1
|
Shapiro HM. Flow Cytometry: The Glass Is Half Full. Methods Mol Biol 2024; 2779:1-10. [PMID: 38526779 DOI: 10.1007/978-1-0716-3738-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Accompanied by a historical perspective of the field of cytometry, this introductory chapter provides a broad view of what flow cytometry can do; hence, the glass is half full.
Collapse
|
2
|
The Role of the Iron Protoporphyrins Heme and Hematin in the Antimalarial Activity of Endoperoxide Drugs. Pharmaceuticals (Basel) 2022; 15:ph15010060. [PMID: 35056117 PMCID: PMC8779033 DOI: 10.3390/ph15010060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Plasmodium has evolved to regulate the levels and oxidative states of iron protoporphyrin IX (Fe-PPIX). Antimalarial endoperoxides such as 1,2,4-trioxane artemisinin and 1,2,4-trioxolane arterolane undergo a bioreductive activation step mediated by heme (FeII-PPIX) but not by hematin (FeIII-PPIX), leading to the generation of a radical species. This can alkylate proteins vital for parasite survival and alkylate heme into hematin–drug adducts. Heme alkylation is abundant and accompanied by interconversion from the ferrous to the ferric state, which may induce an imbalance in the iron redox homeostasis. In addition to this, hematin–artemisinin adducts antagonize the spontaneous biomineralization of hematin into hemozoin crystals, differing strikingly from artemisinins, which do not directly suppress hematin biomineralization. These hematin–drug adducts, despite being devoid of the peroxide bond required for radical-induced alkylation, are powerful antiplasmodial agents. This review addresses our current understanding of Fe-PPIX as a bioreductive activator and molecular target. A compelling pharmacological model is that by alkylating heme, endoperoxide drugs can cause an imbalance in the iron homeostasis and that the hematin–drug adducts formed have strong cytocidal effects by possibly reproducing some of the toxifying effects of free Fe-PPIX. The antiplasmodial phenotype and the mode of action of hematin–drug adducts open new possibilities for reconciliating the mechanism of endoperoxide drugs and for malaria intervention.
Collapse
|
3
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Pawar S, Shende P. 2 2 factorial design-based biocompatible microneedle arrays containing artemether co-loaded with lumefantrine nanoparticles for transepidermal delivery. Biomed Microdevices 2020; 22:19. [PMID: 32076890 DOI: 10.1007/s10544-020-0476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was intended to enhance the permeation of artemether and lumefantrine by encapsulating in dissolvable microneedle arrays for extended action. Lumefantrine-nanoparticles were synthesized using chitosan mediated gelation and optimized by 22 factorial designs. The particle size, zeta potential and % entrapment efficiency of the optimized nanoparticles F5 were 105 ± 3.64 nm, 24.4 ± 0.54 mV and 83.94 ± 1.71%, respectively. The nanoparticles showed a controlled-release of 79.15 ± 2.45% for lumefantrine after 24 h and stability for 6 months. A combination of biocompatible polymers (PVA and PVP K - 12) was used to develop dissolvable microneedle of artemether co-loaded lumefantrine nanoparticles. The SEM and TEM analysis confirmed the needle-shaped morphology with a size of 672 ± 0.99 μm. The in-vitro release of microneedle showed biphasic release pattern for both artemether and lumefantrine, with an initial burst followed by controlled-release profile. The ex-vivo study of optimized formulation showed 70.94 ± 2.45% and 65.87 ± 1.94% permeation for artemether and lumefantrine, respectively, after 24 h. Thus, microneedle-based delivery provides an alternative to painful intravenous administration and a promising approach to increase the penetration of drugs across the skin barrier. Graphical abstract Fabrication of microneedle arrays of artemether co-loaded with lumefantrine nanoparticles.
