1
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
2
|
Feng J, Shu Y, An Y, Niu Q, Fan Q, Lei Y, Gong Y, Hu X, Zhang P, Liu Y, Yang C, Wu L. Encoded Fusion-Mediated MicroRNA Signature Profiling of Tumor-Derived Extracellular Vesicles for Pancreatic Cancer Diagnosis. Anal Chem 2023; 95:7743-7752. [PMID: 37147770 DOI: 10.1021/acs.analchem.3c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) in tumor-derived extracellular vesicles (tEVs) are important cancer biomarkers for cancer screening and early diagnosis. Multiplex detection of miRNAs in tEVs facilitates accurate diagnosis but remains a challenge. Herein, we propose an encoded fusion strategy to profile the miRNA signature in tEVs for pancreatic cancer diagnosis. A panel of encoded-targeted-fusion beads was fabricated for the selective recognition and fusion of tEVs, with the turn-on fluorescence signals of molecule beacons for miRNA quantification and barcode signals for miRNA identification using readily accessible flow cytometers. Using this strategy, six types of pancreatic-cancer-associated miRNAs can be profiled in tEVs from 2 μL plasma samples (n = 36) in an isolation-free and lysis-free manner with only 2 h of processing, offering a high accuracy (98%) to discriminate pancreatic cancer, pancreatitis, and healthy donors. This encoded fusion strategy exhibits great potential for multiplex profiling of miRNA in tEVs, offering new avenues for cancer diagnosis and screening.
Collapse
Affiliation(s)
- Jianzhou Feng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi Niu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanmei Lei
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanli Gong
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Peng Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
3
|
Stepien A, Dolata J, Gulanicz T, Bielewicz D, Bajczyk M, Smolinski DJ, Szweykowska-Kulinska Z, Jarmolowski A. Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40. THE PLANT CELL 2022; 34:4920-4935. [PMID: 36087009 PMCID: PMC9709975 DOI: 10.1093/plcell/koac278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Mateusz Bajczyk
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Dariusz J Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | | | | |
Collapse
|
4
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep 2021; 49:705-715. [PMID: 34677714 DOI: 10.1007/s11033-021-06847-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer biomarkers can be used to determine the molecular status of a tumor or its metastases, which either release them directly into body fluids or indirectly through disruption of tumor/metastatic tissue. New minimally invasive and repeatable sample collection methods, such as liquid biopsy, have been developed in the last decade to apply cancer knowledge and track its progression. Circulating non-coding RNAs, which include microRNAs, long non-coding RNAs, and PIWI-interacting RNAs, are increasingly being recognized as potential cancer biomarkers. The growing understanding of cancer's molecular pathogenesis, combined with the rapid development of new molecular techniques, encourages the study of early molecular alterations associated with cancer development in body fluids. Specific genetic and epigenetic changes in circulating free RNA (cf-RNA) in plasma, serum, and urine could be used as diagnostic biomarkers for a variety of cancers. Only a subset of these cf-RNAs have been studied in breast cancer, with the most extensive research focusing on cf-miRNA in plasma. These findings pave the way for immediate use of selected cf-RNAs as biomarkers in breast cancer liquid biopsy, as well as additional research into other cf-RNAs to advance.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
5
|
Zhang X, Mens MMJ, Abozaid YJ, Bos D, Darwish Murad S, de Knegt RJ, Ikram MA, Pan Q, Ghanbari M. Circulatory microRNAs as potential biomarkers for fatty liver disease: the Rotterdam study. Aliment Pharmacol Ther 2021; 53:432-442. [PMID: 33244812 PMCID: PMC7839694 DOI: 10.1111/apt.16177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fatty liver disease (FLD) is the most common cause of liver dysfunction in developed countries. There is great interest in developing clinically valid and minimally invasive biomarkers to enhance early diagnosis of FLD. AIM To investigate the potential of circulatory microRNAs (miRNAs) as biomarkers of FLD at the population level. METHODS Plasma levels of 2083 miRNAs were measured by RNA sequencing in 1999 participants from the prospective population-based Rotterdam Study cohort. The Hounsfield Unit (HU) attenuation of liver was measured using non-enhanced computed tomography (CT) scan. Logistic and linear regression models adjusting for potential confounders were used to examine the association of circulatory miRNAs with liver enzymes (n = 1991) and CT-based FLD (n = 954). Moreover, the association of miRNAs with hepatic steatosis and liver fibrosis was assessed longitudinally in individuals who underwent abdominal ultrasound (n = 1211) and transient elastography (n = 777) after a median follow-up of >6 years. RESULTS Cross-sectional analysis showed 61 miRNAs significantly associated with serum gamma-glutamyl transferase and/or alkaline phosphatase levels (Bonferroni-corrected P < 8.46 × 10-5 ). Moreover, 17 miRNAs were significantly associated with CT-based FLD (P < 8.46 × 10-5 ); 14 were among miRNAs associated with liver enzymes. Longitudinal analysis showed that 4 of these 14 miRNAs (miR-193a-5p, miR-122-5p, miR-378d and miR-187-3p) were significantly associated with hepatic steatosis (P < 3.57 × 10-3 ) and three (miR-193a-5p, miR-122-5p and miR-193b-3p) were nominally associated with liver fibrosis (P < 0.05). Nine of the 14 identified miRNAs were involved in pathways underlying liver diseases. CONCLUSIONS Plasma levels of several miRNAs can be used as biomarkers of FLD, laying the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Michelle M. J. Mens
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Yasir J. Abozaid
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Daniel Bos
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands,Department of Radiology and Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Sarwa Darwish Murad
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert J. de Knegt
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamthe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
6
|
Luo W, Huang LX, Qin SK, Zhang X, Feng QL, Gu J, Huang LH. Multiple microRNAs control ecdysone signaling in the midgut of Spodoptera litura. INSECT SCIENCE 2020; 27:1208-1223. [PMID: 31840397 DOI: 10.1111/1744-7917.12745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Metamorphosis is one of the most important physiological processes in insects. It is regulated by a serial of ecdysone cascade genes. Recently, lots of microRNAs (miRNAs) were investigated in insects; however, their function in metamorphosis is largely unknown. In the present study, the dynamics of a small RNA population was investigated by RNA sequencing from the midgut of a lepidopteran pest Spodoptera litura during larval-pupal metamorphosis. A total of 101 miRNAs were identified, and 75 miRNAs were differentially expressed during the metamorphic process. The relationship between these differentially expressed miRNAs and 12 ecdysone cascade genes was analyzed by four classical software programs, and a multiple-to-multiple regulatory network was found to exist between these miRNAs and their targets. Among them, miR-14-3p and its two targets (EcR and E75) were chosen for further validation. MiR-14-3p had higher expression level in the 6th instar larvae as compared with either the prepupae or pupae, which was opposite to that of both EcR and E75, two ecdysone cascade genes. Luciferase reporter assay confirmed that both EcR and E75 were regulated by miR-14-3p. Interestingly, the 3' untranslated regions are nearly identical to each other among different transcript variants of the ecdysone cascade genes, including EcR, USP, E75, E74, E78, E93, Hr3, Hr4, Hr39, Krh1 and Ftzf1. Thus, different transcript variants of one ecdysone cascade gene could be regulated by the same miRNA. The above data suggest that the ecdysone signaling pathway is under the tight control of miRNA. These findings expand our understanding of the mechanism of insect metamorphosis and may also provide a novel possibility for the control of pest insects in the future.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Xia Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Hubei Key Laboratory of Application of Plant-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, China
| | - Shuang-Kang Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xian Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Gu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Hua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Grabowska A, Smoczynska A, Bielewicz D, Pacak A, Jarmolowski A, Szweykowska-Kulinska Z. Barley microRNAs as metabolic sensors for soil nitrogen availability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110608. [PMID: 32900446 DOI: 10.1016/j.plantsci.2020.110608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.
