1
|
Papamichail M, Eleftheriades A, Manolakos E, Papamichail A, Christopoulos P, Manegold-Brauer G, Eleftheriades M. Prenatal diagnosis of 18p deletion and 8p trisomy syndrome: literature review and report of a novel case. BMC Womens Health 2024; 24:241. [PMID: 38622524 PMCID: PMC11017580 DOI: 10.1186/s12905-024-03081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
18p deletion syndrome constitutes one of the most frequent autosomal terminal deletion syndromes, affecting one in 50,000 live births. The syndrome has un-specific clinical features which vary significantly between patients and may overlap with other genetic conditions. Its prenatal description is extremely rare as the fetal phenotype is often not present during pregnancy. Trisomy 8p Syndrome is characterized by heterogenous phenotype, with the most frequent components to be cardiac malformation, developmental and intellectual delay. Its prenatal diagnosis is very rare due to the unspecific sonographic features of the affected fetuses. We present a very rare case of a fetus with multiple anomalies diagnosed during the second trimester whose genomic analysis revealed a 18p Deletion and 8p trisomy Syndrome. This is the first case where this combination of DNA mutations has been described prenatally and the second case in general. The presentation of this case, as well as the detailed review of all described cases, aim to expand the existing knowledge regarding this rare condition facilitating its diagnosis in the future.
Collapse
Affiliation(s)
- Maria Papamichail
- Postgraduate Programme "Maternal Fetal Medicine" Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Anna Eleftheriades
- Department of Obstetrics and Gynaecology, Women' Hospital, University Hospital of Basel, University of Basel, Basel, Switzerland.
| | - Emmanouil Manolakos
- Clinical Laboratory Genetics, Access To Genome (ATG), Athens-Thessaloniki-Greece, Athens, Greece
| | | | - Panagiotis Christopoulos
- 2nd Department of Obstetrics and Gynecology, Medical School, Aretaieio University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Gwendolin Manegold-Brauer
- Department of Gynaecological Ultrasound and Prenatal Diagnostics, Women' Hospital, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Makarios Eleftheriades
- 2nd Department of Obstetrics and Gynecology, Medical School, Aretaieio University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Saumweber E, Mzoughi S, Khadra A, Werberger A, Schumann S, Guccione E, Schmeisser MJ, Kühl SJ. Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. Front Cell Dev Biol 2024; 12:1316048. [PMID: 38444828 PMCID: PMC10912572 DOI: 10.3389/fcell.2024.1316048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Mutations in PRDM15 lead to a syndromic form of holoprosencephaly (HPE) known as the Galloway-Mowat syndrome (GAMOS). While a connection between PRDM15, a zinc finger transcription factor, and WNT/PCP signaling has been established, there is a critical need to delve deeper into their contributions to early development and GAMOS pathogenesis. We used the South African clawed frog Xenopus laevis as the vertebrate model organism and observed that prdm15 was enriched in the tissues and organs affected in GAMOS. Furthermore, we generated a morpholino oligonucleotide-mediated prdm15 knockdown model showing that the depletion of Prdm15 leads to abnormal eye, head, and brain development, effectively recapitulating the anterior neural features in GAMOS. An analysis of the underlying molecular basis revealed a reduced expression of key genes associated with eye, head, and brain development. Notably, this reduction could be rescued by the introduction of wnt4 RNA, particularly during the induction of the respective tissues. Mechanistically, our data demonstrate that Prdm15 acts upstream of both canonical and non-canonical Wnt4 signaling during anterior neural development. Our findings describe severe ocular and anterior neural abnormalities upon Prdm15 depletion and elucidate the role of Prdm15 in canonical and non-canonical Wnt4 signaling.
Collapse
Affiliation(s)
- Ernestine Saumweber
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Slim Mzoughi
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Arin Khadra
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ernesto Guccione
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Henker LC, Lorenzett MP, Piva MM, Wronski JG, de Andrade DGA, Borges AS, Driemeier D, Oliveira-Filho JP, Pavarini SP. Alobar holoprosencephaly in an aborted American Quarter Horse fetus. J Equine Vet Sci 2022; 112:103898. [PMID: 35150851 DOI: 10.1016/j.jevs.2022.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
Holoprosencephaly is a central nervous system malformation, characterized by incomplete or total lack of division of prosencephalon hemispheres, which is commonly accompanied by craniofacial malformations. A 9-month-gestation aborted American Quarter Horse fetus was submitted for postmortem examination. The fetus lacked haircoat and had severe facial malformations including marked shortening/absence of the maxillary, incisive and nasal bones, bilateral anophthalmia, and pre-maxillary agenesis. The prosencephalon was small and nearly spherical, represented by a single lobe, with no visible separation between cerebral hemispheres. The olfactory bulbs, piriform lobes, and the optic chiasm were absent. At cross-sectioning of the prosencephalon, the inner structures of the brain were completely absent, and replaced by a monoventricle lined by the remaining compressed cortex, and the thalami were fused. Since mutations in the sonic hedgehog (SHH) gene have been associated with human holoprosencephaly, the three coding SHH exons were sequenced using liver DNA of the aborted foal. The obtained SHH sequence was similar to the Equus caballus SHH mRNA sequence deposited in GenbankTM (XM_023640069.1); therefore, no polymorphism in the coding region of this gene justifying the phenotype was observed. This is the first report of alobar holoprosencephaly in horses.
Collapse
Affiliation(s)
- Luan Cleber Henker
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil.
| | - Marina Paula Lorenzett
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - Manoela Marchezan Piva
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - Júlia Gabriela Wronski
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - Danilo Giorgi Abranches de Andrade
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science,18618-681 Botucatu, Brazil
| | - Alexandre Secorun Borges
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science,18618-681 Botucatu, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| | - José Paes Oliveira-Filho
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science,18618-681 Botucatu, Brazil
| | - Saulo Petinatti Pavarini
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Bairro Agronomia, Porto Alegre, RS 91540-000, Brazil
| |
Collapse
|
4
|
Nessler J, Wunderlich C, Eikelberg D, Beineke A, Raue J, Runge M, Tipold A, Ganter M, Rehage J. Holoprosencephalia, hypoplasia of corpus callosum and cerebral heterotopia in a male belted Galloway heifer with adipsia. BMC Vet Res 2022; 18:51. [PMID: 35057802 PMCID: PMC8772152 DOI: 10.1186/s12917-022-03152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Specialized neurons in the diencephalon detect blood hypernatremia in dehydrated animals. These neurons are connected with the pituitary gland, subsequently producing antidiuretic hormone to reabsorb water from urine in the kidneys, and to the forebrain to generate thirst and trigger drinking behavior. CASE PRESENTATION This is the first case report describing clinical findings, magnetic resonance imaging (MRI) and necropsy results of a Belted Galloway heifer with severe clinical signs of dehydration and hypernatremia, but concurrent adipsia and isosthenuria. Due to insufficient recovery with symptomatic treatment, owners elected euthanasia. Postmortem MRI and necropsy revealed a complex forebrain malformation: mild abnormal gyrification of the forebrain cortex, lobar holoprosencephaly, and corpus callosum hypoplasia. The affected brain structures are well known to be involved in osmoregulation and generation of thirst in dogs, humans and rodents. CONCLUSIONS Complex forebrain malformation can be involved in the pathogenesis of hypernatremia and adipsia in bovines.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department for Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Buenteweg 9, 30559, Hannover, Germany.
