1
|
Avila JD, Wang P. Mass Spectrometry as a Quantitative Tool for SpCas9 sgRNA Quality Control. Nucleic Acid Ther 2024. [PMID: 39178119 DOI: 10.1089/nat.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
Mass spectrometry (MS) has long been used for quality control of oligonucleotide therapeutics, including single-guide RNAs (sgRNAs) for clustered regularly interspaced short palindromic repeats techniques. However, the application of MS is limited to qualitative assays in most cases. Here, we showed that electrospray-ionization quadrupole time-of-flight MS (ESI-QTOF-MS) assays can be quantitative for chemical species found in sgRNA samples. More specifically, using a 100-nt SpCas9 sgRNA as the example, we estimated that the limits of quantification for length variants in the range of N - 4 to N + 4 (i.e., 96-104 nucleotides) were equal to or lower than 1%. Our study highlighted the potential of ESI-QTOF in its application as a quality control method for sgRNA molecules.
Collapse
Affiliation(s)
| | - Puzhou Wang
- Synthego Corporation, Redwood City, California, USA
| |
Collapse
|
2
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
3
|
Seliger H, Sanghvi YS. An Update on Protection of 5'-Hydroxyl Functions of Nucleosides and Oligonucleotides. Curr Protoc 2024; 4:e999. [PMID: 38439607 DOI: 10.1002/cpz1.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The synthesis of natural and chemically modified nucleosides and oligonucleotides is in great demand due to its increasing number of applications in diverse areas of research. These include tools for diagnostics and proteomics, research reagents for molecular biology, probes for functional genomics, and the design, discovery, development, and manufacture of new therapeutics. The likelihood of success in synthesizing these molecules is often dependent on the correct choice of a protection strategy to block the 5'-hydroxyl group of a carbohydrate moiety, nucleoside, or oligonucleotide. This topic was reviewed extensively in the year 2000. The purpose of this article is to complement and update the original review with recently published methodologies recommended for the protection and deprotection of the 5'-hydroxyl group. © 2024 Wiley Periodicals LLC.
Collapse
|
4
|
Cawrse BM, Takahashi M, Grajkowski A, Beaucage SL. An Alternate Process for the Solid-Phase Synthesis and Solid-Phase Purification of Synthetic Nucleic Acid Sequences. Curr Protoc 2023; 3:e648. [PMID: 36629495 DOI: 10.1002/cpz1.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chemical synthesis of a riboside phosphoramidite has been achieved to provide a 5-O-capture linker and a 2-O-silyl ether protecting group with the intent of enabling an efficient solid-phase purification of synthetic DNA sequences. The riboside phosphoramidite has been incorporated into a DNA sequence while performing the penultimate automated solid-phase synthesis cycle of the sequence. The terminal 5-O-riboside moiety of the resulting DNA sequence is then conjugated to a capture linker to create an anchor for the solid-phase purification of the DNA sequence conjugate. Release of all DNA sequences from the synthesis support is achieved under standard basic conditions to yield a mixture of the desired DNA sequence conjugate along with unconjugated, shorter-than-full-length sequence contaminants. Upon exposure of all DNA sequences to a capture solid support, only the DNA sequence conjugate is chemoselectively captured, thereby allowing the unconjugated shorter-than-full-length DNA sequences to be efficiently washed away from the capture support. After 2-O-cleavage of the silyl ether protecting group from the terminal riboside ethylphosphate triester conjugate, the solid-phase-purified DNA sequence is efficiently released from the capture support through an innovative intramolecular cyclodeesterification of the ethylphosphate triester, prompted by the riboside's rigid cis-diol conformer, to provide a highly pure DNA sequence. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Preparation of 5-O-(4,4'-dimethoxytrityl)-2-O-tert-butyldimethylsilyl-1,4-anhydro-D-ribitol (3) Basic Protocol 2: Preparation of 5-O-(4,4'-dimethoxytrityl)-2-O-tert-butyldimethylsilyl-3-O-[(N,N-diisopropylamino)ethyloxyphosphinyl]-1,4-anhydro-D-ribitol (6). Basic Protocol 3: Automated synthesis of the chimeric solid-phase-linked DNA sequence 8. Support Protocol: Preparation of 2-cyanoethyl-(5-oxohexyl)-N,N-diisopropylphosphoramidite (9). Basic Protocol 4: Solid-phase purification of the chimeric DNA sequence 10.
