1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024:1-32. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Hou C, Wu C, Wu Z, Cheng Y, Li W, Sun H, Ma J. Systematic Evaluation of Affinity Enrichment Methods for O-GlcNAc Proteomics. J Proteome Res 2024; 23:4422-4432. [PMID: 39302247 PMCID: PMC11459509 DOI: 10.1021/acs.jproteome.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (i.e., O-GlcNAcylation) on proteins plays critical roles in the regulation of diverse biological processes. However, protein O-GlcNAcylation analysis, especially at a large scale, has been a challenge. So far, a number of enrichment materials and methods have been developed for site-specific O-GlcNAc proteomics in different biological settings. Despite the presence of multiple methods, their performance for the O-GlcNAc proteomics is largely unclear. In this work, by using the lysates of PANC-1 cells (a pancreatic cancer cell line), we provided a head-to-head comparison of three affinity enrichment methods and materials (i.e., antibody, lectin AANL6, and an OGA mutant) for site-specific O-GlcNAc proteomics. The enriched peptides were analyzed by HCD product-dependent EThcD (i.e., HCD-pd-EThcD) mass spectrometry. The resulting data files were processed by three different data analysis packages (i.e., Sequest HT, Byonic, and FragPipe). Our data suggest that each method captures a subpopulation of the O-GlcNAc proteins. Besides the enrichment methods, we also observe complementarity between the different data analysis tools. Thus, combining different approaches holds promise for enhanced coverage of O-GlcNAc proteomics.
Collapse
Affiliation(s)
- Chunyan Hou
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Ci Wu
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Zichun Wu
- Information
Science and Technology College, Dalian Maritime
University, Dalian 116026, China
| | - Yifan Cheng
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Weiyu Li
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
- Department
of Applied Mathematics and Statistics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Hui Sun
- Department
of Biochemistry, College of Life Sciences,
Wuhan University, Wuhan 430072, China
| | - Junfeng Ma
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| |
Collapse
|
3
|
Joshi R, Hawkridge AM. Investigation and Development of the BODIPY-Embedded Isotopic Signature for Chemoproteomics Labeling and Targeted Profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2440-2447. [PMID: 39279661 PMCID: PMC11457305 DOI: 10.1021/jasms.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
A common goal in mass spectrometry-based chemoproteomics is to directly measure the site of conjugation between the target protein and the small molecule ligand. However, these experiments are inherently challenging due to the low abundance of labeled proteins and the difficulty in identifying modification sites using standard proteomics software. Reporter tags that either generate signature fragment ions or isotopically encode target peptides can be used for the preemptive discovery of labeled peptides even in the absence of identification. We investigated the potential of BODIPY FL azide as a click chemistry enabled chemoproteomics reagent due to the presence of boron and the unique 1:4 natural abundance ratio of 10B:11B. The isotopes of boron encode BODIPY-labeled peptides with a predictable pattern between the monoisotopic (M) and M+1 peaks. BODIPY-labeled peptides were identified in MS1 spectra using an R script that filters for the signature 10B:11B intensity ratio and mass defect. Application of the boron detection script resulted in three times the labeled peptide coverage achieved for a BODIPY-conjugated BSA sample compared with untargeted data-dependent acquisition sequencing. Furthermore, we used the inherent HF neutral loss signature from BODIPY to assist with BODIPY-modified peptide identification. Finally, we demonstrate the application of this approach using the BODIPY-conjugated BSA sample spiked into a complex E. coli. digest. In summary, our results show that the commercially available BODIPY FL azide clicked to alkyne-labeled peptides provides a unique isotopic signature for pinpointing the site(s) of modification with the added potential for on- or off-line UV or fluorescence detection.
Collapse
Affiliation(s)
- Rachel Joshi
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23219, United States
| | - Adam M. Hawkridge
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298-0533, United States
| |
Collapse
|
4
|
Mazumder B, Lu M, Rahmoune H, Fernandez-Villegas A, Ward E, Wang M, Ren J, Yu Y, Zhang T, Liang M, Li W, Läubli NF, Kaminski CF, Kaminski Schierle GS. Sea cucumber-derived extract can protect skin cells from oxidative DNA damage and mitochondrial degradation, and promote wound healing. Biomed Pharmacother 2024; 180:117466. [PMID: 39362069 DOI: 10.1016/j.biopha.2024.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Our skin serves as the primary barrier against external environmental insults, the latter of which can cause oxidative stress within cells, while various bioactive peptides sourced from natural resources hold promise in protecting cells against such oxidative stress. In this study, we investigate the efficacy of a low molecular weight extract from the sea cucumber Apostichopus japonicus, denoted as Sample-P, in facilitating cell migration and wound healing under oxidative stress conditions in skin cells. The naturally derived compound is a highly complex mix of peptides exhibiting antioxidative properties, as highlighted through liquid chromatography-mass spectrometry peptide screening and an in vitro antioxidant assay. Our results demonstrate that Sample-P is capable of promoting cell migration while preventing severe stress responses such as visible through mTOR expression. To further identify the molecular pathways underpinning the overall protective mechanism of Sample-P, we have utilised a proteomics approach. Our data reveal that Sample-P regulates protein expression associated with ribosomal pathways, glycolysis/gluconeogenesis and protein processing in the endoplasmic reticulum (ER), which help in preserving DNA integrity and safeguarding cellular organelles, such as mitochondria and the ER, under oxidative stress conditions in skin cells. In summary, in the presence of H2O2, Sample-P exhibits antioxidative properties at both molecular and cellular levels, rendering it a promising candidate for topical skin treatment to wound healing and to address age-related skin conditions.