| | - Christian Wunderlich
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Deborah Eikelberg
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Jonathan Raue
- Department for Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Buenteweg 9, 30559, Hannover, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173, Hannover, Germany
| | - Andrea Tipold
- Department for Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Buenteweg 9, 30559, Hannover, Germany
| | - Martin Ganter
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Vienna (Vetmeduni Vienna), Veterinaerplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
5
|
Zantow E, Bryant S, Pierce SL, DuBois M, Maxted M, Porter B. Prenatal diagnosis of middle interhemispheric variant of holoprosencephaly: Report of two cases. JOURNAL OF CLINICAL ULTRASOUND : JCU 2021; 49:765-769. [PMID: 33559178 DOI: 10.1002/jcu.22984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Holoprosencephaly ranges in severity based on the degree of anatomic abnormality. Middle interhemispheric variant of holoprosencephaly is a less common and often milder variant that has the characteristic sonographic findings of an absent cavum septum pellucidum and a single fused ventricle. This subtype may be associated with genetic conditions that have not been well-described in the literature. We present two cases of middle interhemispheric variant of holoprosencephaly diagnosed on fetal ultrasound.
Collapse
Affiliation(s)
- Emily Zantow
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stefanie Bryant
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie L Pierce
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Molly DuBois
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Marta Maxted
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Blake Porter
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
7
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Yan L, Davé UP, Engel M, Brandt SJ, Hamid R. Loss of TG-Interacting Factor 1 decreases survival in mouse models of myeloid leukaemia. J Cell Mol Med 2020; 24:13472-13480. [PMID: 33058427 PMCID: PMC7701585 DOI: 10.1111/jcmm.15977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
TG‐Interacting Factor 1 (Tgif1) affects proliferation and differentiation of myeloid cells and regulates self‐renewal of haematopoietic stem cells (HSCs). To determine its impact on leukaemic haematopoiesis, we induced acute or chronic myeloid leukaemias (AML or CML) in mice by enforced expression of MLL‐AF9 or BCR‐ABL, respectively, in Tgif1+/+ or Tgif1−/− haematopoietic stem and progenitor cells (HSPCs) and transplanted them into syngeneic recipients. We find that loss of Tgif1 accelerates leukaemic progression and shortens survival in mice with either AML or CML. Leukaemia‐initiating cells (LICs) occur with higher frequency in AML among mice transplanted with MLL‐AF9‐transduced Tgif1−/− HSPCs than with Tgif1+/+ BMCs. Moreover, AML in mice generated with Tgif1−/− HSPCs are chemotherapy resistant and relapse more rapidly than those whose AML arose in Tgif1+/+ HSPCs. Whole transcriptome analysis shows significant alterations in gene expression profiles associated with transforming growth factor‐beta (TGF‐beta) and retinoic acid (RA) signalling pathways because of Tgif1 loss. These findings indicate that Tgif1 has a protective role in myeloid leukaemia initiation and progression, and its anti‐leukaemic contributions are connected to TGF‐beta‐ and RA‐driven functions.
Collapse
Affiliation(s)
- Ling Yan
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Utpal P Davé
- Department of Medicine, and Microbiology and Immunology, Indiana University, Indianapolis, IN, USA
| | - Michael Engel
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Stephen J Brandt
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rizwan Hamid
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
10
|
Aydın E, Tanacan A, Büyükeren M, Uçkan H, Yurdakök M, Beksaç MS. Congenital central nervous system anomalies: Ten-year single center experience on a challenging issue in perinatal medicine. J Turk Ger Gynecol Assoc 2019; 20:170-177. [PMID: 30115609 PMCID: PMC6751837 DOI: 10.4274/jtgga.galenos.2018.2018.0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Our goal was to highlight the prenatal diagnosis and management of central nervous system (CNS) anomalies through sharing our clinic’s experience. Material and Methods We evaluated prenatal findings and postnatal outcomes of neonates who had a CNS anomaly diagnosis in our clinic over a ten-year period. A total of 183 cases with various CNS anomalies were included in the study. Birth or termination preferences of mothers were recorded in all cases, and postnatal diagnosis concordance and prognosis after surgical procedures were evaluated in mothers who chose to continue the pregnancy. Results The mean maternal age was 28.2±5.5 years, mean gravida was 2.2±1.3, and the mean gestational age at diagnosis was 30.5±5.5 weeks. Seventy-five out of 183 (41%) patients chose to terminate their pregnancy. Twenty babies (26.6%) in the termination of pregnancy group had additional anomalies. One hundred eight patients gave birth at our institution. The mean birth weight was 3060±647.5 g, the mean gestational week at delivery was 37.9±1.7 weeks, and mean APGAR score (5th minute) was 8.8±2.3. Four neonates died on the postpartum first day. The postnatal diagnosis of 60 of the 108 (55.5%) patients who gave birth was concordant with the prenatal diagnosis, and 32 of the 108 (29.6%) babies underwent surgical interventions. Conclusion CNS anomalies have a broad spectrum and variable prognoses. This study highlights the limitations of prenatal diagnoses, and the need for parents to have this information in order to determine the course of their pregnancy and prepare themselves for the postnatal challenging treatment/rehabilitation process.