Collapse
Affiliation(s)
- Brian M Cawrse
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Mayumi Takahashi
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Andrzej Grajkowski
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
5
|
Graczyk A, Radzikowska-Cieciura E, Kaczmarek R, Pawlowska R, Chworos A. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Curr Med Chem 2023; 30:1320-1347. [PMID: 36239720 DOI: 10.2174/0929867330666221014111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
In recent years, RNA has emerged as a medium with a broad spectrum of therapeutic potential, however, for years, a group of short RNA fragments was studied and considered therapeutic molecules. In nature, RNA plays both functions, with coding and non-coding potential. For RNA, like any other therapeutic, to be used clinically, certain barriers must be crossed. Among them, there are biocompatibility, relatively low toxicity, bioavailability, increased stability, target efficiency and low off-target effects. In the case of RNA, most of these obstacles can be overcome by incorporating modified nucleotides into its structure. This may be achieved by both, in vitro and in vivo biosynthetic methods, as well as chemical synthesis. Some advantages and disadvantages of each approach are summarized here. The wide range of nucleotide analogues has been tested for their utility as monomers for RNA synthesis. Many of them have been successfully implemented, and a lot of pre-clinical and clinical studies involving modified RNA have been carried out. Some of these medications have already been introduced into clinics. After the huge success of RNA-based vaccines that were introduced into widespread use in 2020, and the introduction to the market of some RNA-based drugs, RNA therapeutics containing modified nucleotides appear to be the future of medicine.
Collapse
Affiliation(s)
- Anna Graczyk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
6
|
Aguion PI, Marchanka A, Carlomagno T. Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy. J Struct Biol X 2022; 6:100072. [PMID: 36090770 PMCID: PMC9449856 DOI: 10.1016/j.yjsbx.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Solid-state NMR (ssNMR) has become a well-established technique to study large and insoluble protein assemblies. However, its application to nucleic acid-protein complexes has remained scarce, mainly due to the challenges presented by overlapping nucleic acid signals. In the past decade, several efforts have led to the first structure determination of an RNA molecule by ssNMR. With the establishment of these tools, it has become possible to address the problem of structure determination of nucleic acid-protein complexes by ssNMR. Here we review first and more recent ssNMR methodologies that study nucleic acid-protein interfaces by means of chemical shift and peak intensity perturbations, direct distance measurements and paramagnetic effects. At the end, we review the first structure of an RNA-protein complex that has been determined from ssNMR-derived intermolecular restraints.
Collapse
Affiliation(s)
- Philipp Innig Aguion
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Teresa Carlomagno
- School of Biosciences/College of Life and Enviromental Sciences, Institute of Cancer and Genomic Sciences/College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
8
|
Takahashi M, Cawrse BM, Grajkowski A, Beaucage SL. Use of Arabinonucleosides for Development and Implementation of a Novel 2'-O-Protecting Group for Efficient Solid-Phase Synthesis and 2'-O-Deprotection of RNA Sequences. Curr Protoc 2022; 2:e346. [PMID: 35030289 DOI: 10.1002/cpz1.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The implementation of protecting groups for 2'-hydroxyl function of ribonucleosides is very demanding in that synthetic RNA sequences must be highly pure to ensure the safety and efficacy of nucleic acid-based drugs for treatment of human diseases. A synthetic approach consisting of a condensation reaction between 2'-O-aminoribonucleosides with ethyl pyruvate has been employed to provide stable 2'-O-imino-2-methyl propanoic acid ethyl esters. Conversion of these esters to fully protected ribonucleoside phosphoramidite monomers has allowed rapid and efficient incorporation of 2'-O-protected ribonucleosides into RNA sequences while minimizing the formation of process-related impurities during solid-phase synthesis. Two chimeric 20-mer RNA sequences have been synthesized and then exposed to a solution of sodium hydroxide to saponify the 2'-O-imino-2-methyl propanoic acid ethyl ester protecting groups to their sodium salts. When subjected to ion-exchange conditions at 65°C and near neutral pH, fully deprotected RNA sequences are isolated without production of alkylating side-products and/or formation of mutagenic nucleobase adducts. © 2022 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Synthesis of uridine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 2: Synthesis of N6 -protected adenosine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 3: Synthesis of N4 -protected cytidine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 4: Synthesis of N2 -protected guanosine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 5: Automated solid-phase RNA synthesis and deprotection using 2'-O-imino-2-proponate-protected phosphoramidites.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Brian M Cawrse