Collapse
Affiliation(s)
- Bismoy Mazumder
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Meng Lu
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Current address: Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ana Fernandez-Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Ward
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yi Yu
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Ting Zhang
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Ming Liang
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Nino F Läubli
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens F Kaminski
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| |
Collapse
|
5
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Nakagawa S, Sakai HD, Shimamura S, Takamatsu Y, Kato S, Yagi H, Yanaka S, Yagi-Utsumi M, Kurosawa N, Ohkuma M, Kato K, Takai K. N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts. J Bacteriol 2024; 206:e0020524. [PMID: 39194224 PMCID: PMC11411935 DOI: 10.1128/jb.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Shimamura
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshiki Takamatsu
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
7
|
Hou C, Li W, Li Y, Ma J. O-GlcNAc informatics: advances and trends. Anal Bioanal Chem 2024:10.1007/s00216-024-05531-2. [PMID: 39294469 DOI: 10.1007/s00216-024-05531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
As a post-translational modification, protein glycosylation is critical in health and disease. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), as an intracellular monosaccharide modification on proteins, was discovered 40 years ago. Thanks to technological advances, the physiological and pathological significance of O-GlcNAcylation has been gradually revealed and widely appreciated, especially in recent years. O-GlcNAc informatics has been quickly evolving. Clearly, O-GlcNAc informatics tools have not only facilitated O-GlcNAc functional studies, but also provided us a unique perspective on protein O-GlcNAcylation. In this article, we review O-GlcNAc-focused software tools and servers that have been developed for O-GlcNAc research over the past four decades. Specifically, we will (1) survey bioinformatics tools that have facilitated O-GlcNAc proteomics data analysis, (2) introduce databases/servers for O-GlcNAc proteins/sites that have been experimentally identified by individual research labs, (3) describe software tools that have been developed to predict O-GlcNAc sites, and (4) introduce platforms cataloging proteins that interact with the O-GlcNAc cycling enzymes (i.e., O-GlcNAc transferase and O-GlcNAcase). We hope these resources will provide useful information to both experienced researchers and new incomers to the O-GlcNAc field. We anticipate that this review provides a framework to stimulate the future development of more sophisticated informatic tools for O-GlcNAc research.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Weiyu Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
8
|
Huo S, Nie S, Cong Y, Wang S, Li N. In-Depth Host Cell Protein Analysis and Viral Protein Impurity Monitoring in Adeno-Associated Virus-Based Gene Therapy Products Using Optimized Wide Window Data-Dependent Acquisition Method. Anal Chem 2024. [PMID: 39263887 DOI: 10.1021/acs.analchem.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Compared to other protein therapeutics, there is currently limited knowledge about the residual host cell proteins (HCPs) in adeno-associated virus (AAV)-based gene therapy products. This is primarily due to the lack of a robust and sensitive mass spectrometry-based method for HCP analysis in AAV samples. Existing liquid chromatography-mass spectrometry methods used for analyzing HCPs in therapeutic monoclonal antibodies (mAbs) often cannot be directly applied to AAVs, due to some unique characteristics of AAV samples encountered during their development such as limited sample availability/protein concentration and the presence of surfactants. In this study, we have developed a novel workflow for robust and in-depth HCP analysis of AAV samples by combining wide-window data-dependent acquisition for improved low-abundance HCP detection with single-pot, solid-phase-enhanced sample preparation (SP3) for low-input sample preparation. Using this newly developed method, we were able to detect more than 650 HCPs in a commercial AAV1 sample with a high quantitative reproducibility. This represents a greater than 5-fold increase in HCP protein identification compared to an in-solution digestion method followed by traditional data-dependent acquisition. Similar benefits can also be achieved for other AAV serotypes that were produced internally and purified through different processes. The detection limit of this method is as low as 0.06 ng/mL, enabling more comprehensive HCP coverage in AAV samples. Moreover, for the first time, we have identified several process-related viral proteins, such as Rep 78 and E4. These proteins need to be closely monitored during AAV process development as they may present a greater risk for immunogenicity compared to HCPs that are derived from human HEK293 cells.
Collapse
Affiliation(s)
- Shihan Huo
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Song Nie
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Yongzheng Cong
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
9
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. Nat Commun 2024; 15:7694. [PMID: 39227587 PMCID: PMC11372120 DOI: 10.1038/s41467-024-52033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, 27708, USA
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, NC, 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mark M Ross
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
10
|
Nagai-Okatani C, Tominaga D, Tomioka A, Sakaue H, Goda N, Ko S, Kuno A, Kaji H. GRable Version 1.0: A Software Tool for Site-Specific Glycoform Analysis With Improved MS1-Based Glycopeptide Detection With Parallel Clustering and Confidence Evaluation With MS2 Information. Mol Cell Proteomics 2024; 23:100833. [PMID: 39181535 PMCID: PMC11421343 DOI: 10.1016/j.mcpro.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
High-throughput intact glycopeptide analysis is crucial for elucidating the physiological and pathological status of the glycans attached to each glycoprotein. Mass spectrometry-based glycoproteomic methods are challenging because of the diversity and heterogeneity of glycan structures. Therefore, we developed an MS1-based site-specific glycoform analysis method named "Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile (Glyco-RIDGE)" for a more comprehensive analysis. This method detects glycopeptide signals as a cluster based on the mass and chromatographic properties of glycopeptides and then searches for each combination of core peptides and glycan compositions by matching their mass and retention time differences. Here, we developed a novel browser-based software named GRable for semi-automated Glyco-RIDGE analysis with significant improvements in glycopeptide detection algorithms, including "parallel clustering." This unique function improved the comprehensiveness of glycopeptide detection and allowed the analysis to focus on specific glycan structures, such as pauci-mannose. The other notable improvement is evaluating the "confidence level" of the GRable results, especially using MS2 information. This function facilitated reduced misassignment of the core peptide and glycan composition and improved the interpretation of the results. Additional improved points of the algorithms are "correction function" for accurate monoisotopic peak picking; one-to-one correspondence of clusters and core peptides even for multiply sialylated glycopeptides; and "inter-cluster analysis" function for understanding the reason for detected but unmatched clusters. The significance of these improvements was demonstrated using purified and crude glycoprotein samples, showing that GRable allowed site-specific glycoform analysis of intact sialylated glycoproteins on a large-scale and in-depth. Therefore, this software will help us analyze the status and changes in glycans to obtain biological and clinical insights into protein glycosylation by complementing the comprehensiveness of MS2-based glycoproteomics. GRable can be freely run online using a web browser via the GlyCosmos Portal (https://glycosmos.org/grable).
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Daisuke Tominaga
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Norio Goda
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shigeru Ko
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
11
|
Chen J, Zhang A, Nie A, Zuo X, Zhang L, Jiao Y, Wang L, Yang Y, Liu K, Xue X, Zhuang Y, Meng Y, Yang JH. Multi-omics analysis to reveal the synergistic mechanism underlying the multiple ingredients of Stephania tetrandra extract on rheumatoid arthritis through the PI3K/Akt signaling pathway. Front Pharmacol 2024; 15:1447283. [PMID: 39221139 PMCID: PMC11361992 DOI: 10.3389/fphar.2024.1447283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Stephania tetrandra has been used for treating rheumatic diseases for thousands of years in rural areas of China. Several studies have found that tetrandrine and fangchinoline can inactivate the PI3K/Akt signaling pathway by reducing the expression and phosphorylation of AKT. However, the mechanism underlying the therapeutic actions of S. tetrandra on RA is not well known. Methods: In this study, we determined the molecular mechanism of the therapeutic effects of the multiple ingredients of S. tetrandra extract (STE) on collagen-induced arthritic (CIA) rats by integrating pharmacometabolomics, proteomics, and PTMomics. Results: In the multi-omics joint analysis, first, the expression signatures of proteins, PTMs, metabolites, and STE ingredients were profiled in CIA rats PBMCs that underwent STE treatment. Bioinformatics analysis were subsequently probed that STE mainly regulated tryptophan metabolism, inflammatory response, and cell adhesion pathways in CIA rats. The interrelated pathways were further constructed, and the findings revealed that STE attenuated the inflammatory response and proliferation of PBMCs in CIA rats by mediating the key targets of the PI3K/Akt pathway, including Hint1, ACP1, FGR, HSP90@157W + dioxidation, and Prkca@220N + 845.4540 Da. The rheumatic functions of Hint1 and ACP1 were further confirmed by applying a transcriptomic data of RA patients who clinically received abatacept therapy. Furthermore, a cross-ome correlation analysis was performed and major in vivo ingredients of STE, including coclaurine-N-glucuronide, Me,coclaurine-O-glc, N-gluA-schefferine, corydamine, corypamine, tetrandrine, and fangchiniline, were found to act on these targerts to inactivate the PI3K/Akt pathway. Conclusion: These results elucidated the molecular mechanism by which the ingredients of STE mediate the expression of the key targets in the PI3K/Akt pathway, leading to anti-rheumatic functions. The findings of this study provided new insights into the synergistic effect of STE against arthritis in rats.