Collapse
Affiliation(s)
- Aleksandra Grabowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
8
|
Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?-Current Status. Int J Mol Sci 2020; 21:ijms21186728. [PMID: 32937836 PMCID: PMC7555634 DOI: 10.3390/ijms21186728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.
Collapse
|
9
|
Bhat SS, Bielewicz D, Gulanicz T, Bodi Z, Yu X, Anderson SJ, Szewc L, Bajczyk M, Dolata J, Grzelak N, Smolinski DJ, Gregory BD, Fray RG, Jarmolowski A, Szweykowska-Kulinska Z. mRNA adenosine methylase (MTA) deposits m 6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:21785-21795. [PMID: 32817553 DOI: 10.1101/557900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary miRNA transcripts (pri-miRNAs). Moreover, pri-miRNAs are methylated by MTA, and RNA structure probing analysis reveals a decrease in secondary structure within stem-loop regions of these transcripts in mta mutant plants. We demonstrate interaction between MTA and both RNA Polymerase II and TOUGH (TGH), a plant protein needed for early steps of miRNA biogenesis. Both MTA and TGH are necessary for efficient colocalization of the Microprocessor components Dicer-like 1 (DCL1) and Hyponastic Leaves 1 (HYL1) with RNA Polymerase II. We propose that secondary structure of miRNA precursors induced by their MTA-dependent m6A methylation status, together with direct interactions between MTA and TGH, influence the recruitment of Microprocessor to plant pri-miRNAs. Therefore, the lack of MTA in mta mutant plants disturbs pri-miRNA processing and leads to the decrease in miRNA accumulation. Furthermore, our findings reveal that reduced miR393b levels likely contributes to the impaired auxin response phenotypes of mta mutant plants.
Collapse
Affiliation(s)
- Susheel Sagar Bhat
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Zsuzsanna Bodi
- School of Biosciences, Plant Science Division, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, United Kingdom
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen J Anderson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Lukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Natalia Grzelak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Dariusz J Smolinski
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Rupert G Fray
- School of Biosciences, Plant Science Division, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, United Kingdom
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| |
Collapse
|
10
|
Huang T, Yang M, Dong K, Xu M, Liu J, Chen Z, Zhu S, Chen W, Yin J, Jin K, Deng Y, Guan Z, Huang X, Yang J, Han R, Yao M. A transcriptional landscape of 28 porcine tissues obtained by super deepSAGE sequencing. BMC Genomics 2020; 21:229. [PMID: 32171242 PMCID: PMC7071599 DOI: 10.1186/s12864-020-6628-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gene expression regulators identified in transcriptome profiling experiments may serve as ideal targets for genetic manipulations in farm animals. RESULTS In this study, we developed a gene expression profile of 76,000+ unique transcripts for 224 porcine samples from 28 tissues collected from 32 animals using Super deepSAGE technology. Excellent sequencing depth was achieved for each multiplexed library, and replicated samples from the same tissues clustered together, demonstrating the high quality of Super deepSAGE data. Comparison with previous research indicated that our results not only have good reproducibility but also have greatly extended the coverage of the sample types as well as the number of genes. Clustering analysis revealed ten groups of genes showing distinct expression patterns among these samples. Our analysis of over-represented binding motifs identified 41 regulators, and we demonstrated a potential application of this dataset in infectious diseases and immune biology research by identifying an LPS-dependent transcription factor, runt-related transcription factor 1 (RUNX1), in peripheral blood mononuclear cells (PBMCs). The selected genes are specifically responsible for the transcription of toll-like receptor 2 (TLR2), lymphocyte-specific protein tyrosine kinase (LCK), and vav1 oncogene (VAV1), which belong to the T and B cell signaling pathways. CONCLUSIONS The Super deepSAGE technology and tissue-differential expression profiles are valuable resources for investigating the porcine gene expression regulation. The identified RUNX1 target genes belong to the T and B cell signaling pathways, making them novel potential targets for the diagnosis and therapy of bacterial infections and other immune disorders.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kaihui Dong
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Mingjiang Xu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jinhui Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Zhi Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shijia Zhu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wang Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jun Yin
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kai Jin
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yu Deng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Zhou Guan
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jun Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Rongxun Han
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
11
|
Kumar V, Das S, Kumar A, Tiwari N, Kumar A, Abhishek K, Mandal A, Kumar M, Shafi T, Bamra T, Singh RK, Vijayakumar S, Sen A, Das P. Leishmania donovani infection induce differential miRNA expression in CD4+ T cells. Sci Rep 2020; 10:3523. [PMID: 32103111 PMCID: PMC7044172 DOI: 10.1038/s41598-020-60435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Visceral leishmaniasis is characterized by mixed production of Th1/2 cytokines and the disease is established by an enhanced level of Th2 cytokine. CD4+ T cells are main cell type which produces Th1/2 cytokine in the host upon Leishmania infection. However, the regulatory mechanism for Th1/2 production is not well understood. In this study, we co-cultured mice CD4+ T cells with Leishmania donovani infected and uninfected macrophage for the identification of dysregulated miRNAs in CD4+ T cells by next-generation sequencing. Here, we identified 604 and 613 known miRNAs in CD4+ T cells in control and infected samples respectively and a total of only 503 miRNAs were common in both groups. The expression analysis revealed that 112 miRNAs were up and 96 were down-regulated in infected groups, compared to uninfected control. Nineteen up-regulated and 17 down-regulated miRNAs were statistically significant (p < 0.05), which were validated by qPCR. Further, using insilco approach, we identified the gene targets of significant miRNAs on the basis of CD4+ T cell biology. Eleven up-regulated miRNAs and 9 down-regulated miRNAs were associated with the cellular immune responses and Th1/2 dichotomy upon Leishmania donovani infection. The up-regulated miRNAs targeted transcription factors that promote differentiation of CD4+ T cells towards Th1 phenotype. While down-regulated miRNAs targeted the transcription factors that facilitate differentiation of CD4+ T cells towards Th2 populations. The GO and pathway enrichment analysis also showed that the identified miRNAs target the pathway and genes related to CD4+ T cell biology which plays important role in Leishmania donovani infection.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Neeraj Tiwari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Manjay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Taj Shafi
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Tanvir Bamra
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saravanan Vijayakumar
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhik Sen
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India.
| |
Collapse
|
12
|
Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc Diabetol 2019; 18:113. [PMID: 31470851 PMCID: PMC6716825 DOI: 10.1186/s12933-019-0918-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
In the light of growing global epidemic of type 2 diabetes mellitus (T2DM), significant efforts are made to discover next-generation biomarkers for early detection of the disease. Multiple mechanisms including inflammatory response, abnormal insulin secretion and glucose metabolism contribute to the development of T2DM. Platelet activation, on the other hand, is known to be one of the underlying mechanisms of atherosclerosis, which is a common T2DM complication that frequently results in ischemic events at later stages of the disease. Available data suggest that platelets contain large amounts of microRNAs (miRNAs) that are found in circulating body fluids, including the blood. Since miRNAs have been illustrated to play an important role in metabolic homeostasis through regulation of multiple genes, they attracted substantial scientific interest as diagnostic and prognostic biomarkers in T2DM. Various miRNAs, as well as their target genes are implicated in the complex pathophysiology of T2DM. This article will first review the different miRNAs studied in the context of T2DM and platelet reactivity, and subsequently present original results from bioinformatic analyses of published reports, identifying a common gene (PRKAR1A) linked to glucose metabolism, blood coagulation and insulin signalling and targeted by miRNAs in T2DM. Moreover, miRNA–target gene interaction networks built upon Gene Ontology information from electronic databases were developed. According to our results, miR-30a-5p, miR-30d-5p and miR-30c-5p are the most widely regulated miRNAs across all specified ontologies, hence they are the most promising biomarkers of T2DM to be investigated in future clinical studies.