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Andrzej Grajkowski
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
9
|
Aguion PI, Marchanka A. Strategies for RNA Resonance Assignment by 13C/ 15N- and 1H-Detected Solid-State NMR Spectroscopy. Front Mol Biosci 2021; 8:743181. [PMID: 34746232 PMCID: PMC8563574 DOI: 10.3389/fmolb.2021.743181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) is an established tool that can be applied to non-soluble or non-crystalline biomolecules of any size or complexity. The ssNMR method advances rapidly due to technical improvements and the development of advanced isotope labeling schemes. While ssNMR has shown significant progress in structural studies of proteins, the number of RNA studies remains limited due to ssNMR methodology that is still underdeveloped. Resonance assignment is the most critical and limiting step in the structure determination protocol that defines the feasibility of NMR studies. In this review, we summarize the recent progress in RNA resonance assignment methods and approaches for secondary structure determination by ssNMR. We critically discuss advantages and limitations of conventional 13C- and 15N-detected experiments and novel 1H-detected methods, identify optimal regimes for RNA studies by ssNMR, and provide our view on future ssNMR studies of RNA in large RNP complexes.
Collapse
Affiliation(s)
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
10
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
11
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|
12
|
Han S, Ko O, Lee G, Jeong SW, Choi YJ, Lee JB. Rapid Diagnosis of Coronavirus by RNA-Directed RNA Transcription Using an Engineered RNA-based Platform. NANO LETTERS 2021; 21:462-468. [PMID: 33395304 PMCID: PMC7805305 DOI: 10.1021/acs.nanolett.0c03917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/24/2020] [Indexed: 05/22/2023]
Abstract
A coronavirus disease (COVID-19) outbreak associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading widely through person-to-person transmission. Various detection approaches have been developed involving quantitative polymerase chain reaction (qPCR) methods, CRISPR-based systems, and direct targeting of specific coronavirus proteins. However, there have only been a few reports on the detection of RNA-dependent RNA polymerase (RdRP), the primer-independent RNA-replicable protein produced by the RNA genes of coronavirus. Here, we introduce a novel diagnostic methodology for COVID-19 using the RNA-directed and de novo RNA replicable function of RdRP. We devised an RNA platform for RdRP-induced transcription (RPRIT) that includes an RNA template that can be directly transcribed by RdRP. By utilizing RPRIT, the presence of RdRP can be readily confirmed within 30 min using isothermal incubation without PCR. This RdRP detection method can provide a new route for rapid diagnosis of RNA virus-infected patients.
Collapse
Affiliation(s)
- Sangwoo Han
- Department
of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Ohsung Ko
- Department
of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Geonhu Lee
- School
of Environmental Engineering, University
of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Sun-Wook Jeong
- School
of Environmental Engineering, University
of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Yong Jun Choi
- School
of Environmental Engineering, University
of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Jong Bum Lee
- Department
of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| |
Collapse
|
13
|
Lai SM, Gopalan V. Using an L7Ae-Tethered, Hydroxyl Radical-Mediated Footprinting Strategy to Identify and Validate Kink-Turns in RNAs. Methods Mol Biol 2021; 2167:147-169. [PMID: 32712919 DOI: 10.1007/978-1-0716-0716-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Kink-turns are important RNA structural modules that facilitate long-range tertiary interactions and form binding sites for members of the L7Ae family of proteins. Present in a wide variety of functional RNAs, kink-turns play key organizational roles in many RNA-based cellular processes, including translation, modification, and tRNA biogenesis. It is important to determine the contribution of kink-turns to the overall architecture of resident RNAs, as these modules dictate ribonucleoprotein (RNP) assembly and function. This chapter describes a site-directed, hydroxyl radical-mediated footprinting strategy that utilizes L7Ae-tethered chemical nucleases to experimentally validate computationally identified kink-turns in any RNA and under a wide variety of conditions. The work plan described here uses the catalytic RNase P RNA as an example to provide a blueprint for using this footprinting method to map RNA-protein interactions in other RNP complexes.