Collapse
Affiliation(s)
- Jinfeng Chen
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - An Zhang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Anzheng Nie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxiao Zuo
- Radiotherapy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yuxue Jiao
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Lulu Wang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yang Yang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Kun Liu
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xinli Xue
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yuanyuan Zhuang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yansha Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Hua Yang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Klein J, Carvalho L, Zaia J. Expanding N-glycopeptide identifications by modeling fragmentation, elution, and glycome connectivity. Nat Commun 2024; 15:6168. [PMID: 39039063 PMCID: PMC11263600 DOI: 10.1038/s41467-024-50338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Accurate glycopeptide identification in mass spectrometry-based glycoproteomics is a challenging problem at scale. Recent innovation has been made in increasing the scope and accuracy of glycopeptide identifications, with more precise uncertainty estimates for each part of the structure. We present a dynamically adapting relative retention time model for detecting and correcting ambiguous glycan assignments that are difficult to detect from fragmentation alone, a layered approach to glycopeptide fragmentation modeling that improves N-glycopeptide identification in samples without compromising identification quality, and a site-specific method to increase the depth of the glycoproteome confidently identifiable even further. We demonstrate our techniques on a set of previously published datasets, showing the performance gains at each stage of optimization. These techniques are provided in the open-source glycomics and glycoproteomics platform GlycReSoft available at https://github.com/mobiusklein/glycresoft .
Collapse
Affiliation(s)
- Joshua Klein
- Program for Bioinformatics, Boston University, Boston, MA, US.
| | - Luis Carvalho
- Program for Bioinformatics, Boston University, Boston, MA, US
- Department of Math and Statistics, Boston University, Boston, MA, US
| | - Joseph Zaia
- Program for Bioinformatics, Boston University, Boston, MA, US.
- Department of Biochemistry and Cell Biology, Boston University, Boston, MA, US.
| |
Collapse
|
13
|
Du X, Yin S, Wang T, Chu C, Devahastin S, Yi J, Wang Y. Identification of proteolytic bacteria from Yunnan fermented foods and their use to reduce the allergenicity of β-lactoglobulin. J Dairy Sci 2024:S0022-0302(24)01006-3. [PMID: 39004134 DOI: 10.3168/jds.2024-25055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Beta-lactoglobulin (β-LG) is considered to be the major allergenic protein in milk. Lactic acid bacteria (LAB) possess a protein hydrolysis system that holds great promise for hydrolyzing β-LG and reducing its allergenicity. Therefore, this study aimed to screen LAB with β-LG hydrolysis activity from Yunnan traditional fermented foods. The results showed that Pediococcus pentosaceus C1001, Pediococcus acidilactici E1601-1, and Lactobacillus paracasei E1601-2, could effectively hydrolyze β-LG and further reduce its sensitization (more than 40%). All 3 lactic acid bacteria hydrolyzed β-LG allergenic fragments V41-K60 and L149-I162. Moreover, they encode a variety of genes related to proteolysis, such as aminopeptidase pepC and pepN, proline peptidase pepIP and endopeptidase pepO, and L. paracasei E1601-2 contains extracellular protease coding gene prtP. And they encode a variety of genes associated with hydrolyzed proteins. The 3 strains screened in this study can be used to develop hypoallergenic dairy products.
Collapse
Affiliation(s)
- Xiang Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Shulei Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
14
|
Nakagawa S, Imachi H, Shimamura S, Yanaka S, Yagi H, Yagi-Utsumi M, Sakai H, Kato S, Ohkuma M, Kato K, Takai K. Characterization of protein glycosylation in an Asgard archaeon. BBA ADVANCES 2024; 6:100118. [PMID: 39081798 PMCID: PMC11284389 DOI: 10.1016/j.bbadva.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Archaeal cells are typically enveloped by glycosylated S-layer proteins. Archaeal protein glycosylation provides valuable insights not only into their adaptation to their niches but also into their evolutionary trajectory. Notably, thermophilic Thermoproteota modify proteins with N-glycans that include two GlcNAc units at the reducing end, resembling the "core structure" preserved across eukaryotes. Recently, Asgard archaea, now classified as members of the phylum Promethearchaeota, have offered unprecedented opportunities for understanding the role of archaea in eukaryogenesis. Despite the presence of genes indicative of protein N-glycosylation in this archaeal group, these have not been experimentally investigated. Here we performed a glycoproteome analysis of the firstly isolated Asgard archaeon Promethearchaeum syntrophicum. Over 700 different proteins were identified through high-resolution LC-MS/MS analysis, however, there was no evidence of either the presence or glycosylation of putative S-layer proteins. Instead, N-glycosylation in this archaeon was primarily observed in an extracellular solute-binding protein, possibly related to chemoreception or transmembrane transport of oligopeptides. The glycan modification occurred on an asparagine residue located within the conserved N-X-S/T sequon, consistent with the pattern found in other archaea, bacteria, and eukaryotes. Unexpectedly, three structurally different N-glycans lacking the conventional core structure were identified in this archaeon, presenting unique compositions that included atypical sugars. Notably, one of these sugars was likely HexNAc modified with a threonine residue, similar to modifications previously observed in mesophilic methanogens within the Methanobacteriati. Our findings advance our understanding of Asgard archaea physiology and evolutionary dynamics.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Sakai
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, JAMSTEC, Yokosuka 273-0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
15
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
DeBono NJ, Moh ESX, Packer NH. Experimentally Determined Diagnostic Ions for Identification of Peptide Glycotopes. J Proteome Res 2024; 23:2661-2673. [PMID: 38888225 DOI: 10.1021/acs.jproteome.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.
Collapse
Affiliation(s)
- Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Wang C, Jiang W, Leitz J, Yang K, Esquivies L, Wang X, Shen X, Held RG, Adams DJ, Basta T, Hampton L, Jian R, Jiang L, Stowell MHB, Baumeister W, Guo Q, Brunger AT. Structure and topography of the synaptic V-ATPase-synaptophysin complex. Nature 2024; 631:899-904. [PMID: 38838737 PMCID: PMC11269182 DOI: 10.1038/s41586-024-07610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Collapse
Affiliation(s)
- Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wenhong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xing Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Richard G Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Adams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tamara Basta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Lucas Hampton
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
19
|
Polasky DA, Lu L, Yu F, Li K, Shortreed MR, Smith LM, Nesvizhskii AI. Quantitative proteome-wide O-glycoproteomics analysis with FragPipe. Anal Bioanal Chem 2024:10.1007/s00216-024-05382-x. [PMID: 38877149 DOI: 10.1007/s00216-024-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Lei Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pharmaceutical Chemistry, University of San Francisco, San Francisco, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Lewis JM, Jebeli L, Coulon PML, Lay CE, Scott NE. Glycoproteomic and proteomic analysis of Burkholderia cenocepacia reveals glycosylation events within FliF and MotB are dispensable for motility. Microbiol Spectr 2024; 12:e0034624. [PMID: 38709084 PMCID: PMC11237607 DOI: 10.1128/spectrum.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function. IMPORTANCE Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.
