promega) which allows a suitable transfection efficiency of primary neuronal cultures.
Collapse
Affiliation(s)
- Ilker Kudret Sariyer
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Xie Q, Luo J, Zhu Z, Wang G, Wang J, Niu B. Nucleofection of a DNA vaccine into human monocyte-derived dendritic cells. Cell Immunol 2012; 276:135-43. [PMID: 22632899 DOI: 10.1016/j.cellimm.2012.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/27/2022]
Abstract
An efficient method for delivering DNA vaccines into dendritic cells is considered to be of paramount importance. Electroporation-based technology (nucleofection) has gained increasingly popularity, but few reports focused on the possible functional consequences related to this method. In this study, the nucleofection technique was used to transfer the recombinant plasmid into hMoDCs for phenotype expression analysis and immunopotency detection. The results showed that the nucleofection of increasing concentrations of plasmid DNA decreased the viability of the hMoDCs. The welfare of nucleofected hMoDCs depended on the dosage of the plasmid and the plasmid's retention time within the cells. Accompanied by the process of nucleofection, it would bring some non-specific changes. The methodology reported here is suggestive of a feasible system for DNA vaccine transfer into hMoDCs with the caution of certain undesired effect.
Collapse
Affiliation(s)
- Qiu Xie
- Department of Biotechnology, Capital Institute of Pediatrics, Beijing 100020, China
| | | | | | | | | | | |
Collapse
|
17
|
Contreras J, Hsueh PY, Pei H, Hamm-Alvarez SF. Use of nucleofection to efficiently transfect primary rabbit lacrimal gland acinar cells. Cytotechnology 2011; 64:149-56. [PMID: 22138892 DOI: 10.1007/s10616-011-9404-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 10/28/2011] [Indexed: 10/15/2022] Open
Abstract
Lacrimal gland acinar cells are an important cell type to study due to their role in production and release of tear proteins, a function essential for ocular surface integrity and normal visual acuity. However, mechanistic studies are often limited by problems with transfection using either plasmid DNA or siRNA. Although various gene delivery methods are available, many have been unproductive due to consistently low transfection efficiencies. We have developed a method using nucleofection that can result in 50% transfection efficiency and 60% knockdown efficiency for plasmid DNA and siRNA, respectively. These results are vastly improved relative to previous studies, demonstrating that nucleofection offers an efficient transfection technique for primary lacrimal gland acinar cells.
Collapse
Affiliation(s)
- Janette Contreras
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | | | | | | |
Collapse
|
18
|
Enhanced collateral growth by double transplantation of gene-nucleofected fibroblasts in ischemic hindlimb of rats. PLoS One 2011; 6:e19192. [PMID: 21547081 PMCID: PMC3081850 DOI: 10.1371/journal.pone.0019192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/22/2011] [Indexed: 11/26/2022] Open
Abstract
Background Induction of neovascularization by releasing therapeutic growth factors is a promising application of cell-based gene therapy to treat ischemia-related problems. In the present study, we have developed a new strategy based on nucleofection with alternative solution and cuvette to promote collateral growth and re-establishment of circulation in ischemic limbs using double transplantation of gene nucleofected primary cultures of fibroblasts, which were isolated from rat receiving such therapy. Methods and Results Rat dermal fibroblasts were nucleofected ex vivo to release bFGF or VEGF165 in a hindlimb ischemia model in vivo. After femoral artery ligation, gene-modified cells were injected intramuscularly. One week post injection, local confined plasmid expression and transient distributions of the plasmids in other organs were detected by quantitative PCR. Quantitative micro-CT analyses showed improvements of vascularization in the ischemic zone (No. of collateral vessels via micro CT: 6.8±2.3 vs. 10.1±2.6; p<0.05). Moreover, improved collateral proliferation (BrdU incorporation: 0.48±0.05 vs. 0.57±0.05; p<0.05) and increase in blood perfusion (microspheres ratio: gastrocnemius: 0.41±0.10 vs. 0.50±0.11; p<0.05; soleus ratio: soleus: 0.42±0.08 vs. 0.60±0.08; p<0.01) in the lower hindlimb were also observed. Conclusions These results demonstrate the feasibility and effectiveness of double transplantation of gene nucleofected primary fibroblasts in producing growth factors and promoting the formation of collateral circulation in ischemic hindlimb, suggesting that isolation and preparation of gene nucleofected cells from individual accepting gene therapy may be an alternative strategy for treating limb ischemia related diseases.
Collapse
|
19
|
Yuan TF, Menéndez-González M, Arias-Carrión O. Single neuron electroporation in manipulating and measuring the central nervous system. Int Arch Med 2010; 3:28. [PMID: 21054865 PMCID: PMC2987861 DOI: 10.1186/1755-7682-3-28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 01/20/2023] Open
Abstract
The development and application of single neuron electroporation largely advanced the use of traditional genetics in investigations of the central nervous system. This quick and accurate manipulation of the brain at individual neuron level allowed the gain and loss of functional analyses of different genes and/or proteins. This manuscript reviewed the development of the technique and discussed some technical aspects in practical manipulations. Then the manuscript summarized the potential applications with this technique. Last but not least, the technique showed prospective future when combined with other modern methods in neuroscience research.
Collapse
|
20
|
Hayashi T, Lamba DA, Slowik A, Reh TA, Bermingham-McDonogh O. A method for stabilizing RNA for transfection that allows control of expression duration. Dev Dyn 2010; 239:2034-40. [PMID: 20549727 DOI: 10.1002/dvdy.22344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RNA transfection methods have not proven to be as popular as DNA methods due to the highly transient nature of the RNA inside the cell. However, there are many advantages in using RNA for gene over-expression, such as the rapidity of expression, the ability to express in all cell types without the need for cell-type-specific promoters, and the ability to analyze the effects of gene over-expression in a transient manner. Therefore, we have developed a method (StabiLizingUtr: SLU) to stabilize the RNA for varying durations, using specific sequences from the 3'UTR of the Venezuelan equine encephalitis virus (VEEV). We have designed a plasmid for cloning genes upstream from repeated stabilizing sequences to generate mRNA with one or more VEEV-stabilizing sequence motifs. We demonstrate this method in several cell and tissue types, including the mammalian cochlea, a tissue that has been difficult to transfect with other methods.
Collapse
Affiliation(s)
- Toshinori Hayashi
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington School of Medicine, 815 Mercer Street, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
21
|
|