Collapse
Affiliation(s)
- Stella M Lai
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Darsan Singh JK, Mat Jalaluddin NS, Sanan-Mishra N, Harikrishna JA. Genetic modification in Malaysia and India: current regulatory framework and the special case of non-transformative RNAi in agriculture. PLANT CELL REPORTS 2019; 38:1449-1463. [PMID: 31350570 DOI: 10.1007/s00299-019-02446-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Recent developments in modern biotechnology such as the use of RNA interference (RNAi) have broadened the scope of crop genetic modification. RNAi strategies have led to significant achievements in crop protection against biotic and abiotic stresses, modification of plant traits, and yield improvement. As RNAi-derived varieties of crops become more useful in the field, it is important to examine the capacity of current regulatory systems to deal with such varieties, and to determine if changes are needed to improve the existing frameworks. We review the biosafety frameworks from the perspective of developing countries that are increasingly involved in modern biotechnology research, including RNAi applications, and make some recommendations. Malaysia and India have approved laws regulating living modified organisms and products thereof, highlighting that the use of any genetically modified step requires regulatory scrutiny. In view of production methods for exogenously applied double-stranded RNAs and potential risks from the resulting double-stranded RNA-based products, we argue that a process-based system may be inappropriate for the non-transformative RNAi technology. We here propose that the current legislation needs rewording to take account of the non-transgenic RNAi technology, and discuss the best alternative for regulatory systems in India and Malaysia in comparison with the existing frameworks in other countries.
Collapse
Affiliation(s)
- Jasdeep Kaur Darsan Singh
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Malaysia
| | - Nurzatil Sharleeza Mat Jalaluddin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Malaysia
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Malaysia.
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019; 161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
17
|
Marchanka A, Kreutz C, Carlomagno T. Isotope labeling for studying RNA by solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:151-164. [PMID: 29651587 DOI: 10.1007/s10858-018-0180-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Marchanka
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany
| | - Christoph Kreutz
- Organic Chemistry, University of Innsbruck (CCB), Innrain 80/82, 6020, Innsbruck, Austria
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany.
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstraße 7, 38124, Brunswick, Germany.
| |
Collapse
|
18
|
Guo S, Piao X, Li H, Guo P. Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor. Methods 2018. [PMID: 29530505 DOI: 10.1016/j.ymeth.2018.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of RNA nanotechnology has developed rapidly over the last decade, as more elaborate RNA nanoarchitectures and therapeutic RNA nanoparticles have been constructed, and their applications have been extensively explored. Now it is time to offer different levels of RNA construction methods for both the beginners and the experienced researchers or enterprisers. The first and second parts of this article will provide instructions on basic and simple methods for the assembly and characterization of RNA nanoparticles, mainly based on the pRNA three-way junction (pRNA-3WJ) of phi29 DNA packaging motor. The third part of this article will focus on specific methods for the construction of more sophisticated multivalent RNA nanoparticles for therapeutic applications. In these parts, some simple protocols are provided to facilitate the initiation of the RNA nanoparticle construction in labs new to the field of RNA nanotechnology. This article is intended to serve as a general reference aimed at both apprentices and senior scientists for their future design, construction and characterization of RNA nanoparticles based on the pRNA-3WJ of phi29 DNA packaging motor.
Collapse
Affiliation(s)
- Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Xijun Piao
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the Emerging Field of RNA Nanotechnology. ACS NANO 2017; 11:1142-1164. [PMID: 28045501 PMCID: PMC5333189 DOI: 10.1021/acsnano.6b05737] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field.