Collapse
Affiliation(s)
- Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pauline M L Coulon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Catrina E Lay
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
21
|
Zhao Y, Zhang Y, Meng B, Luo M, Li G, Liu F, Chang C, Dai X, Fang X. A Novel Integrated Pipeline for Site-Specific Quantification of N-glycosylation. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:213-226. [PMID: 39398429 PMCID: PMC11467155 DOI: 10.1007/s43657-023-00150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 10/15/2024]
Abstract
The site-specific N-glycosylation changes of human plasma immunoglobulin gamma molecules (IgGs) have been shown to modulate the immune response and could serve as potential biomarkers for the accurate diagnosis of various diseases. However, quantifying intact N-glycopeptides accurately in large-scale clinical samples remains a challenge, and the quantitative N-glycosylation of plasma IgGs in patients with chronic kidney diseases (CKDs) has not yet been studied. In this study, we present a novel integrated intact N-glycopeptide quantitative pipeline (termed GlycoQuant), which combines our recently developed mass spectrometry fragmentation method (EThcD-sceHCD) and an intact N-glycopeptide batch quantification software tool (the upgraded PANDA v.1.2.5). We purified and digested human plasma IgGs from 58 healthy controls (HCs), 48 patients with membranous nephropathy (MN), and 35 patients with IgA nephropathy (IgAN) within an hour. Then, we analyzed the digested peptides without enrichment using EThcD-sceHCD-MS/MS, which provided higher spectral quality and greater identified depth. Using upgraded PANDA, we performed site-specific N-glycosylation quantification of IgGs. Several quantified intact N-glycopeptides not only distinguished CKDs from HCs, but also different types of CKD (MN and IgAN) and may serve as accurate diagnostic tools for renal tubular function. In addition, we proved the applicability of this pipeline to complex samples by reanalyzing the intact N-glycopeptides from cell, urine, plasma, and tissue samples that we had previously identified. We believe that this pipeline can be applied to large-scale clinical N-glycoproteomic studies, facilitating the discovery of novel glycosylated biomarkers. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00150-w.
Collapse
Affiliation(s)
- Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Meng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Mengqi Luo
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People’s Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Fang Liu
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| |
Collapse
|
22
|
Chen X, Song X, Li J, Wang J, Yan Y, Yang F. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Cell Commun Signal 2024; 22:273. [PMID: 38755675 PMCID: PMC11097525 DOI: 10.1186/s12964-024-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC-MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Song
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaran Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumeng Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Buchman AS, Yu L, Klein HU, Zammit AR, Oveisgharan S, Nag S, Tickotsky N, Levy H, Seyfried N, Morgenstern D, Levin Y, Schnaider Beeri M, Bennett DA. Glycoproteome-Wide Discovery of Cortical Glycoproteins That May Provide Cognitive Resilience in Older Adults. Neurology 2024; 102:e209223. [PMID: 38502899 DOI: 10.1212/wnl.0000000000209223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Molecular omics studies have identified proteins related to cognitive resilience but unrelated to Alzheimer disease and Alzheimer disease-related dementia (AD/ADRD) pathologies. Posttranslational modifications of proteins with glycans can modify protein function. In this study, we identified glycopeptiforms associated with cognitive resilience. METHODS We studied brains from adults with annual cognitive testing with postmortem indices of 10 AD/ADRD pathologies and proteome-wide data from dorsal lateral prefrontal cortex (DLPFC). We quantified 11, 012 glycopeptiforms from DLPFC using liquid chromatography with tandem mass spectrometry. We used linear mixed-effects models to identify glycopeptiforms associated with cognitive decline correcting for multiple comparisons (p < 5 × 10-6). Then, we regressed out the effect of AD/ADRD pathologies to identify glycopeptiforms that may provide cognitive resilience. RESULTS We studied 366 brains, average age at death 89 years, and 70% female with no cognitive impairment = 152, mild cognitive impairment = 93, and AD = 121 cognitive status at death. In models adjusting for age, sex and education, 11 glycopeptiforms were associated with cognitive decline. In further modeling, 8 of these glycopeptiforms remained associated with cognitive decline after adjusting for AD/ADRD pathologies: NPTX2a (Est., 0.030, SE, 0.005, p = 1 × 10-4); NPTX2b (Est.,0.019, SE, 0.005, p = 2 × 10-4) NECTIN1(Est., 0.029, SE, 0.009, p = 9 × 10-4), NPTX2c (Est., 0.015, SE, 0.004, p = 9 × 10-4), HSPB1 (Est., -0.021, SE, 0.006, p = 2 × 10-4), PLTP (Est., -0.027, SE, 0.009, p = 4.2 × 10-3), NAGK (Est., -0.027, SE, 0.008, p = 1.4 × 10-3), and VAT1 (Est., -0.020, SE, 0.006, p = 1.1 × 10-3). Higher levels of 4 resilience glycopeptiforms derived through glycosylation were associated with slower decline and higher levels of 4 derived through glycation were related to faster decline. Together, these 8 glycopeptiforms accounted for an additional 6% of cognitive decline over the 33% accounted for the 10 brain pathologies and demographics. All 8 resilience glycopeptiforms remained associated with cognitive decline after adjustments for the expression level of their corresponding protein. Exploratory gene ontology suggested that molecular mechanisms of glycopeptiforms associated with cognitive decline may involve metabolic pathways including pyruvate and NADH pathways and highlighted the importance of molecular mechanisms involved in glucose metabolism. DISCUSSION Glycopeptiforms in aging brains may provide cognitive resilience. Targeting these glycopeptiforms may lead to therapies that maintain cognition through resilience.
Collapse
Affiliation(s)
- Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Sukriti Nag
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Nili Tickotsky
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Hila Levy
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Nicholas Seyfried
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - David Morgenstern
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Yishai Levin
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Michal Schnaider Beeri
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| |
Collapse
|
24
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform coregulation network and glycan modification alterations in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eadk6911. [PMID: 38579000 PMCID: PMC10997212 DOI: 10.1126/sciadv.adk6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lih-Shen Chin
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lian Li
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Mahoney KE, Chang V, Lucas TM, Maruszko K, Malaker SA. Mass Spectrometry-Compatible Elution Technique Enables an Improved Mucin-Selective Enrichment Strategy to Probe the Mucinome. Anal Chem 2024; 96:5242-5250. [PMID: 38512228 DOI: 10.1021/acs.analchem.3c05762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to a solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we introduce innovative elution conditions amenable to mucinase digestion and downstream analysis using mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing the glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all of the other enrichment techniques tested. This allowed for the effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.
Collapse
Affiliation(s)
- Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Taryn M Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Krystyna Maruszko
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
26
|
Peters C, Richter KK, Wilkin S, Stark S, Mir-Makhamad B, Fernandes R, Maksudov F, Mirzaakhmedov S, Rahmonov H, Schirmer S, Ashastina K, Begmatov A, Frachetti M, Kurbanov S, Shenkar M, Hermes T, Kidd F, Omelchenko A, Huber B, Boivin N, Wang S, Lurje P, von Baeyer M, Dal Martello R, Spengler RN. Archaeological and molecular evidence for ancient chickens in Central Asia. Nat Commun 2024; 15:2697. [PMID: 38565545 PMCID: PMC10987595 DOI: 10.1038/s41467-024-46093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
The origins and dispersal of the chicken across the ancient world remains one of the most enigmatic questions regarding Eurasian domesticated animals. The lack of agreement concerning timing and centers of origin is due to issues with morphological identifications, a lack of direct dating, and poor preservation of thin, brittle bird bones. Here we show that chickens were widely raised across southern Central Asia from the fourth century BC through medieval periods, likely dispersing along the ancient Silk Road. We present archaeological and molecular evidence for the raising of chickens for egg production, based on material from 12 different archaeological sites spanning a millennium and a half. These eggshells were recovered in high abundance at all of these sites, suggesting that chickens may have been an important part of the overall diet and that chickens may have lost seasonal egg-laying.