Collapse
Affiliation(s)
- Emine Aydın
- Clinic of Obstetrics and Gynecology, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melek Büyükeren
- Department of Child Health and Diseases, Neonatology Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hasan Uçkan
- Department of Obstetrics and Gynecology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Yurdakök
- Department of Child Health and Diseases, Neonatology Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Sinan Beksaç
- Department of Obstetrics and Gynecology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Schilbach-Rott syndrome associated with 9q22.32q22.33 duplication, involving the PTCH1 gene. Eur J Hum Genet 2019; 27:1260-1266. [PMID: 30936464 DOI: 10.1038/s41431-019-0385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 11/08/2022] Open
Abstract
Schilbach-Rott syndrome (SRS, OMIM%164220) is a disorder of unknown aetiology that is characterised by hypotelorism, epichantal folds, cleft palate, dysmorphic face, hypospadia in males and mild mental retardation in some patients. To date, 5 families and 17 patients have exhibited this phenotype, and recurrence in two of these families suggests an autosomal dominant inheritance. SRS overlaps with a mild form of holoprosencephaly (HPE), but array-CGH analysis and sequencing of some HPE-related genes (SEPT9, SHH and TWIST) did not reveal any variants in at least one family. Herein, we investigated by array-CGH analysis a 11-year-old female patient and her father, both exhibiting the typical SRS phenotype, disclosing in the daughter-father couple the same microduplication of chromosome 9q22.32q22.33 [arr[hg19]9q22.32(98,049,611_98,049,636)x3,9q22.33 (99,301,483_99,301,508)x3], involving eight genes, including PTCH1. The duplication segregated with the disease, since it was not found in the healthy paternal grandparents of the proband. The gain-of-function variants of the PTCH1 gene are responsible for a mild form of HPE. This is the first genetic variant found in SRS. This finding reinforces the hypothesis that SRS belongs to the HPE clinical spectrum and suggests to perform array-CGH in patients with SRS phenotype and, if negative, to consider a potential benefit from sequencing of HPE-related genes.
Collapse
|
12
|
Leombroni M, Khalil A, Liberati M, D'Antonio F. Fetal midline anomalies: Diagnosis and counselling part 2: Septal anomalies. Eur J Paediatr Neurol 2018; 22:963-971. [PMID: 30470535 DOI: 10.1016/j.ejpn.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Leombroni
- Department of Obstetrics and Gynecology, University of Chieti, Chieti, Italy
| | - Asma Khalil
- Fetal Medicine Unit, Division of Developmental Sciences, St. George's University of London, London, United Kingdom
| | - Marco Liberati
- Department of Obstetrics and Gynecology, University of Chieti, Chieti, Italy
| | - Francesco D'Antonio
- Womeńs Health and Perinatology Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Obstetrics and Gynaecology, University Hospital of Northern Norway, Tromsø, Norway.
| |
Collapse
|
13
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
14
|
Vasques GA, Funari MFA, Ferreira FM, Aza-Carmona M, Sentchordi-Montané L, Barraza-García J, Lerario AM, Yamamoto GL, Naslavsky MS, Duarte YAO, Bertola DR, Heath KE, Jorge AAL. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy. J Clin Endocrinol Metab 2018; 103:604-614. [PMID: 29155992 DOI: 10.1210/jc.2017-02026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. OBJECTIVE To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. PATIENTS AND METHODS We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. RESULTS We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P < 0.001). Identified IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. CONCLUSION Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH.
Collapse
Affiliation(s)
- Gabriela A Vasques
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM/42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico M Ferreira
- Laboratorio de Imunologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Lucia Sentchordi-Montané
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jimena Barraza-García
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Antonio M Lerario
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Guilherme L Yamamoto
- Unidade de Genetica Clinica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Yeda A O Duarte
- Departamento de Epidemiologia da Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genetica Clinica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Karen E Heath
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Hong M, Krauss RS. Ethanol itself is a holoprosencephaly-inducing teratogen. PLoS One 2017; 12:e0176440. [PMID: 28441416 PMCID: PMC5404885 DOI: 10.1371/journal.pone.0176440] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Ethanol is a teratogen, inducing a variety of structural defects in developing humans and animals that are exposed in utero. Mechanisms of ethanol teratogenicity in specific defects are not well understood. Oxidative metabolism of ethanol by alcohol dehydrogenase or cytochrome P450 2E1 has been implicated in some of ethanol's teratogenic effects, either via production of acetaldehyde or competitive inhibition of retinoic acid synthesis. Generalized oxidative stress in response to ethanol may also play a role in its teratogenicity. Among the developmental defects that ethanol has been implicated in is holoprosencephaly, a failure to define the midline of the forebrain and midface that is associated with a deficiency in Sonic hedgehog pathway function. Etiologically, holoprosencephaly is thought to arise from a complex combination of genetic and environmental factors. We have developed a gene-environment interaction model of holoprosencephaly in mice, in which mutation of the Sonic hedgehog coreceptor, Cdon, synergizes with transient in utero exposure to ethanol. This system was used to address whether oxidative metabolism is required for ethanol's teratogenic activity in holoprosencephaly. We report here that t-butyl alcohol, which is neither a substrate nor an inhibitor of alcohol dehydrogenases or Cyp2E1, is a potent inducer of holoprosencephaly in Cdon mutant mice. Additionally, antioxidant treatment did not prevent ethanol- or t-butyl alcohol-induced HPE in these mice. These findings are consistent with the conclusion that ethanol itself, rather than a consequence of its metabolism, is a holoprosencephaly-inducing teratogen.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
16
|
Comparative Analysis of Mutational Profile of Sonic hedgehog Gene in Gallbladder Cancer. Dig Dis Sci 2017; 62:708-714. [PMID: 28058596 DOI: 10.1007/s10620-016-4438-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gallbladder cancer has high incidence in northeastern India; mortality too is high as the disease is often diagnosed late. Numerous studies have shown the role of sonic hedgehog (shh) in different cancers, an important ligand of the hedgehog signaling pathway. AIM This study was carried out to evaluate the shh gene mutations in gallbladder cancer patients. METHODS PCR-SSCP was performed for shh gene in 50 samples each of gallbladder cancer, cholelithiasis, and control. The samples showing aberration in banding pattern were sequenced. RESULTS Variation in banding pattern was observed in 20% gallbladder cancer cases, 10% in cholelithiasis, and none of the control (χ 2 = 11.111; p < 0.05). Sequencing results revealed seven novel point mutations in GBC cases. These novel mutations were found to be associated with histopathology (p < 0.05) and stage (p < 0.05) of gallbladder cancer. CONCLUSION This study reveals several novel individual and repetitive mutations of shh gene in GBC and cholelithiasis samples that may be used as diagnostic markers for gallbladder carcinogenesis.
Collapse
|
17
|
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol 2016; 77:810-829. [PMID: 27706924 DOI: 10.1002/dneu.22455] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
Abstract
The corticospinal tract (CST) plays a major role in cortical control of spinal cord activity. In particular, it is the principal motor pathway for voluntary movements. Here, we discuss: (i) the anatomic evolution and development of the CST across mammalian species, focusing on its role in motor functions; (ii) the molecular mechanisms regulating corticospinal tract formation and guidance during mouse development; and (iii) human disorders associated with abnormal CST development. A comparison of CST anatomy and development across mammalian species first highlights important similarities. In particular, most CST axons cross the anatomical midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. Reorganization of the pattern of CST projections to the spinal cord during evolution led to improved motor skills. Studies of the molecular mechanisms involved in CST formation and guidance in mice have identified several factors that act synergistically to ensure proper formation of the CST at each step of development. Human CST developmental disorders can result in a reduction of the CST, or in guidance defects associated with abnormal CST anatomy. These latter disorders result in altered midline crossing at the pyramidal decussation or in the spinal cord, but spare the rest of the CST. Careful appraisal of clinical manifestations associated with CST malformations highlights the critical role of the CST in the lateralization of motor control. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 810-829, 2017.