Collapse
Affiliation(s)
- Sandip Pawar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
5
|
McLean KJ, Straimer J, Hopp CS, Vega-Rodriguez J, Small-Saunders JL, Kanatani S, Tripathi A, Mlambo G, Dumoulin PC, Harris CT, Tong X, Shears MJ, Ankarklev J, Kafsack BFC, Fidock DA, Sinnis P. Generation of Transmission-Competent Human Malaria Parasites with Chromosomally-Integrated Fluorescent Reporters. Sci Rep 2019; 9:13131. [PMID: 31511546 PMCID: PMC6739413 DOI: 10.1038/s41598-019-49348-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Malaria parasites have a complex life cycle that includes specialized stages for transmission between their mosquito and human hosts. These stages are an understudied part of the lifecycle yet targeting them is an essential component of the effort to shrink the malaria map. The human parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria. Our goal was to generate transgenic P. falciparum lines that could complete the lifecycle and produce fluorescent transmission stages for more in-depth and high-throughput studies. Using zinc-finger nuclease technology to engineer an integration site, we generated three transgenic P. falciparum lines in which tdtomato or gfp were stably integrated into the genome. Expression was driven by either stage-specific peg4 and csp promoters or the constitutive ef1a promoter. Phenotypic characterization of these lines demonstrates that they complete the life cycle with high infection rates and give rise to fluorescent mosquito stages. The transmission stages are sufficiently bright for intra-vital imaging, flow cytometry and scalable screening of chemical inhibitors and inhibitory antibodies.
Collapse
Affiliation(s)
- Kyle Jarrod McLean
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Novartis Institutes for Biomedical Research, Novartis Institute for Tropical Diseases, Emeryville, CA, 94608, USA
| | - Christine S Hopp
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Joel Vega-Rodriguez
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Jennifer L Small-Saunders
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Abhai Tripathi
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Peter C Dumoulin
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Chantal T Harris
- Department of Microbiology and Immunology, Weill Cornell School of Medicine, New York, NY, 10065, USA
| | - Xinran Tong
- Department of Microbiology and Immunology, Weill Cornell School of Medicine, New York, NY, 10065, USA
| | - Melanie J Shears
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Johan Ankarklev
- Department of Microbiology and Immunology, Weill Cornell School of Medicine, New York, NY, 10065, USA
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell School of Medicine, New York, NY, 10065, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Gilson RC, Deissler RJ, Bihary RF, Condit WC, Thompson ME, Blankenship D, Grimberg KO, Brown RW, Grimberg BT. Growth of Plasmodium falciparum in response to a rotating magnetic field. Malar J 2018; 17:190. [PMID: 29724219 PMCID: PMC5934852 DOI: 10.1186/s12936-018-2333-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023] Open
Abstract
Background Plasmodium falciparum is the deadliest strain of malaria and the mortality rate is increasing because of pathogen drug resistance. Increasing knowledge of the parasite life cycle and mechanism of infection may provide new models for improved treatment paradigms. This study sought to investigate the paramagnetic nature of the parasite’s haemozoin to inhibit parasite viability. Results Paramagnetic haemozoin crystals, a byproduct of the parasite’s haemoglobin digestion, interact with a rotating magnetic field, which prevents their complete formation, causing the accumulation of free haem, which is lethal to the parasites. Plasmodium falciparum cultures of different stages of intraerythrocytic growth (rings, trophozoites, and schizonts) were exposed to a magnetic field of 0.46 T at frequencies of 0 Hz (static), 1, 5, and 10 Hz for 48 h. The numbers of parasites were counted over the course of one intraerythrocytic life cycle via flow cytometry. At 10 Hz the schizont life stage was most affected by the rotating magnetic fields (p = 0.0075) as compared to a static magnetic field of the same strength. Parasite growth in the presence of a static magnetic field appears to aid parasite growth. Conclusions Sequestration of the toxic haem resulting from haemoglobin digestion is key for the parasites’ survival and the focus of almost all existing anti-malarial drugs. Understanding how the parasites create the haemozoin molecule and the disruption of its creation aids in the development of drugs to combat this disease.
