1
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
2
|
Solek CM, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol 2017; 427:131-147. [PMID: 28479339 DOI: 10.1016/j.ydbio.2017.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 02/06/2023]
Abstract
Lineage tracing of specific populations of progenitor cells provides crucial information about developmental programs. Four members of the Dlx homeobox gene family, Dlx1,2, 5 and 6, are involved in the specification of γ-aminobutyric acid (GABA)ergic neurons in the vertebrate forebrain. Orthologous genes in mammals and teleost show similarities in expression patterns and transcriptional regulation mechanisms. We have used lineage tracing to permanently label dlx-expressing cells in the zebrafish and have characterized the progeny of these cells in the larva and in the juvenile and adult brain. We have found that dlx1a/2a and dlx5a/6a expressing progenitors give rise, for the most part, to small populations of cells which constitute only a small proportion of GABAergic cells in the adult brain tissue. Moreover, some of the cells do not acquire a neuronal phenotype suggesting that, regardless of the time a cell expresses dlx genes in the brain, it can potentially give rise to cells other than neurons. In some instances, labeling larval dlx5a/6a-expressing cells, but not dlx1a/2a-expressing cells, results in massively expanding, widespread clonal expansion throughout the adult brain. Our data provide a detailed lineage analysis of the dlx1a/2a and dlx5a/6a expressing progenitors in the zebrafish brain and lays the foundation for further characterization of the role of these transcription factors beyond the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Cynthia M Solek
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5; Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4
| | - Shengrui Feng
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Sofia Perin
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5
| | - Hellen Weinschutz Mendes
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5
| | - Marc Ekker
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
3
|
Parrilla M, Chang I, Degl'Innocenti A, Omura M. Expression of homeobox genes in the mouse olfactory epithelium. J Comp Neurol 2016; 524:2713-39. [PMID: 27243442 DOI: 10.1002/cne.24051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Parrilla
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Isabelle Chang
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Andrea Degl'Innocenti
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany.,Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Masayo Omura
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
4
|
|
5
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
6
|
Romero-Guevara R, Cencetti F, Donati C, Bruni P. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss? Front Aging Neurosci 2015; 7:60. [PMID: 25954197 PMCID: PMC4407579 DOI: 10.3389/fnagi.2015.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future studies.
Collapse
Affiliation(s)
- Ricardo Romero-Guevara
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Francesca Cencetti
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Chiara Donati
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Paola Bruni
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| |
Collapse
|
7
|
Hafemeister C, Romero R, Bilal E, Meyer P, Norel R, Rhrissorrakrai K, Bonneau R, Tarca AL. Inter-species pathway perturbation prediction via data-driven detection of functional homology. Bioinformatics 2014; 31:501-8. [PMID: 25150249 DOI: 10.1093/bioinformatics/btu570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Experiments in animal models are often conducted to infer how humans will respond to stimuli by assuming that the same biological pathways will be affected in both organisms. The limitations of this assumption were tested in the IMPROVER Species Translation Challenge, where 52 stimuli were applied to both human and rat cells and perturbed pathways were identified. In the Inter-species Pathway Perturbation Prediction sub-challenge, multiple teams proposed methods to use rat transcription data from 26 stimuli to predict human gene set and pathway activity under the same perturbations. Submissions were evaluated using three performance metrics on data from the remaining 26 stimuli. RESULTS We present two approaches, ranked second in this challenge, that do not rely on sequence-based orthology between rat and human genes to translate pathway perturbation state but instead identify transcriptional response orthologs across a set of training conditions. The translation from rat to human accomplished by these so-called direct methods is not dependent on the particular analysis method used to identify perturbed gene sets. In contrast, machine learning-based methods require performing a pathway analysis initially and then mapping the pathway activity between organisms. Unlike most machine learning approaches, direct methods can be used to predict the activation of a human pathway for a new (test) stimuli, even when that pathway was never activated by a training stimuli. AVAILABILITY Gene expression data are available from ArrayExpress (accession E-MTAB-2091), while software implementations are available from http://bioinformaticsprb.med.wayne.edu?p=50 and http://goo.gl/hJny3h. CONTACT christoph.hafemeister@nyu.edu or atarca@med.wayne.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Christoph Hafemeister
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Roberto Romero
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Erhan Bilal
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Pablo Meyer
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Raquel Norel
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Kahn Rhrissorrakrai
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Richard Bonneau
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| | - Adi L Tarca
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Heude É, Shaikho S, Ekker M. The dlx5a/dlx6a genes play essential roles in the early development of zebrafish median fin and pectoral structures. PLoS One 2014; 9:e98505. [PMID: 24858471 PMCID: PMC4032342 DOI: 10.1371/journal.pone.0098505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution.
