1
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Ongkeko WM, Burton D, Kiang A, Abhold E, Kuo SZ, Rahimy E, Yang M, Hoffman RM, Wang-Rodriguez J, Deftos LJ. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS One 2014; 9:e85803. [PMID: 24465715 PMCID: PMC3899059 DOI: 10.1371/journal.pone.0085803] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.
Collapse
Affiliation(s)
- Weg M. Ongkeko
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Doug Burton
- Department of Medicine, Veterans Administration San Diego Healthcare System, University of California San Diego, La Jolla, California, United States of America
| | - Alan Kiang
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Eric Abhold
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Selena Z. Kuo
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Elham Rahimy
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Meng Yang
- AntiCancer, Inc., San Diego, California, United States of America
| | | | - Jessica Wang-Rodriguez
- Department of Pathology, University of California San Diego and the Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
| | - Leonard J. Deftos
- Department of Medicine, Veterans Administration San Diego Healthcare System, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Bhatia V, Mula RV, Falzon M. 1,25-Dihydroxyvitamin D(3) regulates PTHrP expression via transcriptional, post-transcriptional and post-translational pathways. Mol Cell Endocrinol 2011; 342:32-40. [PMID: 21664243 PMCID: PMC3148329 DOI: 10.1016/j.mce.2011.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) increases the growth and osteolytic potential of prostate cancer cells, making it important to control PTHrP expression. PTHrP expression is suppressed by 1,25-dihydroxyvitamin D(3) (1,25D). The aim of this study was to identify the pathways via which 1,25D exerts these effects. Our main findings are that 1,25D regulates PTHrP levels via multiple pathways in PC-3 and C4-2 (human prostate cancer) cell lines, and regulation is dependent on VDR expression. The human PTHrP gene has three promoters (P); PC-3 cells preferentially utilize P2 and P3, while C4-2 cells preferentially utilize P1. 1,25D regulates PTHrP transcriptional activity from both P1 and P3. The 1,25D-mediated decrease in PTHrP mRNA levels also involves a post-transcriptional pathway since 1,25D decreases PTHrP mRNA stability. 1,25D also suppresses PTHrP expression directly at the protein level by increasing its degradation. Regulation of PTHrP levels is dependent on VDR expression, as using siRNAs to deplete VDR expression negates the 1,25D-mediated downregulation of PTHrP expression. These results indicate the importance of maintaining adequate 1,25D levels and VDR status to control PTHrP levels.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ramanjaneya V. Mula
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Bhatia V, Saini MK, Shen X, Bi LX, Qiu S, Weigel NL, Falzon M. EB1089 inhibits the parathyroid hormone-related protein-enhanced bone metastasis and xenograft growth of human prostate cancer cells. Mol Cancer Ther 2009; 8:1787-98. [PMID: 19584236 DOI: 10.1158/1535-7163.mct-09-0064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a major role in prostate carcinoma progression and bone metastasis. Once prostate cancers become androgen-independent, treatment options become limited. Vitamin D analogues represent a potentially valuable class of agents in this clinical context. Using the prostate cancer cell line C4-2 as a model, we studied the effects of PTHrP and the noncalcemic vitamin D analogue EB1089 on markers of prostate cancer cell progression in vitro and in vivo. C4-2 is a second-generation androgen-independent LNCaP subline that metastasizes to the lymph nodes and bone when injected into nude mice and produces mixed lytic/blastic lesions, mimicking the in vivo situation. We report that PTHrP increases cell migration and invasion, and that a pathway via which EB1089 inhibits these processes is through down-regulation of PTHrP expression. PTHrP also increases anchorage-independent cell growth in vitro and xenograft growth in vivo; EB1089 reverses these effects. The in vivo PTHrP effects are accompanied by increased tumor cell proliferation and survival. Treatment with EB1089 reverses the proliferative but not the antiapoptotic effects of PTHrP. PTHrP also increases intratumor vessel density and vascular endothelial growth factor expression; EB1089 reverses these effects. Intracardially injected C4-2 cells produce predominantly osteoblastic lesions; PTHrP overexpression decreases the latency, increases the severity and alters the bone lesion profile to predominantly osteolytic. EB1089 largely reverses these PTHrP effects. A direct correlation between PTHrP immunoreactivity and increasing tumor grade is observed in human prostate cancer specimens. Thus, decreasing PTHrP production by treatment with vitamin D analogues may prove therapeutically beneficial for prostate cancer.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Panteleakou Z, Lembessis P, Sourla A, Pissimissis N, Polyzos A, Deliveliotis C, Koutsilieris M. Detection of circulating tumor cells in prostate cancer patients: methodological pitfalls and clinical relevance. Mol Med 2008; 15:101-14. [PMID: 19081770 DOI: 10.2119/molmed.2008.00116] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 12/14/2022] Open
Abstract
Disseminated malignancy is the major cause of prostate cancer-related mortality. Circulating tumor cells (CTCs) are essential for the establishment of metastasis. Various contemporary and molecular methods using prostate-specific biomarkers have been applied to detect extraprostatic disease that is undetectable by conventional imaging techniques, assessing the risk for disease recurrence after therapy of curative intent. However, the clinical relevance of CTC detection is still controversial. We review current literature regarding molecular methods used for the detection of CTCs in the peripheral blood and bone marrow biopsies of patients with prostate cancer, and we discuss the methodological pitfalls that influence the clinical significance of molecular staging.