Collapse
Affiliation(s)
- Rebecca C Gilson
- Department of Physics, CWRU College of Arts and Sciences, 2076 Adelbert Road, Cleveland, OH, 44106-7079, USA.,Department of Pathology, Center for Global Health and Diseases, Biomedical Research Building, Room 427, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Robert J Deissler
- Department of Physics, CWRU College of Arts and Sciences, 2076 Adelbert Road, Cleveland, OH, 44106-7079, USA
| | - Richard F Bihary
- Department of Physics, CWRU College of Arts and Sciences, 2076 Adelbert Road, Cleveland, OH, 44106-7079, USA
| | - William C Condit
- Department of Physics, CWRU College of Arts and Sciences, 2076 Adelbert Road, Cleveland, OH, 44106-7079, USA
| | - Mary E Thompson
- Department of Physics, CWRU College of Arts and Sciences, 2076 Adelbert Road, Cleveland, OH, 44106-7079, USA
| | - D'Arbra Blankenship
- Department of Pathology, Center for Global Health and Diseases, Biomedical Research Building, Room 427, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Kerry O Grimberg
- Department of Pathology, Center for Global Health and Diseases, Biomedical Research Building, Room 427, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Robert W Brown
- Department of Physics, CWRU College of Arts and Sciences, 2076 Adelbert Road, Cleveland, OH, 44106-7079, USA
| | - Brian T Grimberg
- Department of Pathology, Center for Global Health and Diseases, Biomedical Research Building, Room 427, 2109 Adelbert Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Abstract
Accompanied by a historical perspective of the field of cytometry, this introductory chapter provides a broad view of what flow cytometry can do; hence, the glass is half full.
Collapse
Affiliation(s)
- Howard M Shapiro
- One World Cytometry, Inc., 283 Highland Ave., West Newton, MA, 02465, USA.
| |
Collapse
|
8
|
Cursino-Santos JR, Singh M, Pham P, Lobo CA. A novel flow cytometric application discriminates among the effects of chemical inhibitors on various phases ofBabesia divergensintraerythrocytic cycle. Cytometry A 2017; 91:216-231. [DOI: 10.1002/cyto.a.23062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Manpreet Singh
- Department of Blood Borne Parasites; New York Blood Center; New York New York
| | - Petra Pham
- Flow Cytometry Core Facility; New York Blood Center; New York New York
| | - Cheryl A. Lobo
- Department of Blood Borne Parasites; New York Blood Center; New York New York
| |
Collapse
|
9
|
Ex Vivo Maturation Assay for Testing Antimalarial Sensitivity of Rodent Malaria Parasites. Antimicrob Agents Chemother 2016; 60:6859-6866. [PMID: 27600050 DOI: 10.1128/aac.01292-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
Ex vivo assay systems provide a powerful approach to studying human malaria parasite biology and to testing antimalarials. For rodent malaria parasites, short-term in vitro culture and ex vivo antimalarial susceptibility assays are relatively cumbersome, relying on in vivo passage for synchronization, since ring-stage parasites are an essential starting material. Here, we describe a new approach based on the enrichment of ring-stage Plasmodium berghei, P. yoelii, and P. vinckei vinckei using a single-step Percoll gradient. Importantly, we demonstrate that the enriched ring-stage parasites develop synchronously regardless of the parasite strain or species used. Using a flow cytometry assay with Hoechst and ethidium or MitoTracker dye, we show that parasite development is easily and rapidly monitored. Finally, we demonstrate that this approach can be used to screen antimalarial drugs.
Collapse
|
10
|
Grimberg BT, Grimberg KO. Hemozoin detection may provide an inexpensive, sensitive, 1-minute malaria test that could revolutionize malaria screening. Expert Rev Anti Infect Ther 2016; 14:879-83. [PMID: 27530228 PMCID: PMC5224914 DOI: 10.1080/14787210.2016.1222900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
Malaria remains widespread throughout the tropics and is a burden to the estimated 3.5 billion people who are exposed annually. The lack of a fast and accurate diagnostic method contributes to preventable malaria deaths and its continued transmission. In many areas diagnosis is made solely based on clinical presentation. Current methods for malaria diagnosis take more than 20 minutes from the time blood is drawn and are frequently inaccurate. The introduction of an accurate malaria diagnostic that can provide a result in less than 1 minute would allow for widespread screening and treatment of endemic populations, and enable regions that have gained a foothold against malaria to prevent its return. Using malaria parasites' waste product, hemozoin, as a biomarker for the presence of malaria could be the tool needed to develop this rapid test.
Collapse
Affiliation(s)
- Brian T Grimberg
- a School of Medicine - Center for Global Health and Diseases , Case Western Reserve University , Cleveland , OH , USA
| | - Kerry O Grimberg
- b School of Medicine, Department of Radiology , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
11
|
Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J 2016; 15:358. [PMID: 27405995 PMCID: PMC4942956 DOI: 10.1186/s12936-016-1400-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article.