Collapse
Affiliation(s)
- Carli Peters
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
| | - Kristine K Richter
- Department of Anthropology, Harvard University, Cambridge, MA, 02138, USA
| | - Shevan Wilkin
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Institute of Evolutionary Medicine, Medical Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Sören Stark
- Institute for the Study of the Ancient World, New York University, New York City, NY, 10028, USA
| | - Basira Mir-Makhamad
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Faculty of Arts, Masaryk University, Nováka 1, 602 00, Brno-střed, Czech Republic
- Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, ul. Krakowskie Przedmieście 26/28, Warszawa, 00-927, Poland
- Climate Change and History Research Initiative, Princeton University, Princeton, USA
| | - Farhod Maksudov
- National Center of Archaeology, Uzbekistan Academy of Sciences, Tashkent, 100000, Uzbekistan
| | - Sirojidin Mirzaakhmedov
- Samarkand Institute of Archaeology, Agency for Cultural Heritage, 1000060, Samarkand, Uzbekistan
| | - Husniddin Rahmonov
- Samarkand Institute of Archaeology, Agency for Cultural Heritage, 1000060, Samarkand, Uzbekistan
| | - Stefanie Schirmer
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
| | - Kseniia Ashastina
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
| | - Alisher Begmatov
- Berlin-Brandenburg Academy of Sciences and Humanities, 10117, Berlin, Germany
- Department of Linguistics, University of Vienna, Wien, 1090, Austria
- Department of Archaeology, Samarkand State University, Samarkand City, 140104, Uzbekistan
| | - Michael Frachetti
- Department of Anthropology, Washington University in St Louis, St Louis, MO, 63130, USA
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Sharof Kurbanov
- Institute of History, Archaeology and Ethnography named after Ahmad Donish of the Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | - Michael Shenkar
- Department of Islamic and Middle Eastern Studies, The Hebrew University of Jerusalem, Mt Scopus, 91905, Jerusalem, Israel
- New Uzbekistan University, 54 Mustaqillik Ave, Tashkent, 100007, Uzbekistan
| | - Taylor Hermes
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Department of Anthropology, University of Arkansas, AR, 72701, Fayetteville, USA
| | - Fiona Kidd
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Barbara Huber
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Centre de Recherche et d'Enseignement des Géosciences de l'Environnement, Aix-Marseille Université, CNRS, IRD, INRAE, 13545, Aix-en-Provence, France
- Institute of Archaeological Science, University of Tübingen, 72070, Tübingen, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Griffith Sciences, Griffith University, Nathan, QLD, 4111, Australia
- School of Social Science, The University of Queensland, Brisbane, QLD, 4071, Australia
| | - Shujing Wang
- School of Archaeology and Museology, Peking University, Beijing, 100871, China
| | - Pavel Lurje
- State Hermitage Museum, St Petersburg, 190000, Russia
| | - Madelynn von Baeyer
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
| | - Rita Dal Martello
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, 07745, Jena, Germany
| | - Robert N Spengler
- Department of Archaeology, Max Planck Institute of Geoanthropology, 07745, Jena, Germany.
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, 07745, Jena, Germany.
| |
Collapse
|
27
|
Tang X, Zeng P, Liu K, Qing L, Sun Y, Liu X, Lu L, Wei C, Wang J, Jiang S, Sun J, Chang W, Yu H, Chen H, Zhou J, Xu C, Fan L, Miao YL, Ding J. The PTM profiling of CTCF reveals the regulation of 3D chromatin structure by O-GlcNAcylation. Nat Commun 2024; 15:2813. [PMID: 38561336 PMCID: PMC10985093 DOI: 10.1038/s41467-024-47048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.
Collapse
Affiliation(s)
- Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Pharmacology and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kezhi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yifei Sun
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lizi Lu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jun Sun
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jiaguo Zhou
- Department of Pharmacology and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chengfang Xu
- The obstetric and gynecology Department of The third affiliated hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Mackay S, Oduor IO, Burch TC, Troyer DA, Semmes OJ, Nyalwidhe JO. Prostate-specific membrane antigen (PSMA) glycoforms in prostate cancer patients seminal plasma. Prostate 2024; 84:479-490. [PMID: 38151791 DOI: 10.1002/pros.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) is a US Food and Drug Administration-approved theranostic target for prostate cancer (PCa). Although PSMA is known to be glycosylated, the composition and functional roles of its N-linked glycoforms have not been fully characterized. METHODS PSMA was isolated from pooled seminal plasma from low-risk grade Groups 1 and 2 PCa patients. Intact glycopeptides were analyzed by mass spectrometry to identify site-specific glycoforms. RESULTS We observed a rich distribution of PSMA glycoforms in seminal plasma from low and low-intermediate-risk PCa patients. Some interesting generalities can be drawn based on the predicted topology of PSMA on the plasma membrane. The glycoforms at ASN-459, ASN-476, and ASN-638 residues that are located at the basal domain facing the plasma membrane in cells, are predominantly high mannose glycans. ASN-76 which is located in the interdomain region adjacent to the apical domain of the protein shows a mixture of high mannose glycans and complex glycans, whereas ASN-121, ASN-195 and ASN-336 that are located and are exposed at the apical domain of the protein predominantly possess complex sialylated and fucosylated N-linked glycans. These highly accessible glycosites display the greatest diversity in isoforms across the patient samples. CONCLUSIONS Our study provides novel qualitative insights into PSMA glycoforms that are present in the seminal fluid of PCa patients. The presence of a rich diversity of glycoforms in seminal plasma provides untapped potential for glycoprotein biomarker discovery and as a clinical sample for noninvasive diagnostics of male urological disorders and diseases including PCa. Specifically, our glycomics approach will be critical in uncovering PSMA glycoforms with utility in staging and risk stratification of PCa.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Neonatal-Perinatal Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ian O Oduor
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Neurology, Children's Hospital of the Kings Daughters, Norfolk, Virginia, USA
| | - Tanya C Burch
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Dean A Troyer
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Oliver J Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
29
|
Yang Y, Fang Q. Prediction of glycopeptide fragment mass spectra by deep learning. Nat Commun 2024; 15:2448. [PMID: 38503734 PMCID: PMC10951270 DOI: 10.1038/s41467-024-46771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Deep learning has achieved a notable success in mass spectrometry-based proteomics and is now emerging in glycoproteomics. While various deep learning models can predict fragment mass spectra of peptides with good accuracy, they cannot cope with the non-linear glycan structure in an intact glycopeptide. Herein, we present DeepGlyco, a deep learning-based approach for the prediction of fragment spectra of intact glycopeptides. Our model adopts tree-structured long-short term memory networks to process the glycan moiety and a graph neural network architecture to incorporate potential fragmentation pathways of a specific glycan structure. This feature is beneficial to model explainability and differentiation ability of glycan structural isomers. We further demonstrate that predicted spectral libraries can be used for data-independent acquisition glycoproteomics as a supplement for library completeness. We expect that this work will provide a valuable deep learning resource for glycoproteomics.
Collapse
Affiliation(s)
- Yi Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Qun Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Lao H, Chang J, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Xiong J, Li P, Yu C, Feng T. Novel kokumi peptides from yeast extract and their taste mechanism via an in silico study. Food Funct 2024; 15:2459-2473. [PMID: 38328886 DOI: 10.1039/d3fo04487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.