Collapse
Affiliation(s)
- Églantine Heude
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
10
|
Fujimoto S, Oisi Y, Kuraku S, Ota KG, Kuratani S. Non-parsimonious evolution of hagfish Dlx genes. BMC Evol Biol 2013; 13:15. [PMID: 23331926 PMCID: PMC3552724 DOI: 10.1186/1471-2148-13-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background The number of members of the Dlx gene family increased during the two rounds of whole-genome duplication that occurred in the common ancestor of the vertebrates. Because the Dlx genes are involved in the development of the cranial skeleton, brain, and sensory organs, their expression patterns have been analysed in various organisms in the context of evolutionary developmental biology. Six Dlx genes have been isolated in the lampreys, a group of living jawless vertebrates (cyclostomes), and their expression patterns analysed. However, little is known about the Dlx genes in the hagfish, the other cyclostome group, mainly because the embryological analysis of this animal is difficult. Results To identify the hagfish Dlx genes and describe their expression patterns, we cloned the cDNA from embryos of the Japanese inshore hagfish Eptatretus burgeri. Our results show that the hagfish has at least six Dlx genes and one pseudogene. In a phylogenetic analysis, the hagfish Dlx genes and those of the lampreys tended to be excluded from the clade of the gnathostome Dlx genes. In several cases, the lamprey Dlx genes clustered with the clade consisting of two hagfish genes, suggesting that independent gene duplications have occurred in the hagfish lineage. Analysis of the expression of these genes showed distinctive overlapping expression patterns in the cranial mesenchymal cells and the inner ear. Conclusions Independent duplication, pseudogenization, and loss of the Dlx genes probably occurred in the hagfish lineage after its split from the other vertebrate lineages. This pattern is reminiscent of the non-parsimonious evolution of its morphological traits, including its inner ear and vertebrae, which indicate that this group is an early-branching lineage that diverged before those characters evolved.
Collapse
Affiliation(s)
- Satoko Fujimoto
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Garaffo G, Provero P, Molineris I, Pinciroli P, Peano C, Battaglia C, Tomaiuolo D, Etzion T, Gothilf Y, Santoro M, Merlo GR. Profiling, Bioinformatic, and Functional Data on the Developing Olfactory/GnRH System Reveal Cellular and Molecular Pathways Essential for This Process and Potentially Relevant for the Kallmann Syndrome. Front Endocrinol (Lausanne) 2013; 4:203. [PMID: 24427155 PMCID: PMC3876029 DOI: 10.3389/fendo.2013.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022] Open
Abstract
During embryonic development, immature neurons in the olfactory epithelium (OE) extend axons through the nasal mesenchyme, to contact projection neurons in the olfactory bulb. Axon navigation is accompanied by migration of the GnRH+ neurons, which enter the anterior forebrain and home in the septo-hypothalamic area. This process can be interrupted at various points and lead to the onset of the Kallmann syndrome (KS), a disorder characterized by anosmia and central hypogonadotropic hypogonadism. Several genes has been identified in human and mice that cause KS or a KS-like phenotype. In mice a set of transcription factors appears to be required for olfactory connectivity and GnRH neuron migration; thus we explored the transcriptional network underlying this developmental process by profiling the OE and the adjacent mesenchyme at three embryonic ages. We also profiled the OE from embryos null for Dlx5, a homeogene that causes a KS-like phenotype when deleted. We identified 20 interesting genes belonging to the following categories: (1) transmembrane adhesion/receptor, (2) axon-glia interaction, (3) scaffold/adapter for signaling, (4) synaptic proteins. We tested some of them in zebrafish embryos: the depletion of five (of six) Dlx5 targets affected axonal extension and targeting, while three (of three) affected GnRH neuron position and neurite organization. Thus, we confirmed the importance of cell-cell and cell-matrix interactions and identified new molecules needed for olfactory connection and GnRH neuron migration. Using available and newly generated data, we predicted/prioritized putative KS-disease genes, by building conserved co-expression networks with all known disease genes in human and mouse. The results show the overall validity of approaches based on high-throughput data and predictive bioinformatics to identify genes potentially relevant for the molecular pathogenesis of KS. A number of candidate will be discussed, that should be tested in future mutation screens.
Collapse
Affiliation(s)
- Giulia Garaffo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Ivan Molineris
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Patrizia Pinciroli
- Department of Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Milano, Italy
| | - Clelia Peano
- Institute of Biomedical Technology, National Research Council, ITB-CNR, Segrate, Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Milano, Italy
- Institute of Biomedical Technology, National Research Council, ITB-CNR, Segrate, Italy
| | - Daniela Tomaiuolo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Talya Etzion
- The George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Gothilf
- The George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv, Israel
| | - Massimo Santoro
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
- *Correspondence: Giorgio R. Merlo, Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy e-mail:
| |
Collapse
|
12
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
13
|
Sumiyama K, Miyake T, Grimwood J, Stuart A, Dickson M, Schmutz J, Ruddle FH, Myers RM, Amemiya CT. Theria-specific homeodomain and cis-regulatory element evolution of the Dlx3-4 bigene cluster in 12 different mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:639-50. [PMID: 22951979 DOI: 10.1002/jez.b.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 11/11/2022]
Abstract
The mammalian Dlx3 and Dlx4 genes are configured as a bigene cluster, and their respective expression patterns are controlled temporally and spatially by cis-elements that largely reside within the intergenic region of the cluster. Previous work revealed that there are conspicuously conserved elements within the intergenic region of the Dlx3-4 bigene clusters of mouse and human. In this paper we have extended these analyses to include 12 additional mammalian taxa (including a marsupial and a monotreme) in order to better define the nature and molecular evolutionary trends of the coding and non-coding functional elements among morphologically divergent mammals. Dlx3-4 regions were fully sequenced from 12 divergent taxa of interest. We identified three theria-specific amino acid replacements in homeodomain of Dlx4 gene that functions in placenta. Sequence analyses of constrained nucleotide sites in the intergenic non-coding region showed that many of the intergenic conserved elements are highly conserved and have evolved slowly within the mammals. In contrast, a branchial arch/craniofacial enhancer I37-2 exhibited accelerated evolution at the branch between the monotreme and therian common ancestor despite being highly conserved among therian species. Functional analysis of I37-2 in transgenic mice has shown that the equivalent region of the platypus fails to drive transcriptional activity in branchial arches. These observations, taken together with our molecular evolutionary data, suggest that theria-specific episodic changes in the I37-2 element may have contributed to craniofacial innovation at the base of the mammalian lineage.