Collapse
Affiliation(s)
- Surasak Kasetsirikul
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jirayut Buranapong
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Werayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Morakot Kaewthamasorn
- Animal Vector-Borne Diseases Research Group, The Veterinary Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Bei AK, Duraisingh MT. Measuring Plasmodium falciparum Erythrocyte Invasion Phenotypes Using Flow Cytometry. Methods Mol Biol 2016; 1325:167-86. [PMID: 26450388 DOI: 10.1007/978-1-4939-2815-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Having the ability to rapidly, accurately, and robustly measure Plasmodium falciparum merozoite invasion is a critical component in effective assessment of a blood stage vaccine's mechanism of action. Being able to measure invasion of erythrocytes accurately, objectively and in a high throughput fashion is of critical importance. Here, we describe a simple and robust flow cytometry method that allows for the measurement of the key invasion parameters of parasite multiplication rate and erythrocyte selectivity-both important determinants of disease severity-from the schizont to the ring stage of the parasite's life-cycle, thus separating invasion from growth of the parasite. Importantly, this method is able to accurately detect low levels of parasitemia and heterogeneity within the population that can be missed by enzymatic methods. Lastly, this method has been successfully adapted and employed in field based research settings for parasitemia measurements in vivo, ex vivo, and in vitro and to measure invasion inhibition by antibodies and the use of alternative pathways for invasion.
Collapse
Affiliation(s)
- Amy Kristine Bei
- Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Building 1, RM 704, Boston, MA, 02115, USA.
| | - Manoj T Duraisingh
- Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, FXB, RM 205, Boston, MA, 02115, USA
| |
Collapse
|
13
|
De SL, Stanisic DI, Rivera F, Batzloff MR, Engwerda C, Good MF. Plasmodium berghei bio-burden correlates with parasite lactate dehydrogenase: application to murine Plasmodium diagnostics. Malar J 2016; 15:3. [PMID: 26729268 PMCID: PMC4700574 DOI: 10.1186/s12936-015-1027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spectrum of techniques to detect malaria parasites in whole blood is limited to measuring parasites in circulation. One approach that is currently used to enumerate total parasite bio-burden involves the use of bio-luminescent parasites. As an alternative approach, this study describes the use of a commercial ELISA human parasite lactate dehydrogenase (pLDH) detection kit to estimate total parasite bio-burden in murine malaria models. METHODS The cross reactivity of pLDH in a commercial human malaria pLDH diagnostic kit was established in different components of blood for different murine malaria models. The use of pLDH as a measure of parasite bio-burden was evaluated by examining pLDH in relation to peripheral blood parasitaemia as determined by microscopy and calculating total parasite bio-burden using a bio-luminescent Plasmodium berghei ANKA luciferase parasite. RESULTS The pLDH antigen was detected in all four murine Plasmodium species and in all components of Plasmodium-infected blood. A significant correlation (r = 0.6922, P value <0.0001) was observed between total parasite bio-burden, measured as log average radiance, and concentration of pLDH units. CONCLUSIONS This high throughput assay is a suitable measure of total parasite bio-burden in murine malaria infections. Unlike existing methods, it permits the estimation of both circulating and sequestered parasites, allowing a more accurate assessment of parasite bio-burden.
Collapse
Affiliation(s)
- Sai Lata De
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | | | - Fabian Rivera
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | | | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
14
|
Woodrow CJ, Wangsing C, Sriprawat K, Christensen PR, Nosten F, Rénia L, Russell B, Malleret B. Comparison between Flow Cytometry, Microscopy, and Lactate Dehydrogenase-Based Enzyme-Linked Immunosorbent Assay for Plasmodium falciparum Drug Susceptibility Testing under Field Conditions. J Clin Microbiol 2015; 53:3296-303. [PMID: 26269616 PMCID: PMC4572553 DOI: 10.1128/jcm.01226-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Flow cytometry is an objective method for conducting in vitro antimalarial sensitivity assays with increasing potential for application in field sites. We examined in vitro susceptibility to seven anti-malarial drugs for 40 fresh P. falciparum field isolates via a flow cytometry method (FCM), a colorimetric LDH-based ELISA : DELI), and standard microscopic slide analysis of growth. For FCM, 184/280 (66%) assays met analytical acceptance criteria, compared to 166/280 (59%) for DELI. There was good agreement between FCM and microscopy, while DELI tended to produce higher half-maximal inhibition constants (IC50s) than FCM, with an overall bias of 2.2-fold (Bland-Altman comparison). Values for artesunate and dihydroartemisinin were most affected. Paradoxical increases in signal at very high concentrations of mefloquine and related compounds were more marked with the DELI assay, suggesting that off-target effects on LDH production may be responsible. Loss of FCM signal due to reinvasion or slow growth was observed in a small number of samples. These results extend previous work on use of flow cytometry to determine antimalarial susceptibility in terms of the number of samples, range of drugs, and comparison with other methods.