Collapse
Affiliation(s)
- Quentin Welniarz
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Isabelle Dusart
- Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Emmanuel Roze
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Département des Maladies du Système Nerveux, AP-HP, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
18
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Affiliation(s)
- Nancy J. Clegg
- Department of Pediatric Neurology and Neurophysiology Texas Scottish Rite Hospital for Children Dallas, Texas
- The Carter Centers for Brain Research in Holoprosencephaly and Related Malformations
| | - Kandy L. Gerace
- Department of Pediatric Neurology and Neurophysiology Texas Scottish Rite Hospital for Children Dallas, Texas
| | - Steven P. Sparagana
- Department of Pediatric Neurology and Neurophysiology Texas Scottish Rite Hospital for Children Dallas, Texas
- Neurology Department University of Texas Southwestern Medical School Dallas, Texas
| | - Jin S. Hahn
- Neurology Department Stanford School of Medicine Stanford, California
- The Carter Centers for Brain Research in Holoprosencephaly and Related Malformations
| | - Mauricio R. Delgado
- Department of Pediatric Neurology and Neurophysiology Texas Scottish Rite Hospital for Children Dallas, Texas
- Neurology Department University of Texas Southwestern Medical School Dallas, Texas
- The Carter Centers for Brain Research in Holoprosencephaly and Related Malformations
| |
Collapse
|
20
|
Aoto K, Trainor PA. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet 2014; 24:698-713. [PMID: 25292199 DOI: 10.1093/hmg/ddu489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Congenital brain and craniofacial defects often occur together as a consequence of their developmental dependency on common progenitor tissue interactions and signaling pathways during embryogenesis. A classic example of this is perturbation of midline embryo development, and disruption of Hedgehog (Hh) signaling in the pathogenesis of holoprosencephaly. However, our understanding of how Hh signaling governs cell and tissue survival remains incomplete. Patched1 (Ptch1) is a well-known receptor for Hh ligands and Ptch1 overexpression is associated with cell and tissue-specific apoptosis. Here, we demonstrate that the X-linked inhibitory apoptosis protein (XIAP) associates with the C terminus of Ptch1 (Ptch1-C) in primary cilia to inhibit Ptch1-mediated cell death. Consistent with this observation, inhibition of XIAP suppresses cell proliferation, resulting in cell death and pathogenesis of an Hh loss-of-function phenotype. Thus, co-ordinated development of the brain and face is dependent in part upon XIAP mediation of Hh/Ptch1-regulated cell survival and apoptosis during embryogenesis.
Collapse
Affiliation(s)
- Kazushi Aoto
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and
| | - Paul A Trainor
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66202, USA
| |
Collapse
|
21
|
Pramfalk C, Eriksson M, Parini P. Role of TG-interacting factor (Tgif) in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:9-12. [PMID: 25088698 DOI: 10.1016/j.bbalip.2014.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
Abstract
TG interacting factors (Tgifs) 1 and 2 are members of the TALE (three-amino-acid loop extension) superfamily of homeodomain proteins. These two proteins bind to the same DNA sequence and share a conserved C-terminal repression domain. Mutations in TGIF1 have been linked to holoprosencephaly, which is a human genetic disease that affects craniofacial development. As these proteins can interact with the ligand binding domain of retinoid X receptor α, a common heterodimeric partner of several nuclear receptors [e.g., liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs)], Tgif1 and Tgif2 might repress other transcriptional pathways activated by lipids. In line with this, Tgif1 interacts with LXRα and Tgif1 null mice have increased expression of the two Lxrα target genes apolipoproteins (Apo) c2 and a4. Also, we have recently identified Tgif1 to function as a transcriptional repressor of the cholesterol esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase 2 (gene name SOAT2). As no studies yet have shown involvement of Tgif2 in the lipid metabolism, this review will focus on the role of Tgif1 in lipid and cholesterol metabolism. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden
| | - Mats Eriksson
- Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden.
| |
Collapse
|
22
|
Abstract
TG-interacting factor 1 (TGIF1) is a transcriptional repressor that can modulate retinoic acid and transforming growth factor β signaling pathways. It is required for myeloid progenitor cell differentiation and survival, and mutations in the TGIF1 gene cause holoprosencephaly. Furthermore, we have previously observed that acute myelogenous leukemia (AML) patients with low TGIF1 levels had worse prognoses. Here, we explored the role of Tgif1 in murine hematopoietic stem cell (HSC) function. CFU assays showed that Tgif1(-/-) bone marrow cells produced more total colonies and had higher serial CFU potential. These effects were also observed in vivo, where Tgif1(-/-) bone marrow cells had higher repopulation potential in short- and long-term competitive repopulation assays than wild-type cells. Serial transplantation and replating studies showed that Tgif1(-/-) HSCs exhibited greater self-renewal and were less proliferative and more quiescent than wild-type cells, suggesting that Tgif1 is required for stem cells to enter the cell cycle. Furthermore, HSCs from Tgif1(+/-) mice had a phenotype similar to that of HSCs from Tgif1(-/-) mice, while bone marrow cells with overexpressing Tgif1 showed increased proliferation and lower survival in long-term transplant studies. Taken together, our data suggest that Tgif1 suppresses stem cell self-renewal and provide clues as to how reduced expression of TGIF1 may contribute to poor long-term survival in patients with AML.
Collapse
|
23
|
Klein OD, Oberoi S, Huysseune A, Hovorakova M, Peterka M, Peterkova R. Developmental disorders of the dentition: an update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:318-32. [PMID: 24124058 DOI: 10.1002/ajmg.c.31382] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dental anomalies are common congenital malformations that can occur either as isolated findings or as part of a syndrome. This review focuses on genetic causes of abnormal tooth development and the implications of these abnormalities for clinical care. As an introduction, we describe general insights into the genetics of tooth development obtained from mouse and zebrafish models. This is followed by a discussion of isolated as well as syndromic tooth agenesis, including Van der Woude syndrome (VWS), ectodermal dysplasias (EDs), oral-facial-digital (OFD) syndrome type I, Rieger syndrome, holoprosencephaly, and tooth anomalies associated with cleft lip and palate. Next, we review delayed formation and eruption of teeth, as well as abnormalities in tooth size, shape, and form. Finally, isolated and syndromic causes of supernumerary teeth are considered, including cleidocranial dysplasia and Gardner syndrome.