Collapse
Affiliation(s)
- Kenta Sumiyama
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ogino H, Ochi H, Reza HM, Yasuda K. Transcription factors involved in lens development from the preplacodal ectoderm. Dev Biol 2012; 363:333-47. [PMID: 22269169 DOI: 10.1016/j.ydbio.2012.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 12/14/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
Abstract
Lens development is a stepwise process accompanied by the sequential activation of transcription factors. Transcription factor genes can be classified into three groups according to their functions: the first group comprises preplacodal genes, which are implicated in the formation of the preplacodal ectoderm that serves as a common primordium for cranial sensory tissues, including the lens. The second group comprises lens-specification genes, which establish the lens-field within the preplacodal ectoderm. The third group comprises lens-differentiation genes, which promote lens morphogenesis after the optic vesicle makes contact with the presumptive lens ectoderm. Analyses of the regulatory interactions between these genes have provided an overview of lens development, highlighting crucial roles for positive cross-regulation in fate specification and for feed-forward regulation in the execution of terminal differentiation. This overview also sheds light upon the mechanisms of how preplacodal gene activities lead to the activation of genes involved in lens-specification.
Collapse
Affiliation(s)
- Hajime Ogino
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | | | | | | |
Collapse
|
15
|
Yu M, Xi Y, Pollack J, Debiais‐Thibaud M, MacDonald RB, Ekker M. Activity of
dlx5a
/
dlx6a
regulatory elements during zebrafish GABAergic neuron development. Int J Dev Neurosci 2011; 29:681-91. [DOI: 10.1016/j.ijdevneu.2011.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 02/02/2023] Open
Affiliation(s)
- Man Yu
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
- Department of Cellular and Molecular MedicineUniversity of Ottawa451 Smyth RoadOttawaONCanadaK1H 8M5
| | - Yanwei Xi
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Jacob Pollack
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Mélanie Debiais‐Thibaud
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Ryan B. MacDonald
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
- Department of Cellular and Molecular MedicineUniversity of Ottawa451 Smyth RoadOttawaONCanadaK1H 8M5
| |
Collapse
|
16
|
Gitton Y, Benouaiche L, Vincent C, Heude E, Soulika M, Bouhali K, Couly G, Levi G. Dlx5 and Dlx6 expression in the anterior neural fold is essential for patterning the dorsal nasal capsule. Development 2011; 138:897-903. [PMID: 21270050 DOI: 10.1242/dev.057505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis of the vertebrate facial skeleton depends upon inductive interactions between cephalic neural crest cells (CNCCs) and cephalic epithelia. The nasal capsule is a CNCC-derived cartilaginous structure comprising a ventral midline bar (mesethmoid) overlaid by a dorsal capsule (ectethmoid). Although Shh signalling from the anterior-most region of the endoderm (EZ-I) patterns the mesethmoid, the cues involved in ectethmoid induction are still undefined. Here, we show that ectethmoid formation depends upon Dlx5 and Dlx6 expression in a restricted ectodermal territory of the anterior neural folds, which we name NF-ZA. In both chick and mouse neurulas, Dlx5 and Dlx6 expression is mostly restricted to NF-ZA. Simultaneous Dlx5 and Dlx6 inactivation in the mouse precludes ectethmoid formation, while the mesethmoid is still present. Consistently, siRNA-mediated downregulation of Dlx5 and Dlx6 in the cephalic region of the early avian neurula specifically prevents ectethmoid formation, whereas other CNCC-derived structures, including the mesethmoid, are not affected. Similarly, NF-ZA surgical removal in chick neurulas averts ectethmoid development, whereas grafting a supernumerary NF-ZA results in an ectopic ectethmoid. Simultaneous ablation or grafting of both NF-ZA and EZ-I result, respectively, in the absence or duplication of both dorsal and ventral nasal capsule components. The present work shows that early ectodermal and endodermal signals instruct different contingents of CNCCs to form the ectethmoid and the mesethmoid, which then assemble to form a complete nasal capsule.