Collapse
Affiliation(s)
- Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chirapat Wangsing
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Peter R Christensen
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Bruce Russell
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
15
|
Souza MC, Padua TA, Torres ND, Costa MFDS, Facchinetti V, Gomes CRB, Souza MVN, Henriques MDG. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei. Mem Inst Oswaldo Cruz 2015; 110:560-5. [PMID: 26018449 PMCID: PMC4501421 DOI: 10.1590/0074-02760140466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/24/2015] [Indexed: 11/22/2022] Open
Abstract
A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.
Collapse
Affiliation(s)
- Mariana Conceição Souza
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Tatiana Almeida Padua
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Natalia Domingos Torres
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria Fernanda de Souza Costa
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Victor Facchinetti
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Claudia Regina Brandão Gomes
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Marcus Vinícius Nora Souza
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria das Graças Henriques
- Centro de Desenvolvimento Tecnológico em Saúde, Centro de Desenvolvimento Tecnológico em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
16
|
Rebelo M, Tempera C, Fernandes JF, Grobusch MP, Hänscheid T. Assessing anti-malarial drug effects ex vivo using the haemozoin detection assay. Malar J 2015; 14:140. [PMID: 25879757 PMCID: PMC4393616 DOI: 10.1186/s12936-015-0657-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Background In vitro sensitivity assays are crucial to detect and monitor drug resistance. Plasmodium falciparum has developed resistance to almost all anti-malarial drugs. Although different in vitro drug assays are available, some of their inherent characteristics limit their application, especially in the field. A recently developed approach based on the flow cytometric detection of haemozoin (Hz) allowed reagent-free monitoring of parasite maturation and detection of drug effects in culture-adapted parasites. In this study, the set-up, performance and usefulness of this novel assay were investigated under field conditions in Gabon. Methods An existing flow cytometer (Cyflow Blue) was modified on site to detect light depolarization caused by Hz. Blood from malaria patients was incubated for 72 hrs with increasing concentrations of chloroquine, artesunate and artemisinin. The percentage of depolarizing red blood cells (RBC) was used as maturation indicator and measured at 24, 48 and 72 hrs of incubation to determine parasite growth and drug effects. Results The flow cytometer was easily adapted on site to detect light depolarization caused by Hz. Analysis of ex vivo cultures of parasites, obtained from blood samples of malaria patients, showed four different growth profiles. In 39/46 samples, 50% inhibitory concentrations (IC50) were successfully determined. IC50 values for chloroquine were higher than 200 nM in 70% of the samples, indicating the presence of chloroquine-resistant parasites. For artesunate and artemisinin, IC50 values ranged from 0.9 to 60 nM and from 2.2 nM to 124 nM, respectively, indicating fully sensitive parasites. Conclusion Flow cytometric detection of Hz allowed the detection of drug effects in blood samples from malaria patients, without using additional reagents or complex protocols. Adjustment of the initial parasitaemia was not required, which greatly simplifies the protocol, although it may lead to different IC50 values. Further investigation of set-up conditions of the Hz assay, as well as future studies in various settings should be performed to further determine the usefulness of this assay as a tool for rapid resistance testing in malaria-endemic countries.
Collapse
Affiliation(s)
- Maria Rebelo
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av Prof Egas Moniz, Lisbon, P-1649-028, Portugal. .,Centre de Recherches Médicales de Lambaréné - CERMEL, Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Carolina Tempera
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av Prof Egas Moniz, Lisbon, P-1649-028, Portugal.