Collapse
Affiliation(s)
| | | | - Daniel W Binzel
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Cieślak J, Grajkowski A, Ausín C, Beaucage SL. Protection of the 2′-Hydroxy Function of Ribonucleosides as an Iminooxymethyl Propanoate and Its 2′-O-Deprotection through an Intramolecular Decarboxylative Elimination Process. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jacek Cieślak
- Division of Biotechnology Review and Research IV; Center for Drug Evaluation and Research; Food and Drug Administration; 10903 New Hampshire Avenue 20933 Silver Spring MD USA
| | - Andrzej Grajkowski
- Division of Biotechnology Review and Research IV; Center for Drug Evaluation and Research; Food and Drug Administration; 10903 New Hampshire Avenue 20933 Silver Spring MD USA
| | - Cristina Ausín
- Division of Biotechnology Review and Research IV; Center for Drug Evaluation and Research; Food and Drug Administration; 10903 New Hampshire Avenue 20933 Silver Spring MD USA
| | - Serge L. Beaucage
- Division of Biotechnology Review and Research IV; Center for Drug Evaluation and Research; Food and Drug Administration; 10903 New Hampshire Avenue 20933 Silver Spring MD USA
| |
Collapse
|
21
|
Agustin E, Asare Okai PN, Khan I, Miller MR, Wang R, Sheng J, Royzen M. A fast click-slow release strategy towards the HPLC-free synthesis of RNA. Chem Commun (Camb) 2016; 52:1405-8. [PMID: 26619912 DOI: 10.1039/c5cc05392g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general strategy for purification of oligonucleotides synthesized by solid phase synthesis is described. It is based on a recently developed concept involving a bio-orthogonal inverse electron demand Diels-Alder reaction between trans-cyclooctene and tetrazine, termed 'click-to-release'. The strategy has been applied towards the synthesis and purification of a model hairpin RNA strand, as well as a 34 nt long aptamer.
Collapse
Affiliation(s)
- E Agustin
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| | - P N Asare Okai
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| | - I Khan
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| | - M R Miller
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| | - R Wang
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| | - J Sheng
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| | - M Royzen
- Department of Chemistry, SUNY, University at Albany, 1400 Washington Avenue, Albany, NY 1222, USA.
| |
Collapse
|
22
|
Ghosh S, Greenberg MM. Synthesis of cross-linked DNA containing oxidized abasic site analogues. J Org Chem 2014; 79:5948-57. [PMID: 24949656 PMCID: PMC4084848 DOI: 10.1021/jo500944g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA interstrand cross-links are an important family of DNA damage that block replication and transcription. Recently, it was discovered that oxidized abasic sites react with the opposing strand of DNA to produce interstrand cross-links. Some of the cross-links between 2'-deoxyadenosine and the oxidized abasic sites, 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) and the C4-hydroxylated abasic site (C4-AP), are formed reversibly. Chemical instability hinders biochemical, structural, and physicochemical characterization of these cross-linked duplexes. To overcome these limitations, we developed methods for preparing stabilized analogues of DOB and C4-AP cross-links via solid-phase oligonucleotide synthesis. Oligonucleotides of any sequence are attainable by synthesizing phosphoramidites in which the hydroxyl groups of the cross-linked product were orthogonally protected using photochemically labile and hydrazine labile groups. Selective unmasking of a single hydroxyl group precedes solid-phase synthesis of one arm of the cross-linked DNA. The method is compatible with commercially available phosphoramidites and other oligonucleotide synthesis reagents. Cross-linked duplexes containing as many as 54 nt were synthesized on solid-phase supports. Subsequent enzyme ligation of one cross-link product provided a 60 bp duplex, which is suitable for nucleotide excision repair studies.