Collapse
|
24
|
Chen CP, Huang JP, Chen YY, Chern SR, Wu PS, Su JW, Pan CW, Wang W. Chromosome 18p deletion syndrome presenting holoprosencephaly and premaxillary agenesis: prenatal diagnosis and aCGH characterization using uncultured amniocytes. Gene 2013; 527:636-41. [PMID: 23850725 DOI: 10.1016/j.gene.2013.06.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022]
Abstract
We present prenatal diagnosis of a de novo distal 18p deletion involving 14.06Mb at 18p11.32-p11.21 by aCGH using uncultured amniocytes in a pregnancy with fetal holoprosencephaly and premaxillary agenesis. QF-PCR analysis showed that distal 18p deletion was from maternal origin. Metaphase FISH analysis confirmed haploinsufficiency of TGIF. We discuss the functions of the genes that are deleted within this region. The present case shows the usefulness of applying aCGH on uncultured amniocytes for rapid aneuploidy diagnosis in cases with prenatally detected fetal structural abnormalities.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Mutations in Hedgehog acyltransferase (Hhat) perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects. PLoS Genet 2012; 8:e1002927. [PMID: 23055936 PMCID: PMC3464201 DOI: 10.1371/journal.pgen.1002927] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 07/10/2012] [Indexed: 12/02/2022] Open
Abstract
Holoprosencephaly (HPE) is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17%) cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized that a graded series of facial anomalies occurs within the clinical spectrum of HPE, as HPE is often found in patients together with other malformations such as acrania, anencephaly, and agnathia. However, it is not known if these phenotypes arise through a common etiology and pathogenesis. Here we demonstrate for the first time using mouse models that Hedgehog acyltransferase (Hhat) loss-of-function leads to holoprosencephaly together with acrania and agnathia, which mimics the severe condition observed in humans. Hhat is required for post-translational palmitoylation of Hedgehog (Hh) proteins; and, in the absence of Hhat, Hh secretion from producing cells is diminished. We show through downregulation of the Hh receptor Ptch1 that loss of Hhat perturbs long-range Hh signaling, which in turn disrupts Fgf, Bmp and Erk signaling. Collectively, this leads to abnormal patterning and extensive apoptosis within the craniofacial primordial, together with defects in cartilage and bone differentiation. Therefore our work shows that Hhat loss-of-function underscrores HPE; but more importantly it provides a mechanism for the co-occurrence of acrania, holoprosencephaly, and agnathia. Future genetic studies should include HHAT as a potential candidate in the etiology and pathogenesis of HPE and its associated disorders. Craniofacial anomalies account for approximately one third of all birth defects, and holoprosencephaly (HPE) is the most common structural malformation of the embryonic brain. HPE is a failure of the forebrain to bifurcate and is a heterogeneous disorder that is often found in patients together with other craniofacial malformations. Currently, it is not known if these phenotypes arise through a common etiology and pathogenesis, as the genetic lesions responsible for HPE have only been identified in about 20% of affected individuals. Here we demonstrate for the first time that Hedgehog acyltransferase (Hhat) loss-of-function leads to holoprosencephaly together with acrania and agnathia, which highlights the importance of Hh signaling in complex craniofacial disorders.
Collapse
|
27
|
Morris AC. The genetics of ocular disorders: insights from the zebrafish. ACTA ACUST UNITED AC 2012; 93:215-28. [PMID: 21932431 DOI: 10.1002/bdrc.20211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proper formation of the vertebrate eye requires a precisely coordinated sequence of morphogenetic events that integrate the developmental contributions of the skin ectoderm, neuroectoderm, and head mesenchyme. Disruptions in this process result in ocular malformations or retinal degeneration and can cause significant visual impairment. The zebrafish is an excellent vertebrate model for the study of eye development and disease due to the transparency of the embryo, its ex utero development, and its amenability to forward genetic screens. This review will present an overview of the genetic methodologies utilized in the zebrafish, a description of several zebrafish models of congenital ocular diseases, and a discussion of the utility of the zebrafish for assessing the pathogenicity of candidate disease alleles.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
28
|
Yaddanapudi K, De Miranda J, Hornig M, Lipkin WI. Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway. PLoS One 2011; 6:e26766. [PMID: 22046349 PMCID: PMC3201973 DOI: 10.1371/journal.pone.0026766] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor 3 (TLR3) signaling has been implicated in neural stem/precursor cell (NPC) proliferation. However, the molecular mechanisms involved, and their relationship to classical TLR-mediated innate immune pathways, remain unknown. Here, we report investigation of the mechanics of TLR3 signaling in neurospheres comprised of epidermal growth factor (EGF)-responsive NPC isolated from murine embryonic cerebral cortex of C57BL/6 (WT) or TLR3 deficient (TLR3(-/-)) mice. Our data indicate that the TLR3 ligand polyinosinic-polycytidylic acid (PIC) negatively regulates NPC proliferation by inhibiting Sonic Hedgehog (Shh) signaling, that PIC induces apoptosis in association with inhibition of Ras-ERK signaling and elevated expression of Fas, and that these effects are TLR3-dependent, suggesting convergent signaling between the Shh and TLR3 pathways.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Joari De Miranda
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Mady Hornig
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
29
|
Marquis-Nicholson R, Aftimos S, Ashton F, Love JM, Stone P, McFarlane J, George AM, Love DR. Pseudotrisomy 13 syndrome: Use of homozygosity mapping to target candidate genes. Gene 2011; 486:37-40. [DOI: 10.1016/j.gene.2011.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/01/2022]
|
30
|
Lana-Elola E, Tylzanowski P, Takatalo M, Alakurtti K, Veistinen L, Mitsiadis TA, Graf D, Rice R, Luyten FP, Rice DP. Noggin null allele mice exhibit a microform of holoprosencephaly. Hum Mol Genet 2011; 20:4005-15. [PMID: 21821669 DOI: 10.1093/hmg/ddr329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Holoprosencephaly (HPE) is a heterogeneous craniofacial and neural developmental anomaly characterized in its most severe form by the failure of the forebrain to divide. In humans, HPE is associated with disruption of Sonic hedgehog and Nodal signaling pathways, but the role of other signaling pathways has not yet been determined. In this study, we analyzed mice which, due to the lack of the Bmp antagonist Noggin, exhibit elevated Bmp signaling. Noggin(-/-) mice exhibited a solitary median maxillary incisor that developed from a single dental placode, early midfacial narrowing as well as abnormalities in the developing hyoid bone, pituitary gland and vomeronasal organ. In Noggin(-/-) mice, the expression domains of Shh, as well as the Shh target genes Ptch1 and Gli1, were reduced in the frontonasal region at key stages of early facial development. Using E10.5 facial cultures, we show that excessive BMP4 results in reduced Fgf8 and Ptch1 expression. These data suggest that increased Bmp signaling in Noggin(-/-) mice results in downregulation of the hedgehog pathway at a critical stage when the midline craniofacial structures are developing, which leads to a phenotype consistent with a microform of HPE.