Collapse
Affiliation(s)
- Yorick Gitton
- Evolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
MacDonald RB, Debiais-Thibaud M, Talbot JC, Ekker M. The relationship between dlx and gad1 expression indicates highly conserved genetic pathways in the zebrafish forebrain. Dev Dyn 2010; 239:2298-306. [PMID: 20658694 DOI: 10.1002/dvdy.22365] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Dlx genes encode a family of transcription factors important for the development of the vertebrate forebrain. These genes have very similar expression domains during the development of the telencephalon in mice and play a role in gamma-aminobutyric acid (GABAergic) interneuron differentiation. We have used triple fluorescent in situ hybridization to study the relative expression domains of the dlx and gad1 genes in the zebrafish telencephalon and diencephalon. We also generated transgenic zebrafish with regulatory elements from the zebrafish dlx1a/2a locus. The zebrafish dlx regulatory elements recapitulated dlx expression in the forebrain and mimicked the relationship between the expression of the dlx genes and gad1. Finally, we show that a putative enhancer located downstream of dlx2b can also activate reporter gene expression in a tissue-specific manner similar to endogenous dlx2b expression. Our results indicate the dlx genes are regulated by an evolutionarily conserved genetic pathway and may play a role in GABAergic interneuron differentiation in the zebrafish forebrain.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | | | | | | |
Collapse
|
18
|
Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K. Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev Biol 2010; 344:158-71. [PMID: 20471971 DOI: 10.1016/j.ydbio.2010.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
All cranial sensory organs and sensory neurons of vertebrates develop from cranial placodes. In chick, amphibians and zebrafish, all placodes originate from a common precursor domain, the pre-placodal region (PPR), marked by the expression of Six1/4 and Eya1/2. However, the PPR has never been described in mammals and the mechanism involved in the formation of PPR is poorly defined. Here, we report the expression of Six1 in the horseshoe-shaped mouse ectoderm surrounding the anterior neural plate in a pattern broadly similar to that of non-mammalian vertebrates. To elucidate the identity of Six1-positive mouse ectoderm, we searched for enhancers responsible for Six1 expression by in vivo enhancer assays. One conserved non-coding sequence, Six1-14, showed specific enhancer activity in the rostral PPR of chick and Xenopus and in the mouse ectoderm. These results strongly suggest the presence of PPR in mouse and that it is conserved in vertebrates. Moreover, we show the importance of the homeodomain protein-binding sites of Six1-14, the Six1 rostral PPR enhancer, for enhancer activity, and that Dlx5, Msx1 and Pax7 are candidate binding factors that regulate the level and area of Six1 expression, and thereby the location of the PPR. Our findings provide critical information and tools to elucidate the molecular mechanism of early sensory development and have implications for the development of sensory precursor/stem cells.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
20
|
Abstract
For more than a decade, the zebrafish has proven to be an excellent model organism to investigate the mechanisms of neurogenesis during development. The often cited advantages, namely external development, genetic, and optical accessibility, have permitted direct examination and experimental manipulations of neurogenesis during development. Recent studies have begun to investigate adult neurogenesis, taking advantage of its widespread occurrence in the mature zebrafish brain to investigate the mechanisms underlying neural stem cell maintenance and recruitment. Here we provide a comprehensive overview of the tools and techniques available to study neurogenesis in zebrafish both during development and in adulthood. As useful resources, we provide tables of available molecular markers, transgenic, and mutant lines. We further provide optimized protocols for studying neurogenesis in the adult zebrafish brain, including in situ hybridization, immunohistochemistry, in vivo lipofection and electroporation methods to deliver expression constructs, administration of bromodeoxyuridine (BrdU), and finally slice cultures. These currently available tools have put zebrafish on par with other model organisms used to investigate neurogenesis.
Collapse
Affiliation(s)
- Prisca Chapouton
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
21
|
Bhattacharyya S, Bronner-Fraser M. Competence, specification and commitment to an olfactory placode fate. Development 2009; 135:4165-77. [PMID: 19029046 DOI: 10.1242/dev.026633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nasal placode shares a common origin with other sensory placodes within a pre-placodal domain at the cranial neural plate border. However, little is known about early events in nasal placode development as it segregates from prospective lens, neural tube and epidermis. Here, Dlx3, Dlx5, Pax6 and the pan-neuronal marker Hu serve as molecular labels to follow the maturation of olfactory precursors over time. When competence to form olfactory placode was tested by grafting ectoderm from different axial levels to the anterior neural fold, we found that competence is initially broad for head, but not trunk, ectoderm and declines rapidly with time. Isolated olfactory precursors are specified by HH10, concomitant with their complete segregation from other placodal, epidermal and neural progenitors. Heterotopic transplantation of olfactory progenitors reveals they are capable of autonomous differentiation only 12 hours later, shortly before overt placode invagination at HH14. Taken together, these results show that olfactory placode development is a step-wise process whereby signals from adjacent tissues specify competent ectoderm at or before HH10, followed by gradual commitment just prior to morphological differentiation.
Collapse
Affiliation(s)
- Sujata Bhattacharyya
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
22
|
Ghanem N, Yu M, Poitras L, Rubenstein JLR, Ekker M. Characterization of a distinct subpopulation of striatal projection neurons expressing the Dlx genes in the basal ganglia through the activity of the I56ii enhancer. Dev Biol 2008; 322:415-24. [PMID: 18706405 DOI: 10.1016/j.ydbio.2008.07.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/18/2008] [Accepted: 07/25/2008] [Indexed: 11/17/2022]
Abstract
Regulation of region-specific neuronal differentiation and migration in the embryonic forebrain is a complex mechanism that involves a variety of transcription factors such as the Dlx genes. At least four cis-acting regulatory elements (CREs) are responsible for the Dlx transcriptional regulation in the subcortical telencephalon and the rostral diencephalon. These include I12b and URE2 in the Dlx1/2 bigene cluster, and, I56i and I56ii in the Dlx5/6 cluster. We previously reported that URE2, I12b, and I56i, mark different progenitor cell populations in the ganglionic eminences as well as different subtypes of adult cortical interneurons. Here, we carried out a detailed spatial and temporal analysis of the I56ii CRE activity in the developing telencephalon between E10.5 and E15.5, and compared its activity with the other three Dlx CREs using lacZ reporter genes in transgenic mice. We show that I56ii marks distinct group(s) of neurons located in the superficial mantle of the LGE and MGE between E11.5 and E13.5. The I56ii-positive cells are Dlx- and GABA-immunoreactive. However, unlike the other CREs, I56ii does not label interneuron progenitors in the basal ganglia, nor tangentially migrating cells to the cortex at E13.5. Instead, I56ii-positive cells mark a subpopulation(s) of post-mitotic projection neurons that tangentially migrate from the LGE to the deep mantle of the MGE and reside between the subventricular zone and the globus pallidus during midgestation. The majority of these neurons express the striatal markers Meis2 and Islet1. Moreover, both Meis2 and Islet1 activate transcription of a reporter gene containing the I56ii sequence in co-transfection assays, indicating that these transcriptional factors may be potential upstream modulators of the Dlx genes in vivo.