Collapse
Affiliation(s)
- Souradyuti Ghosh
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
23
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
24
|
Palacio CM, Sabaini MB, Iribarren AM, Iglesias LE. An efficient and mild access to N-acetyl protected purine nucleosides based on a chemoselective enzymatic hydrolysis. J Biotechnol 2013; 165:99-101. [DOI: 10.1016/j.jbiotec.2013.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
|
25
|
Cieślak J, Ausín C, Grajkowski A, Beaucage SL. The 2-Cyano-2,2-dimethylethanimine-N-oxymethyl Group for the 2′-Hydroxyl Protection of Ribonucleosides in the Solid-Phase Synthesis of RNA Sequences. Chemistry 2013; 19:4623-32. [DOI: 10.1002/chem.201204235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Indexed: 11/11/2022]
|
26
|
Cieślak J, Grajkowski A, Ausín C, Gapeev A, Beaucage SL. Permanent or reversible conjugation of 2'-O- or 5'-O-aminooxymethylated nucleosides with functional groups as a convenient and efficient approach to the modification of RNA and DNA sequences. Nucleic Acids Res 2012; 40:2312-29. [PMID: 22067450 PMCID: PMC3300013 DOI: 10.1093/nar/gkr896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/14/2022] Open
Abstract
2'-O-Aminooxymethyl ribonucleosides are prepared from their 3',5'-disilylated 2'-O-phthalimidooxymethyl derivatives by treatment with NH(4)F in MeOH. The reaction of these novel ribonucleosides with 1-pyrenecarboxaldehyde results in the efficient formation of stable and yet reversible ribonucleoside 2'-conjugates in yields of 69-82%. Indeed, exposure of these conjugates to 0.5 M tetra-n-butylammonium fluoride (TBAF) in THF results in the cleavage of their iminoether functions to give the native ribonucleosides along with the innocuous nitrile side product. Conversely, the reaction of 5-cholesten-3-one or dansyl chloride with 2'-O-aminooxymethyl uridine provides permanent uridine 2'-conjugates, which are left essentially intact upon treatment with TBAF. Alternatively, 5'-O-aminooxymethyl thymidine is prepared by hydrazinolysis of its 3'-O-levulinyl-5'-O-phthalimidooxymethyl precursor. Pyrenylation of 5'-O-aminooxymethyl thymidine and the sensitivity of the 5'-conjugate to TBAF further exemplify the usefulness of this nucleoside for modifying DNA sequences either permanently or reversibly. Although the versatility and uniqueness of 2'-O-aminooxymethyl ribonucleosides in the preparation of modified RNA sequences is demonstrated by the single or double incorporation of a reversible pyrenylated uridine 2'-conjugate into an RNA sequence, the conjugation of 2'-O-aminooxymethyl ribonucleosides with aldehydes, including those generated from their acetals, provides reversible 2'-O-protected ribonucleosides for potential applications in the solid-phase synthesis of native RNA sequences. The synthesis of a chimeric polyuridylic acid is presented as an exemplary model.
Collapse
Affiliation(s)
- Jacek Cieślak
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Andrzej Grajkowski
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Cristina Ausín
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Alexei Gapeev
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Serge L. Beaucage
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
27
|
Lippa GM, Liberman JA, Jenkins JL, Krucinska J, Salim M, Wedekind JE. Crystallographic analysis of small ribozymes and riboswitches. Methods Mol Biol 2012; 848:159-84. [PMID: 22315069 PMCID: PMC5008910 DOI: 10.1007/978-1-61779-545-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribozymes and riboswitches are RNA motifs that accelerate biological reactions and regulate gene expression in response to metabolite recognition, respectively. These RNA molecules gain functionality via complex folding that cannot be predicted a priori, and thus requires high-resolution three-dimensional structure determination to locate key functional attributes. Herein, we present an overview of the methods used to determine small RNA structures with an emphasis on RNA preparation, crystallization, and structure refinement. We draw upon examples from our own research in the analysis of the leadzyme ribozyme, the hairpin ribozyme, a class I preQ(1) riboswitch, and variants of a larger class II preQ(1) riboswitch. The methods presented provide a guide for comparable investigations of noncoding RNA molecules including a 48-solution, "first choice" RNA crystal screen compiled from our prior successes with commercially available screens.
Collapse
Affiliation(s)
- Geoffrey M Lippa
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|