1
|
Fang S, Chillar K, Yin Y, Apostle A, Eriyagama DNAM, Shahsavari S, Halami B, Yuan Y. Oligodeoxynucleotide Synthesis Under Non-Nucleophilic Deprotection Conditions. Curr Protoc 2024; 4:e983. [PMID: 38327123 PMCID: PMC10857739 DOI: 10.1002/cpz1.983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This protocol describes a method for the incorporation of sensitive functional groups into oligodeoxynucleotides (ODNs). The nucleophile-sensitive epigenetic N4-acetyldeoxycytosine (4acC) DNA modification is used as an example, but other sensitive groups can also be incorporated, e.g., alkyl halide, α-haloamide, alkyl ester, aryl ester, thioester, and chloropurine groups, all of which are unstable under the basic and nucleophilic deprotection and cleavage conditions used in standard ODN synthesis methods. The method uses a 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) group that carries a methyl group at the carbon of the methoxy moiety (meDmoc) for the protection of exo-amines of nucleobases. The growing ODN is anchored to a solid support via a Dmoc linker. With these protecting and linking strategies, ODN deprotection and cleavage are achieved without using any strong bases and nucleophiles. Instead, they can be carried out under nearly neutral non-nucleophilic oxidative conditions. To increase the length of ODNs that can be synthesized using the meDmoc method, the protocol also describes the synthesis of a PEGylated Dmoc (pDmoc) phosphoramidite. With some of the nucleotides being incorporated with pDmoc-CE phosphoramidite, the growing ODN on the solid support carries PEG moieties and becomes more soluble, thus enabling longer ODN synthesis. The ODN synthesis method described in this protocol is expected to make many sensitive ODNs that are difficult to synthesize accessible to researchers in multiple areas, such as epigenetics, nanopore sequencing, nucleic acid-protein interactions, antisense drug development, DNA alkylation carcinogenesis, and DNA nanotechnology. © 2024 Wiley Periodicals LLC. Basic Protocol: Sensitive ODN synthesis Support Protocol 1: Synthesis of meDmoc-CE phosphoramidites Support Protocol 2: Synthesis of a pDmoc-CE phosphoramidite.
Collapse
Affiliation(s)
- Shiyue Fang
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Komal Chillar
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Yipeng Yin
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Alexander Apostle
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Dhananjani N A M Eriyagama
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Shahien Shahsavari
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Bhaskar Halami
- Department of Chemistry and Health Research Institute, Michigan Technological University, Houghton, Michigan
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
2
|
Apostle A, Fang S. Dissolve-spin: Desalting oligonucleotides for MALDI MS analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4893. [PMID: 36415947 DOI: 10.1002/jms.4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Desalting oligonucleotides (ONs) for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) analysis was achieved using a simple dissolve-spin approach. The ON is dissolved in an organic solvent. Insoluble salts are removed by centrifugation. ONs are highly polar molecules and are generally believed insoluble in organic solvents with moderate polarity such as acetonitrile (ACN), 1,4-dioxane, ethyl acetate, and THF. However, we found that in the presence of a suitable proton source such as pyridinium chloride, a quantity of ON that is sufficient for MALDI MS analysis could be dissolved. Because inorganic salts are insoluble in such relatively non-polar solvents, the finding can be utilized for desalting ONs for MALDI MS analysis. Comparisons of MS spectra of intentionally salted ONs that underwent the new desalting procedure with those that did not undergo the procedure provided unambiguous evidence that the desalting method is highly effective.
Collapse
Affiliation(s)
- Alexander Apostle
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
3
|
Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y, Suzuki T. Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med 2021; 58:883-896. [PMID: 32229653 DOI: 10.1515/cclm-2019-0868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023]
Abstract
Background Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics. Content This review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories. Summary MALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases. Outlook There is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.