Collapse
Affiliation(s)
- Eva Lana-Elola
- Department of Craniofacial Development, King's College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Novel sonic hedgehog mutation in a couple with variable expression of holoprosencephaly. Case Rep Genet 2011; 2011:703497. [PMID: 23074678 PMCID: PMC3447223 DOI: 10.1155/2011/703497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Holoprosencephaly
(HPE) is the most common developmental defect of
the forebrain and midface in humans. sporadic
and inherited mutations in the human sonic
hedgehog (SHH) gene cause 37% of familial
HPE. A couple was referred to our unit with a
family history of two spontaneous first
trimester miscarriages and a daughter with HPE
who presented early neonatal death. The father
had a repaired median cleft lip, absence of
central incisors, facial medial hypoplasia, and
cleft palate. Intelligence and a brain CT scan
were normal. Direct paternal sequencing analysis
showed a novel nonsense mutation (W127X). Facial
characteristics are considered as HPE microforms,
and the pedigree suggested autosomal dominant
inheritance with a variable expression of the
phenotype. This study reinforces the importance
of an exhaustive evaluation of couples with a
history of miscarriages and neonatal deaths with
structural defects.
Collapse
|
32
|
Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma. Biochim Biophys Acta Mol Basis Dis 2010; 1812:390-401. [PMID: 20850526 DOI: 10.1016/j.bbadis.2010.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 09/08/2010] [Indexed: 01/10/2023]
Abstract
In this review, we highlight recent literature concerning the signaling mechanisms underlying the development of two neural birth defects, holoprosencephaly and coloboma. Holoprosencephaly, the most common forebrain defect, occurs when the cerebral hemispheres fail to separate and is typically associated with mispatterning of embryonic midline tissue. Coloboma results when the choroid fissure in the eye fails to close. It is clear that Sonic hedgehog (Shh) signaling regulates both forebrain and eye development, with defects in Shh, or components of the Shh signaling cascade leading to the generation of both birth defects. In addition, other intercellular signaling pathways are known factors in the incidence of holoprosencephaly and coloboma. This review will outline recent advances in our understanding of forebrain and eye embryonic pattern formation, with a focus on zebrafish studies of Shh and retinoic acid pathways. Given the clear overlap in the mechanisms that generate both diseases, we propose that holoprosencephaly and coloboma can represent mild and severe aspects of single phenotypic spectrum resulting from aberrant forebrain development. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
33
|
Komada M, Fujiyama F, Yamada S, Shiota K, Nagao T. Methylnitrosourea induces neural progenitor cell apoptosis and microcephaly in mouse embryos. ACTA ACUST UNITED AC 2010; 89:213-22. [PMID: 20549696 DOI: 10.1002/bdrb.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prenatal exposure to methylnitrosourea (MNU), an alkylating agent, induces microcephaly in mice. However, its pathogenetic mechanism has not been clarified, especially that in the development of the cerebral cortex. METHODS ICR mice were treated with MNU at 10 mg/kg intraperitoneally on day 13.5 or 15.5 of gestation, and the embryos were observed histologically 24 hr after treatment with MNU or at term. To clarify the pathogenesis of microcephaly and histological changes, especially apoptosis, neurogenesis, and neural migration/positioning, we performed histological analysis employing a cell-specific labeling experiment using thymidine-like substances (BrdU, CldU, and IdU) and markers of neurons/neural stem cells. RESULTS Histological abnormalities of the dorsal telencephalon, and the excessive cell death of proliferative neural progenitor/stem cells were noted in the MNU-treated embryos. The highest frequencies of cell death occurred at 36 hr after MNU treatment, and little or no neurogenesis was observed in the ventricular zone of the dorsal telencephalon. Abnormality of the radial migration was caused by the reduction of radial fibers in the radial glias. Birth-date analysis revealed the abnormal positioning of neurons and aberrant lamination of the cerebral cortex. CONCLUSIONS Our data suggest that prenatal exposure to MNU induces the excessive cell death of neural precursor/stem cells, and the defective development of the cerebral cortex, resulting in microcephalic abnormalities.
Collapse
Affiliation(s)
- Munekazu Komada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
34
|
Miller EA, Rasmussen SA, Siega-Riz AM, Frías JL, Honein MA. Risk factors for non-syndromic holoprosencephaly in the National Birth Defects Prevention Study. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:62-72. [PMID: 20104597 DOI: 10.1002/ajmg.c.30244] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Holoprosencephaly (HPE) is a complex structural brain anomaly that results from incomplete cleavage of the forebrain. The prevalence of HPE at birth is low, and risk factors have been difficult to identify. Using data from a large multi-state population-based case-control study, we examined risk factors for non-syndromic HPE. Data from maternal telephone interviews were available for 74 infants with HPE and 5871 controls born between 1997 and 2004. Several characteristics and exposures were examined, including pregnancy history, medical history, maternal diet and use of nutritional supplements, medications, tobacco, alcohol, and illegal substances. We used chi(2)-tests and logistic regression (excluding women with pre-existing diabetes) to examine associations with HPE. Except for diet (year before pregnancy) and sexually transmitted infections (STIs) (throughout pregnancy), most exposures were examined for the time period from the month before to the third month of pregnancy. HPE was found to be associated with pre-existing diabetes (chi(2) = 6.0; P = 0.01), aspirin use [adjusted odds ratio (aOR) = 3.4; 95% confidence interval (CI) 1.6-6.9], lower education level (aOR = 2.5; 95%CI 1.1-5.6), and use of assisted reproductive technologies (ART) (crude OR = 4.2; 95%CI 1.3-13.7). Consistent maternal folic acid use appeared to be protective (aOR = 0.4; 95%CI 0.2-1.0), but the association was of borderline statistical significance. While some of these findings support previous observations, other potential risk factors identified warrant further study.