Collapse
|
13
|
Wright C, Rajpurohit A, Burke EE, Williams C, Collado-Torres L, Kimos M, Brandon NJ, Cross AJ, Jaffe AE, Weinberger DR, Shin JH. Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genomics 2019; 20:513. [PMID: 31226924 PMCID: PMC6588940 DOI: 10.1186/s12864-019-5870-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RNA sequencing offers advantages over other quantification methods for microRNA (miRNA), yet numerous biases make reliable quantification challenging. Previous evaluations of these biases have focused on adapter ligation bias with limited evaluation of reverse transcription bias or amplification bias. Furthermore, evaluations of the quantification of isomiRs (miRNA isoforms) or the influence of starting amount on performance have been very limited. No study had yet evaluated the quantification of isomiRs of altered length or compared the consistency of results derived from multiple moderate starting inputs. We therefore evaluated quantifications of miRNA and isomiRs using four library preparation kits, with various starting amounts, as well as quantifications following removal of duplicate reads using unique molecular identifiers (UMIs) to mitigate reverse transcription and amplification biases. RESULTS All methods resulted in false isomiR detection; however, the adapter-free method tested was especially prone to false isomiR detection. We demonstrate that using UMIs improves accuracy and we provide a guide for input amounts to improve consistency. CONCLUSIONS Our data show differences and limitations of current methods, thus raising concerns about the validity of quantification of miRNA and isomiRs across studies. We advocate for the use of UMIs to improve accuracy and reliability of miRNA quantifications.
Collapse
Affiliation(s)
- Carrie Wright
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.,AstraZeneca Postdoc Program, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Anandita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Emily E Burke
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Courtney Williams
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Martha Kimos
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Huang T, Huang X, Chen W, Yin J, Shi B, Wang F, Feng W, Yao M. MicroRNA responses associated with Salmonella enterica serovar typhimurium challenge in peripheral blood: effects of miR-146a and IFN-γ in regulation of fecal bacteria shedding counts in pig. BMC Vet Res 2019; 15:195. [PMID: 31186019 PMCID: PMC6560770 DOI: 10.1186/s12917-019-1951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNAs are involved in a broad range of biological processes and are known to be differentially expressed in response to bacterial pathogens. Results The present study identified microRNA responses in porcine peripheral blood after inoculation with the human foodborne pathogen Salmonella enterica serovar Typhimurium strain LT2. We compared the microRNA transcriptomes of the whole blood of pigs (Duroc × Landrace × Yorkshire) at 2-days post inoculation and before Salmonella infection. The analysis identified a total of 29 differentially expressed microRNAs, most of which are implicated in Salmonella infection and immunology signaling pathways. Joint analysis of the microRNA and mRNA transcriptomes identified 24 microRNAs with binding sites that were significantly enriched in 3′ UTR of differentially expressed mRNAs. Of these microRNAs, three were differentially expressed after Salmonella challenge in peripheral blood (ssc-miR-146a-5p, ssc-miR-125a, and ssc-miR-129a-5p). Expression of 23 targets of top-ranked microRNA, ssc-miR-146a-5p, was validated by real-time PCR. The effects of miR-146a, IFN-γ, and IL-6 on the regulation of fecal bacteria shedding counts in pigs were investigated by in vivo study with a Salmonella challenge model. Conclusions The results indicated that induction of miR-146a in peripheral blood could significantly increase the fecal bacterial load, whereas IFN-γ had the reverse effect. These microRNAs can be used to identify targets for controlling porcine salmonellosis.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wang Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jun Yin
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
15
|
Örs Kumoğlu G, Döşkaya M, Gulce Iz S. The biomarker features of miR-145-3p determined via meta-analysis validated by qRT-PCR in metastatic cancer cell lines. Gene 2019; 710:341-353. [PMID: 31195093 DOI: 10.1016/j.gene.2019.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/02/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play important roles in the cancer biology such as proliferation, differentiation, and apoptosis. The pivotal roles that miRNA expression plays, make them ideal candidates for detection of cancer progression as well as cancer metastasis. Especially for breast, lung and prostate cancer which are originated from soft tissues and prone to metastasis. Thus, the aim of this study is to evaluate the expression level of miR-145-3p which is a shared potential biomarker identified by meta-analysis of breast, prostate and lung cancer data sets. Six different data sets representative of three different cancer types were analyzed. These data sets are pooled together to have a master metamiRNA list while getting rid of the platform differentiations between them. As a result, 24 common differentially expressed miRNAs are determined in which miR-145-3p has the topmost rank. To mimic in vivo cancer microenvironment, hypoxia and serum deprivation were used to induce metastasis in breast (MCF-7, MDA-MB-231, MDA-MB-453), prostate (PC3, LNCaP, DU145), lung (A549, NCIH82,) cancer cell lines and noncancerous cell lines of the coresponding tissues (MCF10A, RWPE-1, MRC-5). miR-145-3p expression levels were determined by qRT-PCR. It has been shown that it is down regulated by the induction of metastasis in cancer cell lines while it is up regulated in normal cell lines to suppress the tumor formation. As a conclusion, as representing the same results in three different cancer cell types, miR-145-3p will be a promising biomarker to follow up its expression to detect cancer metastasis.
Collapse
Affiliation(s)
- Gizem Örs Kumoğlu
- Ege University, Institute of Natural & Applied Sciences, Bioengineering Graduate Programme, Izmir, Turkey
| | - Mert Döşkaya
- Ege University, Faculty of Medicine, Department of Parasitology, Molecular Diagnostics Lab, Izmir, Turkey
| | - Sultan Gulce Iz
- Ege University, Institute of Natural & Applied Sciences, Bioengineering Graduate Programme, Izmir, Turkey; Ege University, Faculty of Engineering, Department of Bioengineering, Izmir, Turkey; Ege University, Institute of Natural & Applied Sciences, Biomedical Technologies Graduate Programme, Izmir, Turkey.
| |
Collapse
|
16
|
Benyeogor I, Simoneaux T, Wu Y, Lundy S, George Z, Ryans K, McKeithen D, Pais R, Ellerson D, Lorenz WW, Omosun T, Thompson W, Eko FO, Black CM, Blas-Machado U, Igietseme JU, He Q, Omosun Y. A unique insight into the MiRNA profile during genital chlamydial infection. BMC Genomics 2019; 20:143. [PMID: 30777008 PMCID: PMC6379932 DOI: 10.1186/s12864-019-5495-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. Results Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. Conclusions This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5495-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ifeyinwa Benyeogor
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Tankya Simoneaux
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Yuehao Wu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Zenas George
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Khamia Ryans
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Danielle McKeithen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Roshan Pais
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Debra Ellerson
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - W Walter Lorenz
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Tolulope Omosun
- Department of Physical Sciences, Georgia State University, Covington, GA, 30014, USA
| | - Winston Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Carolyn M Black
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Uriel Blas-Machado
- Department of Pathology, University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Qing He
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA. .,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA.