Collapse
Affiliation(s)
- Haofeng Lao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jincui Chang
- D.CO International Food Co., Ltd, Jiaozuo, 454850, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, No. 2080, Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jian Xiong
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Pei Li
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
31
|
Bautista-Valle MV, Camacho-Vazquez C, Elizalde-Contreras JM, Monribot-Villanueva JL, Limón AMV, Bojórquez-Velázquez E, Zamora-Briseño JA, Jorrin-Novo JV, Ruiz-May E. Comparing and integrating TMT-SPS-MS3 and label-free quantitative approaches for proteomics scrutiny in recalcitrant Mango (Mangifera indica L.) peel tissue during postharvest period. Proteomics 2024; 24:e2300239. [PMID: 37681534 DOI: 10.1002/pmic.202300239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Despite substantial advances in the use of proteomic technologies, their widespread application in fruit tissues of non-model and recalcitrant species remains limited. This hampers the understanding of critical molecular events during the postharvest period of fleshy tropical fruits. Therefore, we evaluated label-free quantitation (LFQ) and TMT-SPS-MS3 (TMT) approaches to analyse changes in the protein profile of mango peels during postharvest period. We compared two extraction methods (phenol and chloroform/methanol) and two peptide fractionation schemes (SCX and HPRP). We accurately identified 3065 proteins, of which, 1492 were differentially accumulated over at 6 days after harvesting (DAH). Both LFQ and TMT approaches share 210 differential proteins including cell wall proteins associated with fruit softening, as well as aroma and flavour-related proteins, which were increased during postharvest period. The phenolic protein extraction and the high-pH reverse-phase peptide fractionation was the most effective pipeline for relative quantification. Nevertheless, the information provided by the other tested strategies was significantly complementary. Besides, LFQ spectra allowed us to track down intact N-glycopeptides corroborating N-glycosylations on the surface of a desiccation-related protein. This work represents the largest proteomic comparison of mango peels during postharvest period made so far, shedding light on the molecular foundation of edible fruit during ripening.
Collapse
Affiliation(s)
- Mirna V Bautista-Valle
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Carolina Camacho-Vazquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Abraham M Vidal Limón
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Jesús V Jorrin-Novo
- Department of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Cordoba, Spain
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| |
Collapse
|
32
|
White MEH, Sinn LR, Jones DM, de Folter J, Aulakh SK, Wang Z, Flynn HR, Krüger L, Tober-Lau P, Demichev V, Kurth F, Mülleder M, Blanchard V, Messner CB, Ralser M. Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics. Nat Biomed Eng 2024; 8:233-247. [PMID: 37474612 DOI: 10.1038/s41551-023-01067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.
Collapse
Affiliation(s)
- Matthew E H White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ludwig R Sinn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Marc Jones
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Joost de Folter
- Software Engineering and Artificial Intelligence Technology Platform, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ziyue Wang
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Precision Proteomic Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
33
|
Song M, Zhang Y, Zhu W, Zhou W, Li X, Yang A, Tong P, Wu Z, Chen H. Mass Spectrometry Analysis on the Breakage of Allergens in High-Molecular-Mass Polymer of Roasted Peanuts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3142-3149. [PMID: 38299554 DOI: 10.1021/acs.jafc.3c07007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Peanut allergy is a prevalent and concerning food allergy. Roasting can introduce structural changes to peanut allergens, affecting their allergenicity, but the structure on the primary structure is unclear. Here, the breakage sites were identified by mass spectrometry and software tools, and structural changes were simulated by molecular dynamics and displayed by PyMOL software. Results revealed that the appearance frequencies of L, Q, F, and E were high at the N-terminal of the breakage site, while S and E were dominant at the C-terminal. In the conformational structure, breakage sites were found close to disulfide bonds and the Cupin domains of Ara h 1 and Ara h 3. The breakage of allergens destroyed linear epitopes and might change the conformation of epitopes, which could influence peanuts' potential allergenicity.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weichao Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenlong Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
34
|
Hevér H, Xue A, Nagy K, Komka K, Vékey K, Drahos L, Révész Á. Can We Boost N-Glycopeptide Identification Confidence? Smart Collision Energy Choice Taking into Account Structure and Search Engine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:333-343. [PMID: 38286027 PMCID: PMC10853973 DOI: 10.1021/jasms.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
High confidence and reproducibility are still challenges in bottom-up mass spectrometric N-glycopeptide identification. The collision energy used in the MS/MS measurements and the database search engine used to identify the species are perhaps the two most decisive factors. We investigated how the structural features of N-glycopeptides and the choice of the search engine influence the optimal collision energy, delivering the highest identification confidence. We carried out LC-MS/MS measurements using a series of collision energies on a large set of N-glycopeptides with both the glycan and peptide part varied and studied the behavior of Byonic, pGlyco, and GlycoQuest scores. We found that search engines show a range of behavior between peptide-centric and glycan-centric, which manifests itself already in the dependence of optimal collision energy on m/z. Using classical statistical and machine learning methods, we revealed that peptide hydrophobicity, glycan and peptide masses, and the number of mobile protons also have significant and search-engine-dependent influence, as opposed to a series of other parameters we probed. We envisioned an MS/MS workflow making a smart collision energy choice based on online available features such as the hydrophobicity (described by retention time) and glycan mass (potentially available from a scout MS/MS). Our assessment suggests that this workflow can lead to a significant gain (up to 100%) in the identification confidence, particularly for low-scoring hits close to the filtering limit, which has the potential to enhance reproducibility of N-glycopeptide analyses. Data are available via MassIVE (MSV000093110).
Collapse
Affiliation(s)
- Helga Hevér
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Andrea Xue
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Kinga Nagy
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
- Faculty
of Science, Institute of Chemistry, Hevesy György PhD School
of Chemistry, Eötvös Loránd
University, Pázmány
Péter sétány 1/A, Budapest H-1117, Hungary
| | - Kinga Komka
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Károly Vékey
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - László Drahos
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Ágnes Révész
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| |
Collapse
|
35
|
Takahashi Y, Shiota M, Fujita A, Yamada I, Aoki-Kinoshita KF. GlyComb: A novel glycoconjugate data repository that bridges glycomics and proteomics. J Biol Chem 2024; 300:105624. [PMID: 38176651 PMCID: PMC10850976 DOI: 10.1016/j.jbc.2023.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The glycosylation of proteins and lipids is known to be closely related to the mechanisms of various diseases such as influenza, cancer, and muscular dystrophy. Therefore, it has become clear that the analysis of post-translational modifications of proteins, including glycosylation, is important to accurately understand the functions of each protein molecule and the interactions among them. In order to conduct large-scale analyses more efficiently, it is essential to promote the accumulation, sharing, and reuse of experimental and analytical data in accordance with the FAIR (Findability, Accessibility, Interoperability, and Re-usability) data principles. However, a FAIR data repository for storing and sharing glycoconjugate information, including glycopeptides and glycoproteins, in a standardized format did not exist. Therefore, we have developed GlyComb (https://glycomb.glycosmos.org) as a new standardized data repository for glycoconjugate data. Currently, GlyComb can assign a unique identifier to a set of glycosylation information associated with a specific peptide sequence or UniProt ID. By standardizing glycoconjugate data via GlyComb identifiers and coordinating with existing web resources such as GlyTouCan and GlycoPOST, a comprehensive system for data submission and data sharing among researchers can be established. Here we introduce how GlyComb is able to integrate the variety of glycoconjugate data already registered in existing data repositories to obtain a better understanding of the available glycopeptides and glycoproteins, and their glycosylation patterns. We also explain how this system can serve as a foundation for a better understanding of glycan function.
Collapse
Affiliation(s)
- Yushi Takahashi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Masaaki Shiota
- Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Akihiro Fujita
- Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Issaku Yamada
- Laboratory of Glycoinformatics, The Noguchi Institute, Tokyo, Japan
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan; Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, Tokyo, Japan.
| |
Collapse
|
36
|
Houlahan CB, Kong Y, Johnston B, Cielesh M, Chau TH, Fenwick J, Coleman PR, Hao H, Haltiwanger RS, Thaysen-Andersen M, Passam FH, Larance M. Analysis of the Healthy Platelet Proteome Identifies a New Form of Domain-Specific O-Fucosylation. Mol Cell Proteomics 2024; 23:100717. [PMID: 38237698 PMCID: PMC10879016 DOI: 10.1016/j.mcpro.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.