Collapse
Affiliation(s)
- Zacharoula Panteleakou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
6
|
Shen X, Mula RV, Li J, Weigel NL, Falzon M. PTHrP contributes to the anti-proliferative and integrin alpha6beta4-regulating effects of 1,25-dihydroxyvitamin D(3). Steroids 2007; 72:930-8. [PMID: 17904173 PMCID: PMC2134836 DOI: 10.1016/j.steroids.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 08/06/2007] [Accepted: 08/09/2007] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) increases the growth and metastatic potential of prostate cancer cells, making it important to control PTHrP expression in these cells. 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] suppresses PTHrP expression and exerts an anti-proliferative effect in prostate carcinoma cells. We used the human prostate cancer cell line C4-2 as a model system to ask whether down-regulation of PTHrP expression by 1,25(OH)(2)D(3) plays a role in the anti-proliferative effects of 1,25(OH)(2)D(3). Since PTHrP increases the expression of the pro-invasive integrin alpha6beta4, we also asked whether 1,25(OH)(2)D(3) decreases integrin alpha6beta4 expression in C4-2 cells, and whether modulation of PTHrP expression by 1,25(OH)(2)D(3) plays a role in the effects of 1,25(OH)(2)D(3) on integrin alpha6beta4 expression. Two strategies were utilized to modulate PTHrP levels: overexpression of PTHrP (-36 to +139) and suppression of endogenous PTHrP expression using siRNAs. We report a direct correlation between PTHrP expression, C4-2 cell proliferation and integrin alpha6beta4 expression at the mRNA and cell surface protein level. Treatment of parental C4-2 cells with 1,25(OH)(2)D(3) decreased cell proliferation and integrin alpha6 and beta4 expression. These 1,25(OH)(2)D(3) effects were significantly attenuated in cells with suppressed PTHrP expression. 1,25(OH)(2)D(3) regulates PTHrP expression via a negative vitamin D response element (nVDRE) within the noncoding region of the PTHrP gene. The effects of 1,25(OH)(2)D(3) on cell proliferation and integrin alpha6beta4 expression were significantly attenuated in cells overexpressing PTHrP (-36 to +139), which lacks the nVDRE. These findings suggest that one of the pathways via which 1,25(OH)(2)D(3) exerts its anti-proliferative effects is through down-regulation of PTHrP expression.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ramanjaneya V.R. Mula
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jing Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nancy L. Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- * Corresponding Author, Phone: 409-772-9638, Fax : 409-772-9642, e-mail:
| |
Collapse
|
7
|
Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC. RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 2006; 27:1442-54. [PMID: 17145767 PMCID: PMC1800710 DOI: 10.1128/mcb.01298-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RANK and RANKL, the key regulators of osteoclast differentiation and activation, also play an important role in the control of proliferation and differentiation of mammary epithelial cells during pregnancy. Here, we show that RANK protein expression is strictly regulated in a spatial and temporal manner during mammary gland development. RANK overexpression under the control of the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model results in increased mammary epithelial cell proliferation during pregnancy, impaired differentiation of lobulo-alveolar structures, decreased expression of the milk proteins beta-casein and whey acidic protein, and deficient lactation. We also show that treatment of three-dimensional in vitro cultures of primary mammary cells from MMTV-RANK mice with RANKL results in increased proliferation and decreased apoptosis in the luminal area, resulting in bigger acini with filled lumens. Taken together, these results suggest that signaling through RANK not only promotes proliferation but also inhibits the terminal differentiation of mammary epithelial cells. Moreover, the increased proliferation and survival observed in a three-dimensional culture system suggests a role for aberrant RANK signaling during breast tumorigenesis.
Collapse
MESH Headings
- Animals
- Caseins/genetics
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelium/drug effects
- Female
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/growth & development
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Milk Proteins/genetics
- Pregnancy
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RANK Ligand/genetics
- RANK Ligand/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Time Factors
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Eva Gonzalez-Suarez
- Department of Cancer Biology, AW2/D2262, Amgen Inc., 1201 Amgen Court West, Seattle, WA 98119, USA.
| | | | | | | | | | | |
Collapse
|