Collapse
Affiliation(s)
- Muhammad Zubair Israr
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dennis Bernieh
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Naples, Italy
| | - Shabana Cassambai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yoshiyuki Yazaki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Fang S, Eriyagama D, Yuan Y, Shahsavari S, Chen J, Lin X, Halami B. Dim and Dmoc Protecting Groups for Oligodeoxynucleotide Synthesis. ACTA ACUST UNITED AC 2021; 82:e111. [PMID: 32628352 DOI: 10.1002/cpnc.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This protocol provides details for the preparation of nucleoside phosphoramidites with 1,3-dithian-2-yl-methyl (Dim) and 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) as protecting groups, and a linker with Dmoc as the cleavable function, then using them for solid phase synthesis of sensitive oligodeoxynucleotides (ODNs). Using these Dim-Dmoc phosphoramidites and Dmoc linker, ODN synthesis can be achieved under typical conditions using phosphoramidite chemistry with slight modifications, and ODN deprotection and cleavage can be achieved under mild conditions involving oxidation with sodium periodate at pH 4 followed by aniline at pH 8. Under the mild deprotection and cleavage conditions, many sensitive functional groups including but not limited to esters, thioesters, alkyl halides, N-aryl amides, and α-chloroamides-which cannot survive the basic and nucleophilic deprotection and cleavage conditions such as concentrated ammonium hydroxide and dilute potassium methoxide used in typical ODN synthesis technologies-can survive. Thus, it is expected that the Dim-Dmoc ODN synthesis technology will find applications in the synthesis of ODNs that contain a wide range of sensitive functional groups. © 2020 Wiley Periodicals LLC. Basic Protocol: Synthesis, deprotection, cleavage, and purification of sensitive oligodeoxynucleotides Support Protocol 1: Synthesis of Dim-Dmoc nucleoside phosphoramidites Support Protocol 2: Preparation of CPG with a Dmoc linker Support Protocol 3: Synthesis of a phosphoramidite containing a sensitive alkyl ester group.
Collapse
Affiliation(s)
- Shiyue Fang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | | | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan
| | - Shahien Shahsavari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | - Jinsen Chen
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | - Xi Lin
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | - Bhaskar Halami
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
5
|
Takezawa Y, Nakama T, Shionoya M. Enzymatic Synthesis of Cu(II)-Responsive Deoxyribozymes through Polymerase Incorporation of Artificial Ligand-Type Nucleotides. J Am Chem Soc 2019; 141:19342-19350. [PMID: 31731834 DOI: 10.1021/jacs.9b08955] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal-mediated artificial base pairs, consisting of ligand-type nucleotides and a bridging metal ion, have shown promise as functional units to develop stimuli-responsive DNA materials. Although a variety of metal-mediated base pairs have been constructed with artificial ligand-type nucleotides and various metal ions, the application of such metal-mediated base pairs has been relatively poorly explored mainly due to the cumbersome chemical synthesis of artificial DNA strands. Herein we report a facile enzymatic method to synthesize DNA strands containing a ligand-type hydroxypyridone (H) nucleotide, which forms a CuII-mediated base pair (H-CuII-H). A two-step primer extension reaction using two commercially available polymerases enabled the incorporation of a H nucleotide at an internal position of oligonucleotides. The polymerase synthesis was subsequently applied to the development of metal-responsive deoxyribozymes (DNAzymes), whose catalytic activity was regulated by the formation of a single H-CuII-H base pair in its stem region. The DNAzyme activity was reversibly switched by the alternate addition and the removal of CuII ions. Furthermore, metal-dependent orthogonal activation of a CuII-responsive H-DNAzyme and a HgII-responsive T-DNAzyme was experimentally demonstrated by utilizing both H-CuII-H as well as widely explored T-HgII-T base pairs. These results suggest that the incorporation of H-CuII-H base pairs would facilitate the rational design of metal-responsive functional DNAs. Accordingly, the facile enzymatic synthesis of artificial ligand-bearing DNAs developed in this study would significantly expand the toolbox of DNA-based supramolecular chemistry and DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
6
|
Schwechheimer C, Doll L, Wagenknecht HA. Synthesis of Dye-Modified Oligonucleotides via Copper(I)-Catalyzed Alkyne Azide Cycloaddition Using On- and Off-Bead Approaches. ACTA ACUST UNITED AC 2019; 72:4.80.1-4.80.13. [PMID: 29927126 DOI: 10.1002/cpnc.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescence molecular imaging is widely used to visualize and observe different biomolecules, in particular DNA and RNA, in vivo and in real time. Typically, DNA strands are tagged with only one fluorophore, and, in the case of molecular beacons, an additional quencher is conjugated, which bears the risk of false-positive or false-negative results because only fluorescence intensities at one fluorescence wavelength (color) are compared. To address this drawback, the concept of "DNA/RNA traffic lights," which is characterized by a fluorescence color change due to energy transfer between two dyes, was developed by our working group. For these DNA and RNA systems, the oligonucleotides are post-synthetically labeled, specifically after solid-phase synthesis by chemical means, with a fluorescent dye using copper(I)-catalyzed cycloaddition at the 2' position of single uridines. In order to functionalize oligonucleotides with several different labels, an on-resin method is required to ensure the necessary selectivity. This unit describes two different CuAAC ("click") approaches-in solution (post-synthetic) and on solid phase (during synthesis)-for the attachment of fluorophores to the 2' position of DNA. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Larissa Doll
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
7
|
