1
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
2
|
Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices. MICROMACHINES 2023; 14:151. [PMID: 36677212 PMCID: PMC9867263 DOI: 10.3390/mi14010151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the body becomes insulin deficient and hyperglycemic. Complications associated with diabetes are life-threatening and the current standard of care for T1DM consists still of insulin injections. Lifesaving, exogenous insulin replacement is a chronic and costly burden of care for diabetic patients. Alternative therapeutic options have been the focus in these fields. Advances in molecular biology technologies and in microfabrication have enabled promising new therapeutic options. For example, islet transplantation has emerged as an effective treatment to restore the normal regulation of blood glucose in patients with T1DM. However, this technique has been hampered by obstacles, such as limited islet availability, extensive islet apoptosis, and poor islet vascular engraftment. Many of these unsolved issues need to be addressed before a potential cure for T1DM can be a possibility. New technologies like organ-on-a-chip platforms (OoC), multiplexed assessment tools and emergent stem cell approaches promise to enhance therapeutic outcomes. This review will introduce the disorder of type 1 diabetes mellitus, an overview of advances and challenges in the areas of microfluidic devices, monitoring tools, and prominent use of stem cells, and how they can be linked together to create a viable model for the T1DM treatment. Microfluidic devices like OoC platforms can establish a crucial platform for pathophysiological and pharmacological studies as they recreate the pancreatic environment. Stem cell use opens the possibility to hypothetically generate a limitless number of functional pancreatic cells. Additionally, the integration of stem cells into OoC models may allow personalized or patient-specific therapies.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- HMRI-Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Rebocho
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEAWater Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Aiken J, Mandel ER, Riddell MC, Birot O. Hyperglycaemia correlates with skeletal muscle capillary regression and is associated with alterations in the murine double minute-2/forkhead box O1/thrombospondin-1 pathway in type 1 diabetic BioBreeding rats. Diab Vasc Dis Res 2019; 16:28-37. [PMID: 30360646 DOI: 10.1177/1479164118805928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes can have deleterious effects on skeletal muscle and its microvasculature. Our laboratory has recently identified murine double minute-2 as a master regulator of muscle microvasculature by controlling expression levels of two key molecular actors of the angio-adaptive process: the pro-angiogenic vascular endothelial growth factor-A and the anti-angiogenic thrombospondin-1. Here, we show for the first time that in the soleus and plantaris muscles of the diabetes-prone BioBreeding rats, a rodent model of autoimmune type 1 diabetes, murine double minute-2 protein levels are significantly decreased, coinciding with elevated protein levels of thrombospondin-1 and its transcription factor forkhead box O1. Significant capillary regression was observed to similar extent in soleus and plantaris muscles of type 1 diabetic rats. Elevated blood glucose levels were correlated with the loss of capillaries, the reduction in murine double minute-2 expression and with the elevations in thrombospondin-1. Vascular endothelial growth factor-A protein levels were unaltered or even increased in diabetic animals, yet type 1 diabetic animals had less vascular endothelial growth factor receptor-2 abundance. The vascular endothelial growth factor-A/thrombospondin-1 ratio, a good indicator of skeletal muscle angio-adaptive environment, was decreased in type 1 diabetic muscle. Our results suggest that the murine double minute-2-forkhead box O1-thrombospondin-1 pathway plays an important role in angio-regulation of the skeletal muscle in the pathophysiological context of type 1 diabetes.
Collapse
Affiliation(s)
- Julian Aiken
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Erin R Mandel
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Abstract
The study of diabetic neuropathy has relied primarily on the use of streptozotocin-treated rat and mouse models of type 1 diabetes. This chapter will review the creation and use of other rodent models that have been developed in order to investigate the contribution of factors besides insulin deficiency to the development and progression of diabetic neuropathy as it occurs in obesity, type 1 or type 2 diabetes. Diabetic peripheral neuropathy is a complex disorder with multiple mechanisms contributing to its development and progression. Even though many animal models have been developed and investigated, no single model can mimic diabetic peripheral neuropathy as it occurs in humans. Nonetheless, animal models can play an important role in improving our understanding of the etiology of diabetic peripheral neuropathy and in performing preclinical screening of potential new treatments. To date treatments found to be effective for diabetic peripheral neuropathy in rodent models have failed in clinical trials. However, with the identification of new endpoints for the early detection of diabetic peripheral neuropathy and the understanding that a successful treatment may require a combination therapeutic approach there is hope that an effective treatment will be found.
Collapse
Affiliation(s)
- M A Yorek
- Iowa City Health Care System, Iowa City, IA, United States; University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
5
|
Zhu H, Yu L, He Y, Wang B. Nonhuman primate models of type 1 diabetes mellitus for islet transplantation. J Diabetes Res 2014; 2014:785948. [PMID: 25389531 PMCID: PMC4217338 DOI: 10.1155/2014/785948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
Islet transplantation is an attractive treatment of type 1 diabetes mellitus (T1DM). Animal models of diabetes mellitus (DM) contribute a lot to the experimental studies of islet transplantation and to evaluations of isolated islet grafts for future clinical applications. Diabetic nonhuman primates (NHPs) represent the suitable models of DMs to better evaluate the effectiveness of islet transplantation, to assess new strategies for controlling blood glucose (BG), relieving immune rejection, or prolonging islet survival, and eventually to translate the preclinical data into tangible clinical practice. This review introduces some NHP models of DM, clarifies why and how the models should be used, and elucidates the usefulness and limitations of the models in islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
- *Bo Wang:
| |
Collapse
|
6
|
Bortell R, Yang C. The BB rat as a model of human type 1 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 933:31-44. [PMID: 22893399 DOI: 10.1007/978-1-62703-068-7_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The BB rat is an important rodent model of human type 1 diabetes (T1D) and has been used to study mechanisms of diabetes pathogenesis as well as to investigate potential intervention therapies for clinical trials. The Diabetes-Prone BB (BBDP) rat spontaneously develops autoimmune T1D between 50 and 90 days of age. The Diabetes-Resistant BB (BBDR) rat has similar diabetes-susceptible genes as the BBDP, but does not become diabetic in viral antibody-free conditions. However, the BBDR rat can be induced to develop T1D in response to certain treatments such as regulatory T cell (T(reg)) depletion, toll-like receptor ligation, or virus infection. These diabetes-inducible rats develop hyperglycemia under well-controlled circumstances and within a short, predictable time frame (14-21 days), thus facilitating their utility for investigations of specific stages of diabetes development. Therefore, these rat strains are invaluable models for studying autoimmune diabetes and the role of environmental factors in its development, of particular importance due to the influx of studies associating virus infection and human T1D.