| |
Collapse
|
17
|
Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, Srivastava RK, Goryacheva IY, Mishra PK. Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Front Genet 2018; 9:616. [PMID: 30574163 PMCID: PMC6291444 DOI: 10.3389/fgene.2018.00616] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequently occurring malignancy and the leading cause of cancer-related death for men in our country. The only recommended screening method is clinic based low-dose computed tomography (also called a low-dose CT scan, or LDCT). However, the effect of LDCT on overall mortality observed in lung cancer patients is not statistically significant. Over-diagnosis, excessive cost, risks associated with radiation exposure, false positive results and delay in the commencement of the treatment procedure questions the use of LDCT as a reliable technique for population-based screening. Therefore, identification of minimal-invasive biomarkers able to detect malignancies at an early stage might be useful to reduce the disease burden. Circulating nucleic acids are emerging as important source of information for several chronic pathologies including lung cancer. Of these, circulating cell free miRNAs are reported to be closely associated with the clinical outcome of lung cancer patients. Smaller size, sequence homology between species, low concentration and stability are some of the major challenges involved in characterization and specific detection of miRNAs. To circumvent these problems, synthesis of a quantum dot based nano-biosensor might assist in sensitive, specific and cost-effective detection of differentially regulated miRNAs. The wide excitation and narrow emission spectra of these nanoparticles result in excellent fluorescent quantum yields with a broader color spectrum which make them ideal bio-entities for fluorescence resonance energy transfer (FRET) based detection for sequential or simultaneous study of multiple targets. In addition, photo-resistance and higher stability of these nanoparticles allows extensive exposure and offer state-of-the art sensitivity for miRNA targeting. A major obstacle for integrating QDs into clinical application is the QD-associated toxicity. However, the use of non-toxic shells along with surface modification not only overcomes the toxicity issues, but also increases the ability of QDs to quickly detect circulating cell free miRNAs in a non-invasive mode. The present review illustrates the importance of circulating miRNAs in lung cancer diagnosis and highlights the translational prospects of developing QD-based nano-biosensor for rapid early disease detection.
Collapse
Affiliation(s)
- Radha D. Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Irina Y. Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
18
|
MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 2018; 7:cells7120249. [PMID: 30563269 PMCID: PMC6316722 DOI: 10.3390/cells7120249] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Stroke is the second-most common cause of death worldwide. The pathophysiology of ischemic stroke (IS) is related to inflammation, atherosclerosis, blood coagulation, and platelet activation. MicroRNAs (miRNAs) play important roles in physiological and pathological processes of neurodegenerative diseases and progression of certain neurological diseases, such as IS. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of IS. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique value as diagnostic and prognostic markers in IS. In this review, we focus on the role of miRNAs as diagnostic and prognostic biomarkers in IS. We discuss the most common and reliable detection methods available and promising tests currently under development. We also present original results from bioinformatic analyses of published results, identifying the ten most significant genes (HMGB1, YWHAZ, PIK3R1, STAT3, MAPK1, CBX5, CAPZB, THBS1, TNFRSF10B, RCOR1) associated with inflammation, blood coagulation, and platelet activation and targeted by miRNAs in IS. Additionally, we created miRNA-gene target interaction networks based on Gene Ontology (GO) information derived from publicly available databases. Among our most interesting findings, miR-19a-3p is the most widely modulated miRNA across all selected ontologies and might be proposed as novel biomarker in IS to be tested in future studies.
Collapse
|
19
|
Hibner G, Kimsa-Furdzik M, Francuz T. Relevance of MicroRNAs as Potential Diagnostic and Prognostic Markers in Colorectal Cancer. Int J Mol Sci 2018; 19:ijms19102944. [PMID: 30262723 PMCID: PMC6213499 DOI: 10.3390/ijms19102944] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is currently the third and the second most common cancer in men and in women, respectively. Every year, more than one million new CRC cases and more than half a million deaths are reported worldwide. The majority of new cases occur in developed countries. Current screening methods have significant limitations. Therefore, a lot of scientific effort is put into the development of new diagnostic biomarkers of CRC. Currently used prognostic markers are also limited in assessing the effectiveness of CRC therapy. MicroRNAs (miRNAs) are a promising subject of research especially since single miRNA can recognize a variety of different mRNA transcripts. MiRNAs have important roles in epigenetic regulation of basic cellular processes, such as proliferation, apoptosis, differentiation, and migration, and may serve as potential oncogenes or tumor suppressors during cancer development. Indeed, in a large variety of human tumors, including CRC, significant distortions in miRNA expression profiles have been observed. Thus, the use of miRNAs as diagnostic and prognostic biomarkers in cancer, particularly in CRC, appears to be an inevitable consequence of the advancement in oncology and gastroenterology. Here, we review the literature to discuss the potential usefulness of selected miRNAs as diagnostic and prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- Grzegorz Hibner
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| | - Małgorzata Kimsa-Furdzik
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| |
Collapse
|
20
|
Juźwik CA, Drake S, Lécuyer MA, Johnson RM, Morquette B, Zhang Y, Charabati M, Sagan SM, Bar-Or A, Prat A, Fournier AE. Neuronal microRNA regulation in Experimental Autoimmune Encephalomyelitis. Sci Rep 2018; 8:13437. [PMID: 30194392 PMCID: PMC6128870 DOI: 10.1038/s41598-018-31542-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease but the molecular mechanisms underlying neurodegenerative aspects of the disease are poorly understood. microRNAs (miRNAs) are powerful regulators of gene expression that regulate numerous mRNAs simultaneously and can thus regulate programs of gene expression. Here, we describe miRNA expression in neurons captured from mice subjected to experimental autoimmune encephalomyelitis (EAE), a model of central nervous system (CNS) inflammation. Lumbar motor neurons and retinal neurons were laser captured from EAE mice and miRNA expression was assessed by next-generation sequencing and validated by qPCR. We describe 14 miRNAs that are differentially regulated in both neuronal subtypes and determine putative mRNA targets though in silico analysis. Several upregulated neuronal miRNAs are predicted to target pathways that could mediate repair and regeneration during EAE. This work identifies miRNAs that are affected by inflammation and suggests novel candidates that may be targeted to improve neuroprotection in the context of pathological inflammation.
Collapse
Affiliation(s)
- Camille A Juźwik
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Sienna Drake
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Marc-André Lécuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Radia Marie Johnson
- McGill University, Goodman Cancer Research Centre, Montréal, H3A 1A3, Canada
| | - Barbara Morquette
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Yang Zhang
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Marc Charabati
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Selena M Sagan
- McGill University, Departments of Microbiology & Immunology and Biochemistry, Montréal, QC, H3G 0B1, Canada
| | - Amit Bar-Or
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alyson E Fournier
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
21
|
Lopes KDP, Vinasco-Sandoval T, Vialle RA, Paschoal FM, Bastos VAPA, Bor-Seng-Shu E, Teixeira MJ, Yamada ES, Pinto P, Vidal AF, Ribeiro-Dos-Santos A, Moreira F, Santos S, Paschoal EHA, Ribeiro-Dos-Santos Â. Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage. Sci Rep 2018; 8:8786. [PMID: 29884860 PMCID: PMC5993784 DOI: 10.1038/s41598-018-27078-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms behind aneurysmal subarachnoid haemorrhage (aSAH) are still poorly understood. Expression patterns of miRNAs may help elucidate the post-transcriptional gene expression in aSAH. Here, we evaluate the global miRNAs expression profile (miRnome) of patients with aSAH to identify potential biomarkers. We collected 33 peripheral blood samples (27 patients with cerebral aneurysm, collected 7 to 10 days after the haemorrhage, when usually is the cerebral vasospasm risk peak, and six controls). Then, were performed small RNA sequencing using an Illumina Next Generation Sequencing (NGS) platform. Differential expression analysis identified eight differentially expressed miRNAs. Among them, three were identified being up-regulated, and five down-regulated. miR-486-5p was the most abundant expressed and is associated with poor neurological admission status. In silico miRNA gene target prediction showed 148 genes associated with at least two differentially expressed miRNAs. Among these, THBS1 and VEGFA, known to be related to thrombospondin and vascular endothelial growth factor. Moreover, MYC gene was found to be regulated by four miRNAs, suggesting an important role in aneurysmal subarachnoid haemorrhage. Additionally, 15 novel miRNAs were predicted being expressed only in aSAH, suggesting possible involvement in aneurysm pathogenesis. These findings may help the identification of novel biomarkers of clinical interest.