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné - CERMEL, Albert Schweitzer Hospital, Lambaréné, Gabon. .,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. .,Centre of Tropical Medicine and Travel Medicine, Amsterdam Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin P Grobusch
- Centre de Recherches Médicales de Lambaréné - CERMEL, Albert Schweitzer Hospital, Lambaréné, Gabon. .,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. .,Centre of Tropical Medicine and Travel Medicine, Amsterdam Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Thomas Hänscheid
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av Prof Egas Moniz, Lisbon, P-1649-028, Portugal. .,Centre de Recherches Médicales de Lambaréné - CERMEL, Albert Schweitzer Hospital, Lambaréné, Gabon. .,Instituto de Microbiologia, Faculdade de Medicina, Lisbon, Portugal.
| |
Collapse
|
17
|
Rebelo M, Tempera C, Bispo C, Andrade C, Gardner R, Shapiro HM, Hänscheid T. Light depolarization measurements in malaria: A new job for an old friend. Cytometry A 2015; 87:437-45. [PMID: 25808846 DOI: 10.1002/cyto.a.22659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/15/2022]
Abstract
The use of flow cytometry in malaria research has increased over the last decade. Most approaches use nucleic acid stains to detect parasite DNA and RNA and require complex multi-color, multi-parameter analysis to reliably detect infected red blood cells (iRBCs). We recently described a novel and simpler approach to parasite detection based on flow cytometric measurement of scattered light depolarization caused by hemozoin (Hz), a pigment formed by parasite digestion of hemoglobin in iRBCs. Depolarization measurement by flow cytometry was described in 1987; however, patent issues restricted its use to a single manufacturer's hematology analyzers until 2009. Although we recently demonstrated that depolarization measurement of Hz, easily implemented on a bench top flow cytometer (Cyflow), provided useful information for malaria work, doubts regarding its application and utility remain in both the flow cytometry and malaria communities, at least in part because instrument manufacturers do not offer the option of measuring depolarized scatter. Under such circumstances, providing other researchers with guidance as to how to do this seemed to offer the most expeditious way to resolve the issue. We accordingly examined how several commercially available flow cytometers (CyFlow SL, MoFLo, Attune and Accuri C6) could be modified to detect depolarization due to the presence of free Hz on solution, or of Hz in leukocytes or erythrocytes from rodent or human blood. All were readily adapted, with substantially equivalent results obtained with lasers emitting over a wide wavelength range. Other instruments now available may also be modifiable for Hz measurement. Cytometric detection of Hz using depolarization is useful to study different aspects of malaria. Adding additional parameters, such as DNA content and base composition and RNA content, can demonstrably provide improved accuracy and sensitivity of parasite detection and characterization, allowing malaria researchers and eventually clinicians to benefit from cytometric technology.
Collapse
Affiliation(s)
- Maria Rebelo
- Molecular Microbiology and Infection Unit, Instituto De Medicina Molecular, Faculdade De Medicina, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
18
|
Melzer S, Tárnok A. Will automation knock off manual evaluation? Cytometry A 2015; 87:375-6. [DOI: 10.1002/cyto.a.22673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/30/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Susanne Melzer
- Department of Pediatric Cardiology; Heart Center GmbH, University of Leipzig; Leipzig Germany
| | - Attila Tárnok
- Department of Pediatric Cardiology; Heart Center GmbH, University of Leipzig; Leipzig Germany
- Translational Centre for Regenerative Medicine (TRM); University of Leipzig; Leipzig Germany
| |
Collapse
|
19
|
High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays. Malar J 2014; 13:412. [PMID: 25331683 PMCID: PMC4213491 DOI: 10.1186/1475-2875-13-412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45 for enumerating live parasites in bioassays was developed. The technique was applied to estimate the specific growth inhibition index (SGI) in the antibody-dependent cellular inhibition (ADCI) assay and compared to parasite quantification by microscopy and mitotracker red staining. The Bland-Altman analysis was used to compare biases between SGI estimated by the tri-colour staining technique, mitotracker red and by microscopy. RESULTS CPO allowed a better separation between early rings and uRBCs compared to mitotracker red resulting in a more accurate estimate of total parasitaemia. The tri-colour technique is rapid, cost effective and robust with comparable sensitivity to microscopy and capable of discriminating between live and dead and/or compromised parasites. Staining for CD45 improved parasitaemia estimates in ADCI assay since high numbers of leucocytes interfered with the accurate identification of parasitized RBC. The least bias (-1.60) in SGI was observed between the tri-colour and microscopy. CONCLUSION An improved methodology for high-throughput assessment of P. falciparum parasitaemia under culture conditions that could be useful in different bioassays, including ADCI and growth inhibition assays has been developed.