Collapse
Affiliation(s)
- Noël Ghanem
- Center for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
23
|
Abe G, Ide H, Tamura K. Function of FGF signaling in the developmental process of the median fin fold in zebrafish. Dev Biol 2006; 304:355-66. [PMID: 17258191 DOI: 10.1016/j.ydbio.2006.12.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 12/12/2022]
Abstract
Median fins, unpaired appendages in fish, are fundamental locomotory organs that are believed to have evolved before paired lateral appendages in vertebrates. However, the early process of median fin development remains largely unknown. We investigated the early development of the median fin fold, a rudiment of median fins, and report here the process in zebrafish embryos and the function of FGF signaling in the process. Using expressions of three genes, dlx5a, sp9 and fgf24, as markers of different phases of fold development, our findings suggest that the early process of median fin fold development can be divided into two steps, specification of the median fin fold territory and construction of the fold structure. Both loss-of-function and gain-of-function assays revealed that FGF signaling plays roles in each step, suggesting a common mechanism for the development of median appendages and paired lateral appendages.
Collapse
Affiliation(s)
- Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
24
|
Borday-Birraux V, Van der Heyden C, Debiais-Thibaud M, Verreijdt L, Stock DW, Huysseune A, Sire JY. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications. Evol Dev 2006; 8:130-41. [PMID: 16509892 DOI: 10.1111/j.1525-142x.2006.00084.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.
Collapse
|
25
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
26
|
Mackay DR, Hu M, Li B, Rhéaume C, Dai X. The mouse Ovol2 gene is required for cranial neural tube development. Dev Biol 2006; 291:38-52. [PMID: 16423343 PMCID: PMC2891516 DOI: 10.1016/j.ydbio.2005.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 02/02/2023]
Abstract
The Ovo gene family encodes a group of evolutionarily conserved transcription factors and includes members that reside downstream of key developmental signaling pathways such as Wg/Wnt and BMP/TGF-beta. In the current study, we explore the function of Ovol2, one of three Ovo paralogues in mice. We report that Ovol2 is expressed during early-mid embryogenesis, particularly in the inner cell mass at E3.5, in epiblast at E6.5, and at later stages in ectodermally derived tissues such as the rostral surface (epidermal) ectoderm. Embryos in which Ovol2 is ablated exhibit lethality by E10.5, prior to which they display severe defects including an open cranial neural tube. The neural defects are associated with improper Shh expression in the underlying rostral axial mesoderm and localized changes of neural marker expression along the dorsoventral axis, as well as with expanded cranial neural tissue and reduced cranial surface ectoderm culminating in a lateral shift of the neuroectoderm/surface ectoderm border. We propose that these defects reflect the involvement of Ovol2 in independent processes such as regionalized gene expression and neural/non-neural ectodermal patterning. Additionally, we present evidence that Ovol2 is required for efficient migration and survival of neural crest cells that arise at the neuroectoderm/surface ectoderm border, but not for their initial formation. Collectively, our studies indicate that Ovol2 is a key regulator of neural development and reveal a previously unexplored role for Ovo genes in mammalian embryogenesis.
Collapse
Affiliation(s)
- Douglas R. Mackay
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Ming Hu
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Baoan Li
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Catherine Rhéaume
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Xing Dai
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
- Corresponding author. Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA. Fax: +1 949 824 2688. (X. Dai)
| |
Collapse
|
27
|
Verreijdt L, Debiais-Thibaud M, Borday-Birraux V, Van der Heyden C, Sire JY, Huysseune A. Expression of thedlx gene family during formation of the cranial bones in the zebrafish (Danio rerio): Differential involvement in the visceral skeleton and braincase. Dev Dyn 2006; 235:1371-89. [PMID: 16534783 DOI: 10.1002/dvdy.20734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have used dlx genes to test the hypothesis of a separate developmental program for dermal and cartilage bones within the neuro- and splanchnocranium by comparing expression patterns of all eight dlx genes during cranial bone formation in zebrafish from 1 day postfertilization (dPF) to 15 dPF. dlx genes are expressed in the visceral skeleton but not during the formation of dermal or cartilage bones of the braincase. The spatiotemporal expression pattern of all the members of the dlx gene family, support the view that dlx genes impart cellular identity to the different arches, required to make arch-specific dermal bones. Expression patterns seemingly associated with cartilage (perichondral) bones of the arches, in contrast, are probably related to ongoing differentiation of the underlying cartilage rather than with differentiation of perichondral bones themselves. Whether dlx genes originally functioned in the visceral skeleton only, and whether their involvement in the formation of neurocranial bones (as in mammals) is secondary, awaits clarification.