Collapse
Affiliation(s)
- Callum B Houlahan
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yvonne Kong
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bede Johnston
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Jemma Fenwick
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Coleman
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Huilin Hao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia; Institute for Glyco-Core Research, Nagoya University, Nagoya, Aichi, Japan
| | - Freda H Passam
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
37
|
Zancolli G, von Reumont BM, Anderluh G, Caliskan F, Chiusano ML, Fröhlich J, Hapeshi E, Hempel BF, Ikonomopoulou MP, Jungo F, Marchot P, de Farias TM, Modica MV, Moran Y, Nalbantsoy A, Procházka J, Tarallo A, Tonello F, Vitorino R, Zammit ML, Antunes A. Web of venom: exploration of big data resources in animal toxin research. Gigascience 2024; 13:giae054. [PMID: 39250076 PMCID: PMC11382406 DOI: 10.1093/gigascience/giae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Research on animal venoms and their components spans multiple disciplines, including biology, biochemistry, bioinformatics, pharmacology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom research can be challenging, and relevant tools and resources are often dispersed across different online platforms, making them less accessible to nonexperts. In this article, we address the multifaceted needs of the scientific community involved in venom and toxin-related research by identifying and discussing web resources, databases, and tools commonly used in this field. We have compiled these resources into a comprehensive table available on the VenomZone website (https://venomzone.expasy.org/10897). Furthermore, we highlight the challenges currently faced by researchers in accessing and using these resources and emphasize the importance of community-driven interdisciplinary approaches. We conclude by underscoring the significance of enhancing standards, promoting interoperability, and encouraging data and method sharing within the venom research community.
Collapse
Affiliation(s)
- Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Goethe University Frankfurt, Faculty of Biological Sciences, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Figen Caliskan
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University Federico II of Naples, 80055 Portici, Naples, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Jacob Fröhlich
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Evroula Hapeshi
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Benjamin-Florian Hempel
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Maria P Ikonomopoulou
- Madrid Institute of Advanced Studies in Food, Precision Nutrition & Aging Program, 28049 Madrid, Spain
| | - Florence Jungo
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, 1211 Geneva, Switzerland
| | - Pascale Marchot
- Laboratory Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, Centre National de la Recherche Scientifique, Faculté des Sciences, Campus Luminy, 13288 Marseille, France
| | - Tarcisio Mendes de Farias
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 00198 Rome, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Ayse Nalbantsoy
- Engineering Faculty, Bioengineering Department, Ege University, 35100 Bornova-Izmir, Turkey
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Andrea Tarallo
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), 73100 Lecce, Italy
| | - Fiorella Tonello
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mark Lawrence Zammit
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, 2090 Msida, Malta
- Malta National Poisons Centre, Malta Life Sciences Park, 3000 San Ġwann, Malta
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
38
|
Wang J, Onigbinde S, Purba W, Nwaiwu J, Mechref Y. O-Glycoproteomics Sample Preparation and Analysis Using NanoHPLC and Tandem MS. Methods Mol Biol 2024; 2762:281-290. [PMID: 38315372 DOI: 10.1007/978-1-0716-3666-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Glycosylation refers to the biological processes that covalently attach carbohydrates to the peptide backbone after the synthesis of proteins. As one of the most common post-translational modifications (PTMs), glycosylation can greatly affect proteins' features and functions. Moreover, aberrant glycosylation has been linked to various diseases. There are two major types of glycosylation, known as N-linked and O-linked glycosylation. Here, we focus on O-linked glycosylation and thoroughly describe a bottom-up strategy to perform O-linked glycoproteomics studies. The experimental section involves enzymatic digestions using trypsin and O-glycoprotease at 37 °C. The prepared samples containing O-glycopeptides are analyzed using nanoHPLC coupled with tandem mass spectrometry (MS) for accurate identification and quantification.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
39
|
Hou C, Li W, Li Y, Ma J. Integrating HexNAcQuest with Glycoproteomics Data Analysis Software to Distinguish HexNAc Isomers on Peptides. Methods Mol Biol 2024; 2836:67-76. [PMID: 38995536 DOI: 10.1007/978-1-0716-4007-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Recently, HexNAcQuest was developed to help distinguish peptides modified by HexNAc isomers, more specifically O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc, Tn antigen). To facilitate its usage (particularly for datasets from glycoproteomics studies), herein we present a detailed protocol. It describes example cases and procedures for which users might need to use HexNAcQuest to distinguish these two modifications.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Weiyu Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
40
|
Li Z, Xing S, Liu J, Wu X, Zhang S, Ma D, Liu X. Chaperonin co-expression and chemical modification enables production of active microbial transglutaminase from E. coli cytoplasm. Int J Biol Macromol 2023; 253:127355. [PMID: 37838118 DOI: 10.1016/j.ijbiomac.2023.127355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
Microbial transglutaminase (MTG) is a usable enzyme for biomacromolecule modification. In the present study, a "molecular chaperonin" strategy was developed to produce MTG in E. coli cytoplasm with high expression level and a "small molecule-mediated chemical modification" strategy was adopted to strip propeptide chaperonin efficiently during purification. Propeptide (Pro) was expressed separately as a chaperonin to facilitate MTG expression in E. coli cytoplasm with a yield up to 300 mg or about 9 kU from 1 L fed-batch culture. Furthermore, small molecular chemicals were applied to interfere the interaction between MTG and Pro. Chemical acetylation was identified as a suitable method to strip Pro resulting in pure MTG with high specific activity up to 49.6 U/mg. The purified acetylated MTG was characterized by MS analysis. The deconvoluted mass and Peptide Sequence Tags analysis confirmed acetylation on amino groups of MTG protein. Finally, the applications of obtained MTG were demonstrated via protein polymerization of bovine serum albumin and PEGylation of human interferon-α2b. Our method provides MTG with high purity and specific activity as well as unique merit with masked amino groups thus avoiding self-polymerization and cross-linking between MTG and substrates.
Collapse
Affiliation(s)
- Zitao Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Shuang Xing
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Jing Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China; School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276826, China
| | - Xiaocong Wu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Sichao Zhang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Di Ma
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China
| | - Xianwei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
41
|
Choi HP, Yang JH, Azadzoi KM. Differential Post-Translational Modifications of Proteins in Bladder Ischemia. Biomedicines 2023; 12:81. [PMID: 38255188 PMCID: PMC10813800 DOI: 10.3390/biomedicines12010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Clinical and basic research suggests that bladder ischemia may be an independent variable in the development of lower urinary tract symptoms (LUTS). We have reported that ischemic changes in the bladder involve differential expression and post-translational modifications (PTMs) of the protein's functional domains. In the present study, we performed in-depth analysis of a previously reported proteomic dataset to further characterize proteins PTMs in bladder ischemia. Our proteomic analysis of proteins in bladder ischemia detected differential formation of non-coded amino acids (ncAAs) that might have resulted from PTMs. In-depth analysis revealed that three groups of proteins in the bladder proteome, including contractile proteins and their associated proteins, stress response proteins, and cell signaling-related proteins, are conspicuously impacted by ischemia. Differential PTMs of proteins by ischemia seemed to affect important signaling pathways in the bladder and provoke critical changes in the post-translational structural integrity of the stress response, contractile, and cell signaling-related proteins. Our data suggest that differential PTMs of proteins may play a role in the development of cellular stress, sensitization of smooth muscle cells to contractile stimuli, and deferential cell signaling in bladder ischemia. These observations may provide the foundation for future research to validate and define clinical translation of the modified biomarkers for precise diagnosis of bladder dysfunction and the development of new therapeutic targets against LUTS.