Collapse
Affiliation(s)
- Eric A Miller
- Texas Department of State Health Services, Austin, 78714-9347, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Klingensmith J, Matsui M, Yang YP, Anderson RM. Roles of bone morphogenetic protein signaling and its antagonism in holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:43-51. [PMID: 20104603 DOI: 10.1002/ajmg.c.30256] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Holoprosencephaly (HPE) is the most common malformation of the forebrain, resulting from a failure to completely septate the left and right hemispheres at the rostral end of the neural tube. Because of the tissue interactions that drive head development, these forebrain defects are typically accompanied by midline deficiencies of craniofacial structures. Early events in setting up tissue precursors of the head, as well as later interactions between these tissues, are critical for normal head formation. Defects in either process can result in HPE. Signaling by bone morphogenetic proteins (BMPs), a family of secreted cytokines, generally plays negative roles in early stages of head formation, and thus must be attenuated in multiple contexts to ensure proper forebrain and craniofacial development. Chordin and Noggin are endogenous, extracellular antagonists of BMP signaling that promote the normal organization of the forebrain and face. Mouse mutants with reduced levels of both factors display mutant phenotypes remarkably analogous to the range of malformations seen in human HPE sequence. Chordin and Noggin function in part by antagonizing the inhibitory effects of BMP signaling on the Sonic hedgehog and Nodal pathways, genetic lesions in each being associated with human HPE. Study of Chordin;Noggin mutant mice is helping us to understand the molecular, cellular, and genetic pathogenesis of HPE and associated malformations.
Collapse
Affiliation(s)
- John Klingensmith
- Department of Cell and Developmental Biology, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
36
|
Pineda-Alvarez DE, Dubourg C, David V, Roessler E, Muenke M. Current recommendations for the molecular evaluation of newly diagnosed holoprosencephaly patients. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2010; 154C:93-101. [PMID: 20104604 PMCID: PMC2815008 DOI: 10.1002/ajmg.c.30253] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Holoprosencephaly (HPE) is the most common structural malformation of the developing forebrain in humans and is typically characterized by different degrees of hemispheric separation that are often accompanied by similarly variable degrees of craniofacial and midline anomalies. HPE is a classic example of a complex genetic trait with "pseudo"-autosomal dominant transmission showing incomplete penetrance and variable expressivity. Clinical suspicion of HPE is typically based upon compatible craniofacial findings, the presence of developmental delay or seizures, or specific endocrinological abnormalities, and is then followed up by confirmation with brain imaging. Once a clinical diagnosis is made, a thorough genetic evaluation is necessary. This usually includes analysis of chromosomes by high-resolution karyotyping, clinical assessment to rule-out well recognized syndromes that are associated with HPE (e.g., Pallister-Hall syndrome, Smith-Lemli-Opitz syndrome and others), and molecular studies of the most common HPE associated genes (e.g., SHH, ZIC2 and SIX3). In this review, we provide current step-by-step recommendations that are medically indicated for the genetic evaluation of patients with newly diagnosed HPE. Moreover, we provide a brief review of several available methods used in molecular diagnostics of HPE and describe the advantages and limitations of both currently available and future tests as they relate to high throughput screening, cost, and the results that they may provide.
Collapse
Affiliation(s)
| | - Christèle Dubourg
- Université de Rennes 1, Faculté de Médecine - UMR 6061 CNRS, IFR140 GFAS, Rennes, France
- CHU Pontchaillou - Laboratoire de Génétique Moléculaire, Rennes, France
| | - Véronique David
- Université de Rennes, 35042 - CNRS Génétique et Développement, Rennes, France
| | - Erich Roessler
- National Human Genome Research Institute - Medical Genetics Branch, Bethesda, Maryland, USA
| | - Maximilian Muenke
- National Human Genome Research Institute - Medical Genetics Branch, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Abstract
The presence of melanin pigment within the iris is responsible for the visual impression of human eye colouration with complex patterns also evident in this tissue, including Fuchs' crypts, nevi, Wolfflin nodules and contraction furrows. The genetic basis underlying the determination and inheritance of these traits has been the subject of debate and research from the very beginning of quantitative trait studies in humans. Although segregation of blue-brown eye colour has been described using a simple Mendelian dominant-recessive gene model this is too simplistic, and a new molecular genetic perspective is needed to fully understand the biological complexities of this process as a polygenic trait. Nevertheless, it has been estimated that 74% of the variance in human eye colour can be explained by one interval on chromosome 15 that contains the OCA2 gene. Fine mapping of this region has identified a single base change rs12913832 T/C within intron 86 of the upstream HERC2 locus that explains almost all of this association with blue-brown eye colour. A model is presented whereby this SNP, serving as a target site for the SWI/SNF family member HLTF, acts as part of a highly evolutionary conserved regulatory element required for OCA2 gene activation through chromatin remodelling. Major candidate genes possibly effecting iris patterns are also discussed, including MITF and PAX6.
Collapse
Affiliation(s)
- Richard A Sturm
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| | | |
Collapse
|
38
|
Yen-Ping Ho J, Man WC, Wen Y, Polan ML, Shih-Chu Ho E, Chen B. Transforming growth interacting factor expression in leiomyoma compared with myometrium. Fertil Steril 2009; 94:1078-83. [PMID: 19524896 DOI: 10.1016/j.fertnstert.2009.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/11/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the expression of transforming growth interacting factor (TGIF), a Smad transcriptional corepressor, in leiomyoma and matched myometrial tissue samples and the effect of TGIF overexpression in myometrial cells. DESIGN Experimental study. SETTING Tertiary university hospital. PATIENT(S) Uterine leiomyoma and myometrial tissues from 16 patients. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The distribution of TGIF in leiomyoma and myometrial tissues by immunohistochemistry stain, mRNA, and protein expression levels by real-time quantitative polymerase chain-reaction (QPCR) and Western blot. Transcriptional regulation of TGIF in myometrial cells with overexpressed TGIF. RESULT(S) Although TGIF is present in the smooth muscle cells of the leiomyoma and the myometrium, it is not found in the extracellular matrix. The TGIF mRNA and protein expressions were statistically significantly higher in the leiomyoma compared with the matched, unaffected myometrial tissues in both phases of the menstrual cycle. There were no differences in mRNA or protein expression throughout the menstrual cycle. Overexpression of TGIF protein in myometrial cells statistically significantly suppressed up-regulation of plasminogen activator inhibitor (PAI-1) induced by TGF-beta1 treatment. CONCLUSION(S) Expression of TGIF is increased in leiomyoma compared with myometrium. This increase in TGIF expression is not affected by endogenous ovarian hormones. Thus, TGIF is a potential repressor of TGF-beta pathways in myometrial cells.