Collapse
Affiliation(s)
- Katia de Paiva Lopes
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Tatiana Vinasco-Sandoval
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil.,Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Ricardo Assunção Vialle
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Fernando Mendes Paschoal
- Serviço de Neurocirurgia - Hospital Ophir Loyola, Unidade Neuromuscular do Complexo Hospitalar da UFPA, Belém, Brazil
| | | | - Edson Bor-Seng-Shu
- Serviço de Neurocirurgia do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Serviço de Neurocirurgia do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Elizabeth Sumi Yamada
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Neuropatologia Experimental, Universidade Federal do Pará, Belém, Brazil.,Grupo de Pesquisa Amazônia Neurovascular, Universidade Federal do Pará, Belém, Brazil
| | - Pablo Pinto
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil.,Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Arthur Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Fabiano Moreira
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil.,Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil.,Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Eric Homero Albuquerque Paschoal
- Serviço de Neurofisiologia Intraoperatória, Neurogenesis Instituto de Neurociências, Belém, Brazil.,Grupo de Pesquisa Amazônia Neurovascular, Universidade Federal do Pará, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil. .,Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil. .,Grupo de Pesquisa Amazônia Neurovascular, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
22
|
Stress-associated changes in salivary microRNAs can be detected in response to the Trier Social Stress Test: An exploratory study. Sci Rep 2018; 8:7112. [PMID: 29740073 PMCID: PMC5940676 DOI: 10.1038/s41598-018-25554-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/20/2018] [Indexed: 01/05/2023] Open
Abstract
Stress is an important co-factor for the genesis and maintenance of many diseases and is known to have an effect on gene expression via epigenetic regulation. MicroRNAs (miRNAs) appear to function as one of the key factors of this regulation. This is the first study to investigate the response of 11 stress-associated miRNAs in human saliva - as a non-invasive source - in an experimental condition of acute psychological stress, and also their correlation with established psychological (subjective stress perception), physiological (heart rate and heart rate variability) and biochemical stress parameters (salivary cortisol and alpha-amylase). 24 healthy participants between 20 and 35 years of age were investigated, using the Trier Social Stress Test (TSST) to induce acute psychological stress. Stress-associated changes were significant for miR-20b, -21 and 26b, and changes in miR-16 and -134 were close to significance, recommending further research on these miRNAs in the context of stress reactions. Significant correlations with alpha-amylase suggest their integration in sympathetic stress regulation processes. Additionally, our results demonstrate the TSST as a reliable tool for studying salivary miRNAs as non-invasive indicators of epigenetic processes in acute psychological stress reactions.
Collapse
|
23
|
The Challenges and Opportunities in the Clinical Application of Noncoding RNAs: The Road Map for miRNAs and piRNAs in Cancer Diagnostics and Prognostics. Int J Genomics 2018; 2018:5848046. [PMID: 29854719 PMCID: PMC5952559 DOI: 10.1155/2018/5848046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 12/11/2022] Open
Abstract
Discoveries on nonprotein-coding RNAs have induced a paradigm shift in our overall understanding of gene expression and regulation. We now understand that coding and noncoding RNA machinery work in concert to maintain overall homeostasis. Based on their length, noncoding RNAs are broadly classified into two groups—long (>200 nt) and small noncoding RNAs (<200 nt). These RNAs perform diverse functions—gene regulation, splicing, translation, and posttranscriptional modifications. MicroRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) are two classes of small noncoding RNAs that are now classified as master regulators of gene expression. They have also demonstrated clinical significance as potential biomarkers and therapeutic targets for several diseases, including cancer. Despite these similarities, both these RNAs are generated through contrasting mechanisms, and one of the aims of this review is to cover the distance travelled since their discovery and compare and contrast the various facets of these RNAs. Although these RNAs show tremendous promise as biomarkers, translating the findings from bench to bedside is often met with roadblocks. The second aim of this review therefore is to highlight some of the challenges that hinder application of miRNA and piRNA as in guiding treatment decisions.
Collapse
|
24
|
Wang Q, Roy B, Turecki G, Shelton RC, Dwivedi Y. Role of Complex Epigenetic Switching in Tumor Necrosis Factor-α Upregulation in the Prefrontal Cortex of Suicide Subjects. Am J Psychiatry 2018; 175:262-274. [PMID: 29361849 PMCID: PMC5832541 DOI: 10.1176/appi.ajp.2017.16070759] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Proinflammatory cytokines have recently received considerable attention for their role in suicidal behavior; however, how the expression of cytokine genes is regulated is not clearly known. The authors examined underlying mechanisms of critical cytokine gene tumor necrosis factor-alpha (TNF-α) dysregulation in the brains of individuals who died by suicide. METHOD TNF-α expression was examined in the dorsolateral prefrontal cortex of the postmortem brains of persons with and without major depressive disorder who died by suicide and of persons with major depressive disorder who died of causes other than suicide. The role of putative microRNAs targeting TNF-α and RNA-binding protein Hu antigen R (HuR) was tested with in vitro and in vivo approaches and by examining expression of transactivation response RNA binding protein (TRBP). Genetic influence on TNF-α expression was determined by expression quantitative trait loci analysis and by genotyping three single-nucleotide polymorphisms in the promoter region of the TNF-α gene. Promoter methylation of TNF-α was determined by using methylated DNA immunoprecipitation assay. Expression of miR-19a-3p and TNF-α was also determined in the peripheral blood mononuclear cells of 12 healthy control subjects and 12 currently depressed patients with severe suicidal ideation. RESULTS TNF-α expression was significantly higher in the dorsolateral prefrontal cortex of individuals who died by suicide, regardless of psychiatric diagnosis. Its expression level was also increased in individuals with major depressive disorder who died by causes other than suicide. On the other hand, expression of miR-19a-3p was upregulated specifically in individuals who died by suicide. In a preliminary observation, similar upregulation of TNF-α and miR-19a-3p was observed in the peripheral blood mononuclear cells of depressed patients with suicidal ideation. Despite its ability to directly target TNF-α in vitro, miR-19a-3p showed no interaction with TNF-α in the dorsolateral prefrontal cortex. HuR potentially stabilized TNF-α transcript, presumably by sequestering its 3' untranslated region from miR-19a-3p-mediated inhibition. Furthermore, decreased TRBP expression supported abnormality in the interaction between miR-19a-3p and TNF-α. Additionally, TNF-α transcriptional upregulation was associated with promoter hypomethylation, whereas no genetic influence on altered TNF-α or miR-19a-3p expression was observed in individuals who died by suicide. CONCLUSIONS The data in this study provide mechanistic insights into the dysregulation of the TNF-α gene in the brains of individuals who died by suicide, which could potentially be involved in suicidal behavior.