Collapse
|
20
|
Clark MA, Goheen MM, Spidale NA, Kasthuri RS, Fulford A, Cerami C. RBC barcoding allows for the study of erythrocyte population dynamics and P. falciparum merozoite invasion. PLoS One 2014; 9:e101041. [PMID: 24984000 PMCID: PMC4077748 DOI: 10.1371/journal.pone.0101041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum invasion of host erythrocytes is essential for the propagation of the blood stage of malaria infection. Additionally, the brief extracellular merozoite stage of P. falciparum represents one of the rare windows during which the parasite is directly exposed to the host immune response. Therefore, efficient invasion of the host erythrocyte is necessary not only for productive host erythrocyte infection, but also for evasion of the immune response. Host traits, such as hemoglobinopathies and differential expression of erythrocyte invasion ligands, can protect individuals from malaria by impeding parasite erythrocyte invasion. Here we combine RBC barcoding with flow cytometry to study P. falciparum invasion. This novel high-throughput method allows for the (i) direct comparison of P. falciparum invasion into different erythrocyte populations and (ii) assessment of the impact of changing erythrocyte population dynamics on P. falciparum invasion.
Collapse
Affiliation(s)
- Martha A Clark
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Morgan M Goheen
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nicholas A Spidale
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raj S Kasthuri
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anthony Fulford
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carla Cerami
- Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom & Medical Research Council Keneba, The Gambia
| |
Collapse
|
21
|
Delahunt C, Horning MP, Wilson BK, Proctor JL, Hegg MC. Limitations of haemozoin-based diagnosis of Plasmodium falciparum using dark-field microscopy. Malar J 2014; 13:147. [PMID: 24739286 PMCID: PMC4021049 DOI: 10.1186/1475-2875-13-147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/12/2014] [Indexed: 11/13/2022] Open
Abstract
Background The haemozoin crystal continues to be investigated extensively for its potential as a biomarker for malaria diagnostics. In order for haemozoin to be a valuable biomarker, it must be present in detectable quantities in the peripheral blood and distinguishable from false positives. Here, dark-field microscopy coupled with sophisticated image processing algorithms is used to characterize the abundance of detectable haemozoin within infected erythrocytes from field samples in order to determine the window of detection in peripheral blood. Methods Thin smears from Plasmodium falciparum-infected and uninfected patients were imaged in both dark field (DF) unstained and bright field (BF) Giemsa-stained modes. The images were co-registered such that each parasite had thumbnails in both BF and DF modes, providing an accurate map between parasites and DF objects. This map was used to find the abundance of haemozoin as a function of parasite stage through careful parasite staging and correlation with DF objects. An automated image-processing and classification algorithm classified the bright spots in the DF images as either haemozoin or non-haemozoin objects. Results The algorithm distinguishes haemozoin from non-haemozoin objects in DF images with an object-level sensitivity of 95% and specificity of 97%. Ring stages older than about 6 hours begin to show detectable haemozoin, and rings between 10–16 hours reliably contain detectable haemozoin. However, DF microscopy coupled with the image-processing algorithm detect no haemozoin in rings younger than six hours. Discussion Although this method demonstrates the most sensitive detection of haemozoin in field samples reported to date, it does not detect haemozoin in ring-stage parasites younger than six hours. Thus, haemozoin is a poor biomarker for field samples primarily composed of young ring-stage parasites because the crystal is not present in detectable quantities by the methods described here. Based on these results, the implications for patient-level diagnosis and recommendations for future work are discussed.
Collapse
|
22
|
Boura M, Frita R, Góis A, Carvalho T, Hänscheid T. The hemozoin conundrum: is malaria pigment immune-activating, inhibiting, or simply a bystander? Trends Parasitol 2013; 29:469-76. [DOI: 10.1016/j.pt.2013.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/25/2022]
|