Turner MB, Anderson BA, Samaan GN, Coste M, Burns DD, Purse BW. Synthesis of Fluorescence Turn-On DNA Hybridization Probe Using the DEA tC 2'-Deoxycytidine Analog. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2018; 75:e59. [PMID: 30369083 PMCID: PMC6284819 DOI: 10.1002/cpnc.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DEA tC is a tricyclic 2'-deoxycytidine analog that can be incorporated into oligonucleotides by solid-phase synthesis and that exhibits a large fluorescence enhancement when correctly base-paired with a guanine base in a DNA-DNA duplex. The synthesis of DEA tC begins with 5-amino-2-methylbenzothiazole and provides the DEA tC nucleobase analog over five synthetic steps. This nucleobase analog is then silylated using N,O-bis(trimethylsilyl)acetamide and conjugated to Hoffer's chlorosugar to provide the protected DEA tC nucleoside in good yield. Following protective-group removal and chromatographic isolation of the β-anomer, dimethoxytritylation and phosphoramidite synthesis offer the monomer for solid-phase DNA synthesis. Solid-phase DNA synthesis conditions using extended coupling of the DEA tC amidite and a short deprotection time are employed to maximize efficiency. By following the protocols described in this unit, the DEA tC fluorescent probe can be synthesized and can be incorporated into any desired synthetic DNA oligonucleotide. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- M Benjamin Turner
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Brooke A Anderson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| | - George N Samaan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Michael Coste
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Dillon D Burns
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| |
Collapse
|
8
|
Mathews AS, Yang H, Montemagno C. 3'-O-Caged 2'-Deoxynucleoside Triphosphates for Light-Mediated, Enzyme-Catalyzed, Template-Independent DNA Synthesis. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 71:13.17.1-13.17.38. [PMID: 29275537 DOI: 10.1002/cpnc.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthesis, purification, and characterization of 3'-O-caged 2'-deoxyribonucleoside triphosphates (dNTPs), namely 3'-O-(2-nitrobenzyl)-2'-deoxy ribonucleoside triphosphates (NB-dNTPs) and 3'-O-(4,5-dimethoxy-2-nitrobenzyl)-2'-deoxy ribonucleoside triphosphates (DMNB-dNTPs), are discussed in detail. A total of eight 3'-O-caged dNTPs are synthesized with specific protocols depending on the nitrogenous base on the first carbon, i.e., adenine, guanine, thymine, and cytosine, as well as the photo-cleavable group, i.e, 2-nitrobenzyl and 4,5- dimethoxy-2-nitrobenzyl, to be attached in the 3'-O position. The purification of the synthesized compounds is done using ion-exchange and flash chromatography; this is followed by structural confirmation by nuclear magnetic resonance (NMR) and mass spectroscopy (MS). The efficiency of the designed compounds is tested by conducting and evaluating UV-cleaving experiments at 365 nm with proton NMR and LC-MS curves. Finally, the application of the 3'-O-cagged dNTPs in template-independent, enzyme-catalyzed, photo-mediated oligonucleotide synthesis is demonstrated. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anu Stella Mathews
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Haikang Yang
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Carlo Montemagno
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Plashkevych O, Upadhayaya RS, Chattopadhyaya J. Carbocyclic C-C Bond Formation: Intramolecular Radical Ring Closure to Yield Diastereomerically Pure (7'S-Me- or 7'R-Me-) Carba-LNA Nucleotide Analogs. ACTA ACUST UNITED AC 2017. [PMID: 28628208 DOI: 10.1002/cpnc.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In light of the impressive gene-silencing properties of carba-LNA modified oligo DNA and RNA, both in antisense RNA and siRNA approaches, which have been confirmed as proof-of-concept for biochemical applications in post-transcriptional gene silencing, we envision the true potential of carba-LNA modifications to be revealed soon. Herein we provide detailed protocols for synthesis of carba-LNA-A, -G, -5-Me C, and -T nucleosides on a medium/large scale (gram scale), as well as important guidelines for incorporation of these modified carba-LNAs into DNA or RNA oligonucleotides. Creation of a stereoselective C-C bond during the 5-exo radical intramolecular cyclization involves trapping of a C2' radical intermediate intramolecularly by the vicinal double bond of a C4'-tethered ─CH2 -CH═CH2 group. All diastereomers of substituted carba-LNAs are now available in pure form. The present procedure allows carba-LNA to be commercialized for medicinal or biotechnological purposes. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Ram Shankar Upadhayaya
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Bioimics AB, Uppsala, Sweden
| | | |
Collapse
|
10
|
del Villar-Guerra R, Gray RD, Chaires JB. Characterization of Quadruplex DNA Structure by Circular Dichroism. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 68:17.8.1-17.8.16. [PMID: 28252181 PMCID: PMC5334661 DOI: 10.1002/cpnc.23] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Circular dichroism (CD) is a phenomenon that arises from the differential absorption of left- and right-handed circularly polarized light, and may be seen with optically active molecules. CD spectroscopy provides useful spectral signatures for biological macromolecules in solution, and provides low-resolution structural information about macromolecular conformation. CD spectroscopy is particularly useful for monitoring conformational changes in macromolecules upon environmental perturbations. G-quadruplex structures show unique CD spectral signatures, and CD is an important tool for characterizing their formation and global structure. This protocol offers step-by-step methods for determining reliable and reproducible CD spectra of quadruplex structures and normalizing the spectra for presentation. CD spectra properly normalized with respect to quadruplex concentration and path length are required to facilitate accurate comparison of results among laboratories. The standard operating procedures proposed are recommended to make such comparison accurate and informative. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Rafael del Villar-Guerra
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert D. Gray
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
11
|
Burcar BT, Barge LM, Trail D, Watson EB, Russell MJ, McGown LB. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. ASTROBIOLOGY 2015; 15:509-522. [PMID: 26154881 DOI: 10.1089/ast.2014.1280] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.