Collapse
Affiliation(s)
- L Verreijdt
- Ghent University, Biology Department, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
29
|
Abstract
Members of the Dlx gene family play essential roles in the development of the zebrafish and mouse inner ear, but little is known regarding Dlx genes and avian inner ear development. We have examined the inner ear expression patterns of Dlx1, Dlx2, Dlx3, Dlx5, and Dlx6 during the first 7 days of chicken embryonic development. Dlx1 and Dlx2 expression was seen only in nonneuronal cells of the cochleovestibular ganglion and nerves from stage 21 to stage 32. Dlx3 marks the otic placode beginning at stage 9 and becomes limited to epithelium adjacent to the hindbrain as invagination of the placode begins. Dlx3 expression then resolves to the dorsal otocyst and gradually becomes limited to the endolymphatic sac by stage 30. Dlx5 and Dlx6 expression in the developing inner ear is first seen at stages 12 and 13, respectively, in the rim of the otic pit, before spreading throughout the dorsal otocyst. As morphogenesis proceeds, Dlx5 and Dlx6 expression is seen throughout the forming semicircular canals and endolymphatic structures. During later stages, both genes are seen to mark the distal surface of the forming canals and display expression complementary to that of BMP4 in the vestibular sensory regions. Dlx5 expression is also seen in the lagena macula and the cochlear and vestibular nerves by stage 30. These findings suggest important roles for Dlx genes in the vestibular and neural development of the avian inner ear.
Collapse
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057-1922, USA
| | | | | |
Collapse
|
30
|
Abstract
Recent models of craniofacial development suggest the existence of a common pan-placodal domain lying next to the neural plate, from which all sensory placodes will arise. In support of this idea, several genes are expressed in the surface ectoderm of the head adjacent to the neural plate, before the appearance of genes in specific cranial placodes. In this study, we examine the expression patterns of the mouse Foxi class genes from embryonic day 6.5 to 10.5. Foxi2 is expressed throughout the cranial ectoderm adjacent to the neural plate from the 4-somite stage, later becoming excluded from the otic placode. Foxi3 is expressed in a broad region of the pan-placodal ectoderm adjacent to the neural plate from embryonic day (E) 6.75 to the first somite stage. Its expression becomes restricted to the ectoderm and the endoderm of the branchial pouches at E10.5. Foxi1 expression is first detected in the endolymphatic duct in the otic vesicle at E10.5. These results suggest that the mouse Foxi class genes may play important roles, both during cranial placode specification and in later development of individual cranial sensory structures and other organs derived from the cranial ectoderm.
Collapse
Affiliation(s)
- Takahiro Ohyama
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | | |
Collapse
|
31
|
Park BK, Sperber SM, Choudhury A, Ghanem N, Hatch GT, Sharpe PT, Thomas BL, Ekker M. Intergenic enhancers with distinct activities regulate Dlx gene expression in the mesenchyme of the branchial arches. Dev Biol 2004; 268:532-45. [PMID: 15063187 DOI: 10.1016/j.ydbio.2004.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 12/19/2003] [Accepted: 01/09/2004] [Indexed: 11/19/2022]
Abstract
The vertebrate Dlx genes, generally organized as tail-to-tail bigene clusters, are expressed in the branchial arch epithelium and mesenchyme with nested proximodistal expression implicating a code that underlies the fates of jaws. Little is known of the regulatory architecture that is responsible for Dlx gene expression in developing arches. We have identified two distinct cis-acting regulatory sequences, I12a and I56i, in the intergenic regions of the Dlx1/2 and Dlx5/6 clusters that act as enhancers in the arch mesenchyme. LacZ transgene expression containing I12a is restricted to a subset of Dlx-expressing ectomesenchyme in the first arch. The I56i enhancer is active in a broader domain in the first arch mesenchyme. Expression of transgenes containing either the I12a or the I56i enhancers is dependent on the presence of epithelium between the onset of their expression at E9-10 until independence at E11. Both enhancers positively respond to FGF8 and FGF9; however, the responses of the reporter transgenes were limited to their normal domain of expression. BMP4 had a negative effect on expression of both transgenes and counteracted the effects of FGF8. Furthermore, bosentan, a pharmacological inhibitor of Endothelin-1 signaling caused a loss of I56i-lacZ expression in the most distal aspects of the expression domain, corresponding to the area of Dlx-6 expression previously shown to be under the control of Endothelin-1. Thus, the combinatorial branchial arch expression of Dlx genes is achieved through interactions between signaling pathways and intrinsic cellular factors. I56i drives the entire expression of Dlx5/6 in the first arch and contains necessary sequences for regulation by at least three separate pathways, whereas I12a only replicates a small domain of endogenous expression, regulated in part by BMP-4 and FGF-8.
Collapse
Affiliation(s)
- Byung K Park
- Ottawa Health Research Institute at the Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Ghanem N, Jarinova O, Amores A, Long Q, Hatch G, Park BK, Rubenstein JLR, Ekker M. Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res 2003; 13:533-43. [PMID: 12670995 PMCID: PMC430168 DOI: 10.1101/gr.716103] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dlx homeobox genes of vertebrates are generally arranged as three bigene clusters on distinct chromosomes. The Dlx1/Dlx2, Dlx5/Dlx6, and Dlx3/Dlx7 clusters likely originate from duplications of an ancestral Dlx gene pair. Overlaps in expression are often observed between genes from the different clusters. To determine if the overlaps are a result of the conservation of enhancer sequences between paralogous clusters, we compared the Dlx1/2 and the Dlx5/Dlx6 intergenic regions from human, mouse, zebrafish, and from two pufferfish, Spheroides nephelus and Takifugu rubripes. Conservation between all five vertebrates is limited to four sequences, two in Dlx1/Dlx2 and two in Dlx5/Dlx6. These noncoding sequences are >75% identical over a few hundred base pairs, even in distant vertebrates. However, when compared to each other, the four intergenic sequences show a much more limited similarity. Each intergenic sequence acts as an enhancer when tested in transgenic animals. Three of them are active in the forebrain with overlapping patterns despite their limited sequence similarity. The lack of sequence similarity between paralogous intergenic regions and the high degree of sequence conservation of orthologous enhancers suggest a rapid divergence of Dlx intergenic regions early in chordate/vertebrate evolution followed by fixation of cis-acting regulatory elements.