Collapse
Affiliation(s)
- Qingzhong Wang
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, H4H 1R3 Canada
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA,Corresponding Author: Yogesh Dwivedi, Ph.D., Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, Alabama, USA, Phone: 01-205-975-8459, Fax: 01-205-975-8463,
| |
Collapse
|
25
|
Acar İE, Saçar Demirci MD, Groß U, Allmer J. The Expressed MicroRNA—mRNA Interactions of Toxoplasma gondii. Front Microbiol 2018; 8:2630. [PMID: 29354114 PMCID: PMC5759179 DOI: 10.3389/fmicb.2017.02630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional modulation of gene expression and thereby have a large influence on the resulting phenotype. We have previously shown that miRNAs may be involved in the communication between Toxoplasma gondii and its hosts and further confirmed a number of proposed specific miRNAs. Yet, little is known about the internal regulation via miRNAs in T. gondii. Therefore, we predicted pre-miRNAs directly from the type II ME49 genome and filtered them. For the confident hairpins, we predicted the location of the mature miRNAs and established their target genes. To add further confidence, we evaluated whether the hairpins and their targets were co-expressed. Such co-expressed miRNA and target pairs define a functional interaction. We extracted all such functional interactions and analyzed their differential expression among strains of all three clonal lineages (RH, PLK, and CTG) and between the two stages present in the intermediate host (tachyzoites and bradyzoites). Overall, we found ~65,000 expressed interactions of which ~5,500 are differentially expressed among strains but none are significantly differentially expressed between developmental stages. Since miRNAs and target decoys can be used as therapeutics we believe that the list of interactions we provide will lead to novel approaches in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- İlhan E. Acar
- Biotechnology, Izmir Institute of Technology, Izmir, Turkey
| | | | - Uwe Groß
- Medical Microbiology, Universitätsmedizin Göttingen, Göttingen, Germany
- *Correspondence: Uwe Groß
| | - Jens Allmer
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
- Jens Allmer
| |
Collapse
|
26
|
Atanasov J, Groher F, Weigand JE, Suess B. Design and implementation of a synthetic pre-miR switch for controlling miRNA biogenesis in mammals. Nucleic Acids Res 2017; 45:e181. [PMID: 29036355 PMCID: PMC5727447 DOI: 10.1093/nar/gkx858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/22/2017] [Accepted: 09/20/2017] [Indexed: 01/07/2023] Open
Abstract
Synthetic RNA-based systems have increasingly been used for the regulation of eukaryotic gene expression. Due to their structural properties, riboregulators provide a convenient basis for the development of ligand-dependent controllable systems. Here, we demonstrate reversible conditional control of miRNA biogenesis with an aptamer domain as a sensing unit connected to a natural miRNA precursor for the first time. For the design of the pre-miR switch, we replaced the natural terminal loop with the TetR aptamer. Thus, the TetR aptamer was positioned close to the Dicer cleavage sites, which allowed sterical control over pre-miR processing by Dicer. Our design proved to be highly versatile, allowing us to regulate the biogenesis of three structurally different miRNAs: miR-126, -34a and -199a. Dicer cleavage was inhibited up to 143-fold via co-expression of the TetR protein, yet could be completely restored upon addition of doxycycline. Moreover, we showed the functionality of the pre-miR switches for gene regulation through the interaction of the respective miRNA with its specific target sequence. Our designed device is capable of robust and reversible control of miRNA abundance. Thus, we offer a novel investigational tool for functional miRNA analysis.
Collapse
Affiliation(s)
- Janina Atanasov
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| | - Florian Groher
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| | - Julia E. Weigand
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
27
|
Kandathil AJ, Breitwieser FP, Sachithanandham J, Robinson M, Mehta SH, Timp W, Salzberg SL, Thomas DL, Balagopal A. Presence of Human Hepegivirus-1 in a Cohort of People Who Inject Drugs. Ann Intern Med 2017; 167:1-7. [PMID: 28586923 PMCID: PMC5721525 DOI: 10.7326/m17-0085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Next-generation metagenomic sequencing (NGMS) has opened new frontiers in microbial discovery but has been clinically characterized in only a few settings. OBJECTIVE To explore the plasma virome of persons who inject drugs and to characterize the sensitivity and accuracy of NGMS compared with quantitative clinical standards. DESIGN Longitudinal and cross-sectional studies. SETTING A clinical trial (ClinicalTrials.gov: NCT01285050) and a well-characterized cohort study of persons who have injected drugs. PARTICIPANTS Persons co-infected with hepatitis C virus (HCV) and HIV. MEASUREMENTS Viral nucleic acid in plasma by NGMS and quantitative polymerase chain reaction (PCR). RESULTS Next-generation metagenomic sequencing generated a total of 600 million reads, which included the expected HIV and HCV RNA sequences. HIV and HCV reads were consistently identified only when samples contained more than 10 000 copies/mL or IU/mL, respectively, as determined by quantitative PCR. A novel RNA virus, human hepegivirus-1 (HHpgV-1), was also detected by NGMS in 4 samples from 2 persons in the clinical trial. Through use of a quantitative PCR assay for HHpgV-1, infection was also detected in 17 (10.9%) of 156 members of a cohort of persons who injected drugs. In these persons, HHpgV-1 viremia persisted for a median of at least 4538 days and was associated with detection of other bloodborne viruses, such as HCV RNA and SEN virus D. LIMITATION The medical importance of HHpgV-1 infection is unknown. CONCLUSION Although NGMS is insensitive for detection of viruses with relatively low plasma nucleic acid concentrations, it may have broad potential for discovery of new viral infections of possible medical importance, such as HHpgV-1. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
Affiliation(s)
- Abraham J Kandathil
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Florian P Breitwieser
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Matthew Robinson
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shruti H Mehta
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Winston Timp
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Steven L Salzberg
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David L Thomas
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ashwin Balagopal
- From Johns Hopkins University and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
28
|
Arias Sosa LA. [Use of microRNAs in heart failure management]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2017; 87:205-224. [PMID: 28292573 DOI: 10.1016/j.acmx.2017.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022] Open
Abstract
Heart failure (HF) is a high impact disease that affects all human populations, demanding the development of new strategies and methods to manage this pathology. That's why microRNAs, small noncoding RNAs that regulate gene expression, appear as an important option in the diagnosis, prognosis and treatment of this disease. MiRNAs seems to have a future on HF handling, because can be isolated from body fluids such as blood, and changes in its levels can be associated with the presence, stage and specific disease features, which makes them an interesting option as biomarkers. Also, due to the important role of these molecules on regulation of gene expression and cell homeostasis, it has been explored its potential use as a therapeutic method to prevent or treat HF. That is why this review seeks to show the importance of biomedical research involving the use of miRNAs as a method to approach the HF, showing the impact of disease in the world, aspects of miRNAs biology, and their use as biomarkers and as important therapeutic targets.
Collapse
Affiliation(s)
- Luis Alejandro Arias Sosa
- Grupo de Investigación en Ciencias Biomédicas UPTC, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| |
Collapse
|
29
|
Mechanistic roles of microRNAs in hepatocarcinogenesis: A study of thioacetamide with multiple doses and time-points of rats. Sci Rep 2017; 7:3054. [PMID: 28596526 PMCID: PMC5465221 DOI: 10.1038/s41598-017-02798-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the “liver cancer” annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.