Collapse
Affiliation(s)
- Bradley T Burcar
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 2 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Laura M Barge
- 3 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 4 NASA Astrobiology Institute , Icy Worlds
| | - Dustin Trail
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 5 Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute School of Science , Troy, New York
| | - E Bruce Watson
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 5 Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute School of Science , Troy, New York
| | - Michael J Russell
- 3 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 4 NASA Astrobiology Institute , Icy Worlds
| | - Linda B McGown
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 2 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
12
|
Ishizuka T, Xu Y, Komiyama M. Clipping of Telomere from Human Chromosomes Using a Chemistry-Based Artificial Restriction DNA Cutter. ACTA ACUST UNITED AC 2015; 61:6.13.1-6.13.13. [PMID: 26344230 DOI: 10.1002/0471142700.nc0613s61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The detection of individual telomere lengths of human chromosomes can provide crucial information on genome stability, cancer, and telomere-related diseases. However, current methods to measure telomere length entail shortcomings that have limited their use. Recently, we have developed a method for detection of individual telomere lengths (DITL) that uses a chemistry-based DNA-cutting approach. The most beneficial feature of the DITL approach is to cleave the sequence adjacent to the telomere followed by resolution of the telomere length at the nucleotide level of a single chromosome. In this unit, a protocol for successful detection of individual telomere lengths from individual chromosomes is described in detail.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Burcar BT, Jawed M, Shah H, McGown LB. In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions. ORIGINS LIFE EVOL B 2015; 45:31-40. [PMID: 25716919 DOI: 10.1007/s11084-015-9412-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Abstract
The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios.
Collapse
Affiliation(s)
- Bradley T Burcar
- New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street Troy, New York, 12180, USA
| | | | | | | |
Collapse
|
14
|
Burcar BT, Cassidy LM, Moriarty EM, Joshi PC, Coari KM, McGown LB. Potential pitfalls in MALDI-TOF MS analysis of abiotically synthesized RNA oligonucleotides. ORIGINS LIFE EVOL B 2013; 43:247-61. [PMID: 23793938 DOI: 10.1007/s11084-013-9334-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/02/2013] [Indexed: 01/31/2023]
Abstract
Demonstration of the abiotic polymerization of ribonucleotides under conditions consistent with conditions that may have existed on the prebiotic Earth is an important goal in "RNA world" research. Recent reports of abiotic RNA polymerization with and without catalysis rely on techniques such as HPLC, gel electrophoresis, and MALDI-TOF MS to analyze the reaction products. It is essential to understand the limitations of these techniques in order to accurately interpret the results of these analyses. In particular, techniques that rely on mass for peak identification may not be able to distinguish between a single, linear RNA oligomer and stable aggregates of smaller linear and/or cyclic RNA molecules. In the case of MALDI-TOF MS, additional complications may arise from formation of salt adducts and MALDI matrix complexes. This is especially true for abiotic RNA polymerization reactions because the concentration of longer RNA chains can be quite low and RNA, as a polyelectrolyte, is highly susceptible to adduct formation and aggregation. Here we focus on MALDI-TOF MS analysis of abiotic polymerization products of imidazole-activated AMP in the presence and absence of montmorillonite clay as a catalyst. A low molecular weight oligonucleotide standard designed for use in MALDI-TOF MS and a 3'-5' polyadenosine monophosphate reference standard were also run for comparison and calibration. Clay-catalyzed reaction products of activated GMP and UMP were also examined. The results illustrate the ambiguities associated with assignment of m/z values in MALDI mass spectra and the need for accurate calibration of mass spectra and careful sample preparation to minimize the formation of adducts and other complications arising from the MALDI process.
Collapse
Affiliation(s)
- Bradley T Burcar
- Department of Chemistry and Chemical Biology, The New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | | | | | | | | |
Collapse
|