Collapse
Affiliation(s)
- Noël Ghanem
- Ottawa Health Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nielsen C, Martinez P. Patterns of gene expression: homology or homocracy? Dev Genes Evol 2003; 213:149-54. [PMID: 12690454 DOI: 10.1007/s00427-003-0301-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/05/2003] [Indexed: 02/03/2023]
Abstract
Numerous papers over the years have stated that the original meaning of the term homology is historical and morphological and denotes organs/structures in two or more species derived from the same structure in their latest common ancestor. However, several more recent papers have extended the use of the term to cover organs/structures which are organised through the expression of homologous genes. This usage has created an ambiguity about the meaning of the term, and we propose to remove this by proposing a new term, homocracy, for organs/structures which are organised through the expression of identical patterning genes. We want to emphasise that the terms homologous and homocratic are not mutually exclusive. Many homologous structures are in all probability homocratic, whereas only a small number of homocratic structures are homologous.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
35
|
Affiliation(s)
- Elizabeth Quint
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
36
|
Levkowitz G, Zeller J, Sirotkin HI, French D, Schilbach S, Hashimoto H, Hibi M, Talbot WS, Rosenthal A. Zinc finger protein too few controls the development of monoaminergic neurons. Nat Neurosci 2003; 6:28-33. [PMID: 12469125 DOI: 10.1038/nn979] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 10/24/2002] [Indexed: 12/13/2022]
Abstract
The mechanism controlling the development of dopaminergic (DA) and serotonergic (5HT) neurons in vertebrates is not well understood. Here we characterized a zebrafish mutant--too few (tof)--that develops hindbrain 5HT and noradrenergic neurons, but does not develop hypothalamic DA and 5HT neurons. tof encodes a forebrain-specific zinc finger transcription repressor that is homologous to the mammalian Fezl (forebrain embryonic zinc finger-like protein). Mosaic and co-staining analyses showed that fezl was not expressed in DA or 5HT neurons and instead controlled development of these neurons non-cell-autonomously. Both the eh1-related repressor motif and the second zinc finger domain were necessary for tof function. Our results indicate that tof/fezl is a key component in regulating the development of monoaminergic neurons in the vertebrate brain.
Collapse
Affiliation(s)
- Gil Levkowitz
- Rinat Neuroscience Corporation, 3155 Porter Drive, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West Third Street, Los Angeles, California 90057, USA
| | | | | |
Collapse
|
38
|
Abstract
Inner ear induction, like induction of other tissues examined in recent years, is likely to be comprised of several stages. The process begins during gastrulation when the ectoderm is competent to respond to induction. It appears that a signal from the endomesoderm underlying the otic area during gastrulation initiates induction complemented by a signal from presumptive neural tissue. By the neural plate stage, a region of ectoderm outside the neural plate is "biased" toward ear formation; this process may be part of a more general "placodal" bias shared by several sensory tissues. Induction continues during neurulation when a signal from neural tissue (possibly augmented by mesoderm underlying the otic area) results in ectoderm committed to otic vesicle formation at the time of neural tube closure. Studies on several gene families implicate them in the ear determination process. Fibroblast Growth Factor (FGF) family members are clearly involved in induction: FGFs are appropriately expressed for such a role, and have been shown to be essential for inner ear development. FGFs also have inductive activity, although it is not clear if they are sufficient for ear induction. Activation of transcription factors in the otic ectoderm, for example, by Pax gene family members, provides evidence for important changes in the responding ectoderm beginning during gastrulation and continuing through specification at the end of neurulation, although few functional tests have defined the role of these genes in determination. The challenge remains to merge embryologic data with gene function studies to develop a clear model for the molecular basis of inner ear induction.
Collapse
Affiliation(s)
- Selina Noramly
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
39
|
Abstract
Distal-less is the earliest known gene specifically expressed in developing insect limbs; its expression is maintained throughout limb development. The homeodomain transcription factor encoded by Distal-less is required for the elaboration of proximodistal pattern elements in Drosophila limbs and can initiate proximodistal axis formation when expressed ectopically. Distal-less homologs, the Dlx genes, are expressed in developing appendages in at least six phyla, including chordates, consistent with requirements for Dlx function in normal appendage development across the animal kingdom. Recent work implicates the Dlx genes of vertebrates in a variety of other developmental processes ranging from neurogenesis to hematopoiesis. We review what is known about the invertebrate and vertebrate Dll/Dlx genes and their varied roles during development. We propose revising the vertebrate nomenclature to reflect phylogenetic relationships among the Dlx genes.