Collapse
|
30
|
Laroche M, Dunois C, Vissac AM, Amiral J. Update on functional and genetic laboratory assays for the detection of platelet microvesicles. Platelets 2017; 28:235-241. [PMID: 28102740 DOI: 10.1080/09537104.2016.1265925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Functional and genetic assays for measuring platelet microvesicles (PMVs) are presented and discussed. Functional assays concern two groups of methods: a) homogeneous assays using the cofactor activity of phospholipids (PPLs) contained in PMVs and present in assayed plasmas, and a coagulation or a thrombin generation assay (TGA) as "end points"; b) capture-based assays, in which PMVs bind to an immobilized ligand, such as Annexin V in the presence of calcium, or monoclonal antibodies (MoAbs) specific for membrane proteins. Genetic assays aim to detect micro-RNA (miRNA) present in PMVs: miRNA must be extracted from plasma, and the expression pattern can be determined by various methods such as quantitative real-time PCR, microarray or sequencing. All these technical approaches introduce new exploration tools for measuring or quantitating PMVs or their associated activities, as biomarkers for disease evolution, their diagnosis or prognosis, and for monitoring of some antithrombotic or anti-inflammatory therapies. They offer invaluable analytical tools for research, drug discovery and epidemiological studies and have a strong potential as diagnostic tests.
Collapse
Affiliation(s)
- Maxime Laroche
- a R&D Department , HYPHEN BioMed , Neuville sur Oise , France
| | - Claire Dunois
- a R&D Department , HYPHEN BioMed , Neuville sur Oise , France
| | | | - Jean Amiral
- b Scientific Consultant for HYPHEN BioMed , Neuville sur Oise , France
| |
Collapse
|
31
|
Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol Cancer 2016; 15:56. [PMID: 27590724 PMCID: PMC5010773 DOI: 10.1186/s12943-016-0541-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches.
Collapse
Affiliation(s)
- Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eloise Sweeney
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Abdolrahman Shams Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
32
|
Shen J, Siegel AB, Remotti H, Wang Q, Santella RM. Identifying microRNA panels specifically associated with hepatocellular carcinoma and its different etiologies. ACTA ACUST UNITED AC 2016; 2:151-162. [PMID: 28243631 DOI: 10.20517/2394-5079.2015.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM Deregulation of microRNAs (miRNAs) expression has been identified in hepatocellular carcinoma (HCC), but few results are consistent. The objective of this study is to investigate "HCC tumor type specific" and "tumor common" miRNA panels. METHODS The authors integrate and analyze clinical, etiologic and miRNA profiles data from 9 types of solid tumors in The Cancer Genome Atlas (TCGA) and HCC data from Columbia University Medical Center (CUMC). RESULTS Levels of 33 miRNAs were significant different between HCC tumor and paired non-tumor tissues (over 2-fold changes) after Bonferroni correction for multiple comparisons, and most (28 miRNAs) were down-regulated in HCC tumors. Using this panel, the authors well classified HCC tumor tissues with 4 misclassifications among 48 paired tissues. Validating this panel in an additional 302 HCC tumor tissues, the authors almost perfectly distinguished tumor from non-tumor tissues with only two misclassifications (99% of HCC tissues correctly classified). Evaluating miRNA profiles in 32 independent HCC paired tissues from CUMC, the authors observed 40 miRNAs significantly deregulated in HCC with over 2-fold changes; 14 overlapped with those identified in TCGA. Subgroup analyses by HCC etiology found that 4 upregulated and 8 downregulated miRNAs were significantly associated with alcohol-related HCC. There were 7 and 4 miRNAs significantly associated with hepatitis B virus- and hepatitis C virus-related HCC, respectively. Data for the first time revealed that miR-24-1, miR-130a and miR-505 were significantly down-regulated only in HCC tumors; miR-142 and miR-455 were significantly down-regulated in HCC, but up-regulated in 5 other solid tumors; suggesting their HCC "tumor type specific" characteristics. A panel of 8 miRNAs was significant in at least 5 tumor types, including HCC, and was identified as "tumor common" marker. CONCLUSION The authors concluded that aberrant miRNA panels have HCC "tumor type specificity" and may be affected by etiologic factors.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Abby B Siegel
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
33
|
Huertas CS, Fariña D, Lechuga LM. Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00162] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- César S. Huertas
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - David Fariña
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
34
|
Moore AC, Winkjer JS, Tseng TT. Bioinformatics Resources for MicroRNA Discovery. Biomark Insights 2016; 10:53-8. [PMID: 26819547 PMCID: PMC4718083 DOI: 10.4137/bmi.s29513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 11/12/2022] Open
Abstract
Biomarker identification is often associated with the diagnosis and evaluation of various diseases. Recently, the role of microRNA (miRNA) has been implicated in the development of diseases, particularly cancer. With the advent of next-generation sequencing, the amount of data on miRNA has increased tremendously in the last decade, requiring new bioinformatics approaches for processing and storing new information. New strategies have been developed in mining these sequencing datasets to allow better understanding toward the actions of miRNAs. As a result, many databases have also been established to disseminate these findings. This review focuses on several curated databases of miRNAs and their targets from both predicted and validated sources.
Collapse
Affiliation(s)
- Alyssa C Moore
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Jonathan S Winkjer
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Tsai-Tien Tseng
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
35
|
Stevanato L, Thanabalasundaram L, Vysokov N, Sinden JD. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes. PLoS One 2016; 11:e0146353. [PMID: 26752061 PMCID: PMC4713432 DOI: 10.1371/journal.pone.0146353] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023] Open
Abstract
Exosomes are small (30–100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3’ untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.
Collapse
Affiliation(s)
- Lara Stevanato
- Stem Cell Discovery, ReNeuron, Guildford, United Kingdom
- * E-mail:
| | | | - Nickolai Vysokov
- Stem Cell Discovery, ReNeuron, Guildford, United Kingdom
- Wolfson CARD, Kings College London, Guys Campus, London, United Kingdom
| | - John D. Sinden
- Stem Cell Discovery, ReNeuron, Guildford, United Kingdom
| |
Collapse
|
36
|
Roth W, Hecker D, Fava E. Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs. Methods Mol Biol 2016; 1303:349-377. [PMID: 26235078 DOI: 10.1007/978-1-4939-2627-5_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Wera Roth
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | | | | |
Collapse
|
37
|
Sand M, Bechara FG, Gambichler T, Sand D, Friedländer MR, Bromba M, Schnabel R, Hessam S. Next-generation sequencing of the basal cell carcinoma miRNome and a description of novel microRNA candidates under neoadjuvant vismodegib therapy: an integrative molecular and surgical case study. Ann Oncol 2015; 27:332-8. [PMID: 26578727 DOI: 10.1093/annonc/mdv551] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been identified as key players in posttranscriptional gene regulation and have a significant impact on basal cell carcinoma (BCC) development. The Sonic hedgehog pathway inhibitor vismodegib has been approved for oral therapy of metastatic or advanced BCC. Here, a high-throughput miRNA sequencing analysis was carried out to identify differentially expressed miRNAs and possible novel miRNA candidates in vismodegib-treated BCC tissue. Additionally, we described our surgical experience with neoadjuvant oral vismodegib therapy. PATIENTS AND METHODS A punch biopsy (4 mm) from a patient with an extensive cranial BCC under oral vismodegib therapy and a corresponding nonlesional epithelial skin biopsy were harvested. Total RNA was isolated, after which a sequencing cDNA library was prepared, and cluster generation was carried out, which was followed by an ultra-high-throughput miRNA sequencing analysis to indicate the read number of miRNA expression based on miRBase 21. In addition to the identification of differentially expressed miRNAs from RNA sequencing data, additional novel miRNA candidates were determined with a tool for identifying new miRNA sequences (miRDeep2). RESULTS We identified 33 up-regulated miRNAs (fold change ≥2) and 39 potentially new miRNA candidates (miRDeep scores 0-43.6). A manual sequence analysis of the miRNA candidates on the genomic locus of chromosome 1 with provisional IDs of chr1_1913 and chr1_421 was further carried out and rated as promising (chr1_1913) and borderline (chr1_421). Histopathology revealed skip lesions in clinically healthy appearing skin at the tumor margins, which were the cause of seven re-excisions by micrographic controlled surgery to achieve tumor-free margins. CONCLUSION miRNA sequencing revealed novel miRNA candidates that need to be further confirmed in functional Dicer knockout studies. Clinically, on the basis of our surgical experience described here, neoadjuvant vismodegib therapy in BCC appears to impede histopathologic evaluations with effects on surgical therapy. Thus, larger studies are necessary, but are not preferable at this time if other options are available.