Collapse
Affiliation(s)
- Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | | |
Collapse
|
7
|
Kruger AJ, Yang C, Tam SW, Hinerfeld D, Evans JE, Green KM, Leszyk J, Yang K, Guberski DL, Mordes JP, Greiner DL, Rossini AA, Bortell R. Haptoglobin as an early serum biomarker of virus-induced autoimmune type 1 diabetes in biobreeding diabetes resistant and LEW1.WR1 rats. Exp Biol Med (Maywood) 2010; 235:1328-37. [PMID: 20975081 DOI: 10.1258/ebm.2010.010150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Proteomic profiling of serum is a powerful technique to identify differentially expressed proteins that can serve as biomarkers predictive of disease onset. In this study, we utilized two-dimensional (2D) gel analysis followed by matrix-assisted-laser desorption/ionization time-of-flight mass spectrometry analysis to identify putative serum biomarkers for autoimmune type 1 diabetes (T1D) in biobreeding diabetes resistant (BBDR) rats induced to express the disease. Treatment with toll-like receptor 3 ligand, polyinosinic:polycytidilic acid (pIC), plus infection with Kilham rat virus (KRV), a rat parvovirus, results in nearly 100% of young BBDR rats becoming diabetic within 11-21 d. Sera collected from prediabetic rats at early time points following treatment with pIC + KRV were analyzed by 2D gel electrophoresis and compared with sera from control rats treated with phosphate-buffered saline, pIC alone or pIC + H1, a non-diabetogenic parvovirus. None of the latter three control treatments precipitates T1D. 2D gel analysis revealed that haptoglobin, an acute phase and hemoglobin scavenger protein, was differentially expressed in the sera of rats treated with pIC + KRV relative to control groups. These results were confirmed by Western blot and enzyme-linked immunosorbent assay studies, which further validated haptoglobin levels as being differentially increased in the sera of pIC + KRV-treated rats relative to controls during the first week following infection. Early elevations in serum haptoglobin were also observed in LEW1.WR1 rats that became diabetic following infection with rat cytomegalovirus. The identification and validation of haptoglobin as a putative serum biomarker for autoimmune T1D in rats now affords us the opportunity to test the validity of this protein as a biomarker for human T1D, particularly in those situations where viral infection is believed to precede the onset of disease.
Collapse
Affiliation(s)
- Annie J Kruger
- Diabetes Division, University of Massachusetts, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Giuliano F, Pfaus J, Balasubramanian S, Hedlund P, Hisasue SI, Marson L, Wallen K. Experimental Models for the Study of Female and Male Sexual Function. J Sex Med 2010; 7:2970-95. [DOI: 10.1111/j.1743-6109.2010.01960.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
McNamara DB, Murthy SN, Fonseca AN, Desouza CV, Kadowitz PJ, Fonseca VA. Animal models of catheter-induced intimal hyperplasia in type 1 and type 2 diabetes and the effects of pharmacologic intervention. Can J Physiol Pharmacol 2009; 87:37-50. [PMID: 19142214 DOI: 10.1139/y08-098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes is a complex disorder characterized by impaired insulin formation, release or action (insulin resistance), elevated blood glucose, and multiple long-term complications. It is a common endocrine disorder of humans and is associated with abnormalities of carbohydrate and lipid metabolism. There are two forms of diabetes, classified as type 1 and type 2. In type 1 diabetes, hyperglycemia is due to an absolute lack of insulin, whereas in type 2 diabetes, hyperglycemia is due to a relative lack of insulin and insulin resistance. More than 90% of people with diabetes have type 2 with varied degrees of insulin resistance. Insulin resistance is often associated with impaired insulin secretion, and hyperglycemia is a common feature in both types of diabetes, but failure to make a distinction between the types of diabetes in different animal models has led to confusion in the literature. This is particularly true in relation to cardiovascular disease in the presence of diabetes and especially the response to vascular injury, in which there are major differences between the two types of diabetes. Animal models do not completely mimic the clinical disease seen in humans. Animal models are at best analogies of the pathologic process they are designed to represent. The focus of this review is an analysis of intimal hyperplasia following catheter-induced vascular injury, including factors that may complicate comparisons between different animal models or between in vitro and in vivo studies. We examine the variables, pitfalls, and caveats that follow from the manner of induction of the injury and the diabetic state of the animal. The efficacy of selected antidiabetic drugs in inhibiting the development of the hyperplastic response is also discussed.
Collapse
Affiliation(s)
- D B McNamara
- Department of Pharmacology, Tulane University Health Sciences Center, 1430 Tulane Avenue - SL 83, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|