Collapse
Affiliation(s)
- Han-Pil Choi
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Jing-Hua Yang
- Proteomics Laboratory, Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA;
| | - Kazem M. Azadzoi
- Departments of Urology and Pathology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA
| |
Collapse
|
42
|
Chapman J, Paukner M, Leser M, Teng KW, Koide S, Holder M, Armache KJ, Becker C, Ueberheide B, Brenowitz M. Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting. Anal Chem 2023; 95:18316-18325. [PMID: 38049117 PMCID: PMC10734636 DOI: 10.1021/acs.analchem.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Collapse
Affiliation(s)
- Jessica
R. Chapman
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
| | - Max Paukner
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Micheal Leser
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Kai Wen Teng
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
| | - Shohei Koide
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Marlene Holder
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Chris Becker
- Protein
Metrics Inc., Cupertino, California 95014, United States
| | - Beatrix Ueberheide
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
43
|
Mahoney KE, Chang V, Lucas TM, Maruszko K, Malaker SA. Optimized mucin-selective enrichment strategy to probe the mucinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572204. [PMID: 38187615 PMCID: PMC10769219 DOI: 10.1101/2023.12.18.572204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we optimized our previous enrichment method to include elution conditions amenable to mucinase digestion and downstream analysis with mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all other enrichment techniques tested. This allowed for effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.
Collapse
Affiliation(s)
- Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
44
|
Susanto TT, Hung V, Levine AG, Kerr CH, Yoo Y, Chen Y, Oses-Prieto JA, Fromm L, Fujii K, Wernig M, Burlingame AL, Ruggero D, Barna M. RAPIDASH: A tag-free enrichment of ribosome-associated proteins reveals compositional dynamics in embryonic tissues and stimulated macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570613. [PMID: 38106052 PMCID: PMC10723405 DOI: 10.1101/2023.12.07.570613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.
Collapse
Affiliation(s)
- Teodorus Theo Susanto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew G Levine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lisa Fromm
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kotaro Fujii
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform co-regulation network and glycan modification alterations in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566889. [PMID: 38014218 PMCID: PMC10680592 DOI: 10.1101/2023.11.13.566889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we present a new paradigm of proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified over 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of co-regulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide novel insights and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
|
46
|
Rojas Ramírez C, Espino JA, Jones LM, Polasky DA, Nesvizhskii AI. Efficient Analysis of Proteome-Wide FPOP Data by FragPipe. Anal Chem 2023; 95:16131-16137. [PMID: 37878603 DOI: 10.1021/acs.analchem.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Monitoring protein structure before and after environmental alterations (e.g., different cell states) can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows for monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent-accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and a lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP data sets. Our workflow, implemented as part of the FragPipe computational platform, combines the speed of the MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 150% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored.
Collapse
Affiliation(s)
- Carolina Rojas Ramírez
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica A Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, United States
| | - Lisa M Jones
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California 92093, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
47
|
Hegelmeyer NK, Parkin LA, Previti ML, Andrade J, Utama R, Sejour RJ, Gardin J, Muller S, Ketchum S, Yurovsky A, Futcher B, Goodwin S, Ueberheide B, Seeliger JC. Gene recoding by synonymous mutations creates promiscuous intragenic transcription initiation in mycobacteria. mBio 2023; 14:e0084123. [PMID: 37787543 PMCID: PMC10653884 DOI: 10.1128/mbio.00841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb. We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is one of the first reports that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.
Collapse
Affiliation(s)
- Nuri K. Hegelmeyer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Richard J. Sejour
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Justin Gardin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Stephanie Muller
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Steven Ketchum
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Alisa Yurovsky
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
48
|
Rangel-Angarita V, Mahoney KE, Kwon C, Sarker R, Lucas TM, Malaker SA. False-Positive Glycopeptide Identification via In-FAIMS Fragmentation. JACS AU 2023; 3:2498-2509. [PMID: 37772174 PMCID: PMC10523363 DOI: 10.1021/jacsau.3c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates glycopeptides in the gas phase prior to mass spectrometry (MS) analysis, thus offering the potential to analyze glycopeptides without prior enrichment. Several studies have demonstrated the ability of FAIMS to enhance glycopeptide detection but have primarily focused on N-glycosylation. Here, we evaluated FAIMS for O-glycoprotein and mucin-domain glycoprotein analysis using samples of varying complexity. We demonstrated that FAIMS was useful in increasingly complex samples as it allowed for the identification of more glycosylated species. However, during our analyses, we observed a phenomenon called "in FAIMS fragmentation" (IFF) akin to in source fragmentation but occurring during FAIMS separation. FAIMS experiments showed a 2- to 5-fold increase in spectral matches from IFF compared with control experiments. These results were also replicated in previously published data, indicating that this is likely a systemic occurrence when using FAIMS. Our study highlights that although there are potential benefits to using FAIMS separation, caution must be exercised in data analysis because of prevalent IFF, which may limit its applicability in the broader field of O-glycoproteomics.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New
Haven, Connecticut 06511, United States
| | - Keira E. Mahoney
- Department of Chemistry, Yale University, 275 Prospect Street, New
Haven, Connecticut 06511, United States
| | - Catherine Kwon
- Department of Chemistry, Yale University, 275 Prospect Street, New
Haven, Connecticut 06511, United States
| | - Raibat Sarker
- Department of Chemistry, Yale University, 275 Prospect Street, New
Haven, Connecticut 06511, United States
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, 275 Prospect Street, New
Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New
Haven, Connecticut 06511, United States
| |
Collapse
|
49
|
Cerullo AR, McDermott MB, Pepi LE, Liu ZL, Barry D, Zhang S, Yang X, Chen X, Azadi P, Holford M, Braunschweig AB. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat Commun 2023; 14:5361. [PMID: 37660066 PMCID: PMC10475054 DOI: 10.1038/s41467-023-41094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail, Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials. C. aspersum secretes three mucus-one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative "mucomics" approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences between C. aspersum mucus shows how considering structure at all levels can inform the design of mucus-inspired materials.
Collapse
Affiliation(s)
- Antonio R Cerullo
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Maxwell B McDermott
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhi-Lun Liu
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Diariou Barry
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sheng Zhang
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Xi Chen
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Physics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mande Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA
| | - Adam B Braunschweig
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
50
|
Peng W, den Boer MA, Tamara S, Mokiem NJ, van der Lans SPA, Bondt A, Schulte D, Haas PJ, Minnema MC, Rooijakkers SHM, van Zuilen AD, Heck AJR, Snijder J. Direct Mass Spectrometry-Based Detection and Antibody Sequencing of Monoclonal Gammopathy of Undetermined Significance from Patient Serum: A Case Study. J Proteome Res 2023; 22:3022-3028. [PMID: 37499263 PMCID: PMC10476240 DOI: 10.1021/acs.jproteome.3c00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Indexed: 07/29/2023]
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases.
Collapse
Affiliation(s)
- Weiwei Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Nadia J. Mokiem
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sjors P. A. van der Lans
- Medical
Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Albert Bondt
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Douwe Schulte
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Pieter-Jan Haas
- Medical
Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Monique C. Minnema
- Department
of Hematology, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Medical
Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Arjan D. van Zuilen
- Department
of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|