Collapse
Affiliation(s)
- M Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum Department of Plastic Surgery, St Josef Hospital, Catholic Clinics of the Ruhr Peninsula, Essen, Germany
| | - F G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum
| | - T Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum
| | - D Sand
- University of Michigan, Kellogg Eye Center, Ann Arbor, USA
| | - M R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - M Bromba
- Department of Plastic Surgery, St Josef Hospital, Catholic Clinics of the Ruhr Peninsula, Essen, Germany
| | | | - S Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum
| |
Collapse
|
38
|
Kebschull M, Papapanou PN. Mini but mighty: microRNAs in the pathobiology of periodontal disease. Periodontol 2000 2015; 69:201-20. [PMID: 26252410 PMCID: PMC4530521 DOI: 10.1111/prd.12095] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a family of small, noncoding RNA molecules that negatively regulate protein expression either by inhibiting initiation of the translation of mRNA or by inducing the degradation of mRNA molecules. Accumulating evidence suggests that miRNA-mediated repression of protein expression is of paramount importance in a broad range of physiologic and pathologic conditions. In particular, miRNA-induced dysregulation of molecular processes involved in inflammatory pathways has been shown to contribute to the development of chronic inflammatory diseases. In this review, first of all we provide an overview of miRNA biogenesis, the main mechanisms of action and the miRNA profiling tools currently available. Then, we summarize the available evidence supporting a specific role for miRNAs in the pathobiology of periodontitis. Based on a review of available data on the differential expression of miRNAs in gingival tissues in states of periodontal health and disease, we address specific roles for miRNAs in molecular and cellular pathways causally linked to periodontitis. Our review points to several lines of evidence suggesting the involvement of miRNAs in periodontal tissue homeostasis and pathology. Although the intricate regulatory networks affected by miRNA function are still incompletely mapped, further utilization of systems biology tools is expected to enhance our understanding of the pathobiology of periodontitis.
Collapse
Affiliation(s)
- Moritz Kebschull
- Associate Professor of Dental Medicine, Consultant, Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany, Tel: +49-228-28722-007,
| | - Panos N. Papapanou
- Professor of Dental Medicine, Director, Division of Periodontics, Chair, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, 630 West 168 Street, PH-7E-110, New York, NY 10032, USA, Tel: +1-212-342-3008, Fax: +1-212-305-9313,
| |
Collapse
|
39
|
Roberts BS, Hardigan AA, Kirby MK, Fitz-Gerald MB, Wilcox CM, Kimberly RP, Myers RM. Blocking of targeted microRNAs from next-generation sequencing libraries. Nucleic Acids Res 2015. [PMID: 26209131 PMCID: PMC4666382 DOI: 10.1093/nar/gkv724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Highly abundant microRNAs (miRNAs) in small RNA sequencing libraries make it difficult to obtain efficient measurements of more lowly expressed species. We present a new method that allows for the selective blocking of specific, abundant miRNAs during preparation of sequencing libraries. This technique is specific with little off-target effects and has no impact on the reproducibility of the measurement of non-targeted species. In human plasma samples, we demonstrate that blocking of highly abundant hsa-miR-16–5p leads to improved detection of lowly expressed miRNAs and more precise measurement of differential expression overall. Furthermore, we establish the ability to target a second abundant miRNA and to multiplex the blocking of two miRNAs simultaneously. For small RNA sequencing, this technique could fill a similar role as do ribosomal or globin removal technologies in messenger RNA sequencing.
Collapse
Affiliation(s)
- Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marie K Kirby
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Meredith B Fitz-Gerald
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C Mel Wilcox
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert P Kimberly
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
40
|
Circulating MicroRNAs: Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:730535. [PMID: 26180810 PMCID: PMC4477423 DOI: 10.1155/2015/730535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are composed of a group of endogenous and noncoding small RNAs which control expression of complementary target mRNAs. The extended functions of miRNAs enhance the complexity of gene-regulatory processes in cardiovascular and cerebrovascular diseases. Indeed, recent studies have shown that miRNAs are closely related to myocardial infarction, heart failure, atrial fibrillation, cardiomyopathy, hypertension, angiogenesis, coronary artery disease, dyslipidaemia, stroke, and so forth. These findings suggest a new therapeutic pointcut for cardiovascular and cerebrovascular diseases and show the extensive therapeutic potential of miRNA regulation. Moreover, it has been shown that circulating extracellular miRNAs are stable in bodily fluids, which indicates circulating miRNAs as potential and emerging biomarkers for noninvasive diagnosis. This review highlights the most recent findings indicative of circulating miRNAs as potential clinical biomarkers for diagnosis of cardiovascular and cerebrovascular diseases.
Collapse
|
41
|
Abstract
RNA sequencing (RNA-Seq) uses the capabilities of high-throughput sequencing methods to provide insight into the transcriptome of a cell. Compared to previous Sanger sequencing- and microarray-based methods, RNA-Seq provides far higher coverage and greater resolution of the dynamic nature of the transcriptome. Beyond quantifying gene expression, the data generated by RNA-Seq facilitate the discovery of novel transcripts, identification of alternatively spliced genes, and detection of allele-specific expression. Recent advances in the RNA-Seq workflow, from sample preparation to library construction to data analysis, have enabled researchers to further elucidate the functional complexity of the transcription. In addition to polyadenylated messenger RNA (mRNA) transcripts, RNA-Seq can be applied to investigate different populations of RNA, including total RNA, pre-mRNA, and noncoding RNA, such as microRNA and long ncRNA. This article provides an introduction to RNA-Seq methods, including applications, experimental design, and technical challenges.
Collapse
Affiliation(s)
- Kimberly R Kukurba
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305; Department of Computer Science, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
42
|
Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. FRONTIERS IN PLANT SCIENCE 2015; 6:410. [PMID: 26089831 PMCID: PMC4454879 DOI: 10.3389/fpls.2015.00410] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species.
Collapse
Affiliation(s)
- Maria Barciszewska-Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
- *Correspondence: Maria Barciszewska-Pacak and Zofia Szweykowska-Kulinska, Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland ;
| | - Kaja Milanowska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Katarzyna Knop
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Patrycja Plewka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Andrzej M. Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Franck Vazquez
- Zurich-Basel Plant Science Center, Swiss Plant Science Web, Botanical Institute, University of BaselBasel, Switzerland
| | - Wojciech Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
- *Correspondence: Maria Barciszewska-Pacak and Zofia Szweykowska-Kulinska, Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland ;
| |
Collapse
|
43
|
Heyer EE, Ozadam H, Ricci EP, Cenik C, Moore MJ. An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments. Nucleic Acids Res 2014; 43:e2. [PMID: 25505164 PMCID: PMC4288154 DOI: 10.1093/nar/gku1235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Our approach works across a wide range of input amounts (400 pg to 200 ng), is easy to follow and produces a library in 2–3 days at relatively low reagent cost, all while giving the user complete control over every step. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved.
Collapse
Affiliation(s)
- Erin E Heyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hakan Ozadam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Emiliano P Ricci
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Can Cenik
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|