Collapse
Affiliation(s)
- Grace Panganiban
- Department of Anatomy, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
40
|
Abstract
Sensory placodes are ectodermal thickenings that give rise to elements of the vertebrate cranial sensory nervous system, including the inner ear and nose. Although mutations have been described in humans, mice and zebrafish that perturb ear and nose development, no mutation is known to prevent sensory placode formation. Thus, it has been postulated that a functional redundancy exists in the genetic mechanisms that govern sensory placode development. We describe a zebrafish deletion mutation, b380, which results in a lack of both otic and olfactory placodes.The b380 deletion removes several known genes and expressed sequence tags, including dlx3 and dlx7, two transcription factors that share a homoeobox domain similar in sequence to the Drosophila Distal-less gene. dlx3 and dlx7 are expressed in an overlapping pattern in the regions that produce the otic and olfactory placodes in zebrafish. We present evidence suggesting that it is specifically the removal of these two genes that leads to the otic and olfactory phenotype of b380 mutants. Using morpholinos, antisense oligonucleotides that effectively block translation of target genes, we find that functional reduction of both dlx genes contributes to placode loss. Expression patterns of the otic marker pax2.1, olfactory marker anxV and eya1, a marker of both placodes, in morpholino-injected embryos recapitulate the reduced expression of these genes seen in b380 mutants. We also examine expression of dlx3 and dlx7 in the morpholino-injected embryos and present evidence for existence of auto- and cross-regulatory control of expression among these genes.We demonstrate that dlx3 is necessary and sufficient for proper otic and olfactory placode development. However, our results indicate that dlx3 and dlx7 act in concert and their importance in placode formation is only revealed by inactivating both paralogs.
Collapse
Affiliation(s)
- Keely S Solomon
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
41
|
Sumiyama K, Irvine SQ, Stock DW, Weiss KM, Kawasaki K, Shimizu N, Shashikant CS, Miller W, Ruddle FH. Genomic structure and functional control of the Dlx3-7 bigene cluster. Proc Natl Acad Sci U S A 2002; 99:780-5. [PMID: 11792834 PMCID: PMC117382 DOI: 10.1073/pnas.012584999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Dlx genes are involved in early vertebrate morphogenesis, notably of the head. The six Dlx genes of mammals are arranged in three convergently transcribed bigene clusters. In this study, we examine the regulation of the Dlx3-7 cluster of the mouse. We obtained and sequenced human and mouse P1 clones covering the entire Dlx3-7 cluster. Comparative analysis of the human and mouse sequences revealed several highly conserved noncoding regions within 30 kb of the Dlx3-7-coding regions. These conserved elements were located both 5' of the coding exons of each gene and in the intergenic region 3' of the exons, suggesting that some enhancers might be shared between genes. We also found that the protein sequence of Dlx7 is evolving more rapidly than that of Dlx3. We conducted a functional study of the 79-kb mouse genomic clone to locate cis-element activity able to reproduce the endogenous expression pattern by using transgenic mice. We inserted a lacZ reporter gene into the first exon of the Dlx3 gene by using homologous recombination in yeast. Strong lacZ expression in embryonic (E) stage E9.5 and E10.5 mouse embryos was found in the limb buds and first and second visceral arches, consistent with the endogenous Dlx3 expression pattern. This result shows that the 79-kb region contains the major cis-elements required to direct the endogenous expression of Dlx3 at stage E10.5. To test for enhancer location, we divided the construct in the mid-intergenic region and injected the Dlx3 gene portion. This shortened fragment lacking Dlx7-flanking sequences is able to drive expression in the limb buds but not in the visceral arches. This observation is consistent with a cis-regulatory enhancer-sharing model within the Dlx bigene cluster.
Collapse
Affiliation(s)
- Kenta Sumiyama
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stadler BM, Stadler PF, Wagner GP, Fontana W. The topology of the possible: formal spaces underlying patterns of evolutionary change. J Theor Biol 2001; 213:241-74. [PMID: 11894994 DOI: 10.1006/jtbi.2001.2423] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current implementation of the Neo-Darwinian model of evolution typically assumes that the set of possible phenotypes is organized into a highly symmetric and regular space equipped with a notion of distance, for example, a Euclidean vector space. Recent computational work on a biophysical genotype-phenotype model based on the folding of RNA sequences into secondary structures suggests a rather different picture. If phenotypes are organized according to genetic accessibility, the resulting space lacks a metric and is formalized by an unfamiliar structure, known as a pre-topology. Patterns of phenotypic evolution-such as punctuation, irreversibility, modularity--result naturally from the properties of this space. The classical framework, however, addresses these patterns by exclusively invoking natural selection on suitably imposed fitness landscapes. We propose to extend the explanatory level for phenotypic evolution from fitness considerations alone to include the topological structure of phenotype space as induced by the genotype-phenotype map. We introduce the mathematical concepts and tools necessary to formalize the notion of accessibility pre-topology relative to which we can speak of continuity in the genotype-phenotype map and in evolutionary trajectories. We connect the factorization of a pre-topology into a product space with the notion of phenotypic character and derive a condition for factorization. Based on anecdotal evidence from the RNA model, we conjecture that this condition is not globally fulfilled, but rather confined to regions where the genotype-phenotype map is continuous. Equivalently, local regions of genotype space on which the map is discontinuous are associated with the loss of character autonomy. This is consistent with the importance of these regions for phenotypic innovation. The intention of the present paper is to offer a perspective, a framework to implement this perspective, and a few results illustrating how this framework can be put to work. The RNA case is used as an example throughout the text.
Collapse
Affiliation(s)
- B M Stadler
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien, Austria
| | | | | | | |
Collapse
|