Collapse
Affiliation(s)
- Jason Yen-Ping Ho
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | | | | | | | |
Collapse
|
39
|
Dill P, Poretti A, Boltshauser E, Huisman T. Fetal magnetic resonance imaging in midline malformations of the central nervous system and review of the literature. J Neuroradiol 2009; 36:138-46. [DOI: 10.1016/j.neurad.2008.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Lacbawan F, Solomon BD, Roessler E, El-Jaick K, Domené S, Vélez JI, Zhou N, Hadley D, Balog JZ, Long R, Fryer A, Smith W, Omar S, McLean SD, Clarkson K, Lichty A, Clegg NJ, Delgado MR, Levey E, Stashinko E, Potocki L, Vanallen MI, Clayton-Smith J, Donnai D, Bianchi DW, Juliusson PB, Njølstad PR, Brunner HG, Carey JC, Hehr U, Müsebeck J, Wieacker PF, Postra A, Hennekam RCM, van den Boogaard MJH, van Haeringen A, Paulussen A, Herbergs J, Schrander-Stumpel CTRM, Janecke AR, Chitayat D, Hahn J, McDonald-McGinn DM, Zackai EH, Dobyns WB, Muenke M. Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 2009; 46:389-98. [PMID: 19346217 PMCID: PMC3510661 DOI: 10.1136/jmg.2008.063818] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing forebrain and eyes of all vertebrates. OBJECTIVE To characterise genetic and clinical findings in patients with SIX3 mutations. METHODS Patients with HPE and their family members were tested for mutations in HPE-associated genes and the genetic and clinical findings, including those for additional cases found in the literature, were analysed. The results were correlated with a mutation-specific functional assay in zebrafish. RESULTS In a cohort of patients (n = 800) with HPE, SIX3 mutations were found in 4.7% of probands and additional cases were found through testing of relatives. In total, 138 cases of HPE were identified, 59 of whom had not previously been clinically presented. Mutations in SIX3 result in more severe HPE than in other cases of non-chromosomal, non-syndromic HPE. An over-representation of severe HPE was found in patients whose mutations confer greater loss of function, as measured by the functional zebrafish assay. The gender ratio in this combined set of patients was 1.5:1 (F:M) and maternal inheritance was almost twice as common as paternal. About 14% of SIX3 mutations in probands occur de novo. There is a wide intrafamilial clinical range of features and classical penetrance is estimated to be at least 62%. CONCLUSIONS Our data suggest that SIX3 mutations result in relatively severe HPE and that there is a genotype-phenotype correlation, as shown by functional studies using animal models.
Collapse
Affiliation(s)
- F Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B-203, Bethesda, MD 20892-3717, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A mutation in Ihh that causes digit abnormalities alters its signalling capacity and range. Nature 2009; 458:1196-200. [PMID: 19252479 DOI: 10.1038/nature07862] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/12/2009] [Indexed: 11/08/2022]
Abstract
Brachydactyly type A1 (BDA1) was the first recorded disorder of the autosomal dominant Mendelian trait in humans, characterized by shortened or absent middle phalanges in digits. It is associated with heterozygous missense mutations in indian hedgehog (IHH). Hedgehog proteins are important morphogens for a wide range of developmental processes. The capacity and range of signalling is thought to be regulated by its interaction with the receptor PTCH1 and antagonist HIP1. Here we show that a BDA1 mutation (E95K) in Ihh impairs the interaction of IHH with PTCH1 and HIP1. This is consistent with a recent paper showing that BDA1 mutations cluster in a calcium-binding site essential for the interaction with its receptor and cell-surface partners. Furthermore, we show that in a mouse model that recapitulates the E95K mutation, there is a change in the potency and range of signalling. The mice have digit abnormalities consistent with the human disorder.
Collapse
|
42
|
Hong NS, Su CJ, Kuo TN, Tsai HC, Lin MYS, Loo TC, Huang KF, Chen SH. Early Prenatal Diagnosis of Semilobar Holoprosencephaly Combined with A Dorsal Cyst and No Facial Defect. Taiwan J Obstet Gynecol 2008; 47:438-40. [PMID: 19126512 DOI: 10.1016/s1028-4559(09)60013-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Goldschmidt B, Lopes C, Moura M, Fasano D, Andrade M, Cysne L, Gonçalves M, Bravin J, Kugelmeier T, Viana C, Silva F, Marinho A. Agnathia and associated malformations in a male rhesus monkey. J Med Primatol 2008; 37:173-6. [DOI: 10.1111/j.1600-0684.2007.00272.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Lim AST, Lim TH, Kee SK, Chia P, Raman S, Eu ELP, Lim JYC, Tien SL. Holoprosencephaly: An Antenally-diagnosed Case Series and Subject Review. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n7p594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Holoprosencephaly (HPE) is an uncommon congenital failure of forebrain development. Although the aetiology is heterogeneous, chromosomal abnormalities or a monogenic defect are the major causes, accounting for about 40% to 50% of HPE cases. At least 7 genes have been positively implicated, including SHH, ZIC2, SIX3, TGIF, PTCH1, GLI2, and TDGF1.
Clinical Picture: Twelve antenatally- and 1 postnatally-diagnosed cases are presented in this study. These comprised 6 amniotic fluid, 3 chorionic villus, 2 fetal blood, 1 peripheral blood, and 1 product of conception.
Outcome: The total chromosome abnormality rate was 92.3%, comprising predominantly trisomy 13 (66.7%). There was 1 case of trisomy 18, and 3 cases of structural abnormalities, including del13q, del18p, and add4q.
Conclusion: Despite the poor outcome of an antenatally-diagnosed HPE and the likely decision by parents to opt for a termination of pregnancy, karyotyping and/or genetic studies should be performed to determine if a specific familial genetic or chromosomal abnormality is the cause. At the very least, a detailed chromosome analysis should be carried out on the affected individual. If the result of highresolution karyotyping is normal, Fluorescence in situ hybridisation (FISH) and/or syndromespecific testing or isolated holoprosencephaly genetic testing may be performed. This information can be useful in making a prognosis and predicting the risk of recurrence.
Key words: Chromosomes, Genes, Karyotyping, Trisomies
Collapse
|
45
|
Komada M, Saitsu H, Kinboshi M, Miura T, Shiota K, Ishibashi M. Hedgehog signaling is involved in development of the neocortex. Development 2008; 135:2717-27. [PMID: 18614579 DOI: 10.1242/dev.015891] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (Shh) function is essential for patterning and cell fate specification, particularly in ventral regions of the central nervous system. It is also a crucial mitogen for cerebellar granule neuron precursors and is important in maintenance of the stem cell niche in the postnatal telencephalon. Although it has been reported that Shh is expressed in the developing dorsal telencephalon, functions of Shh in this region are unclear, and detailed characterization of Shh mRNA transcripts in situ has not been demonstrated. To clarify the roles of Shh signaling in dorsal pallium (neocortex primordium) development, we have knocked out the Shh and Smo genes specifically in the early developing dorsal telencephalon by using Emx1cre mice. The mutants showed a smaller dorsal telencephalon at E18.5, which was caused by cell cycle kinetics defects of the neural progenitor/stem cells. The cell cycle length of the progenitor/stem cells was prolonged, and the number of cycle-exiting cells and neurogenesis were decreased. Birth-date analysis revealed abnormal positioning of neurons in the mutants. The characteristics of the subventricular zone, ventricular zone and subplate cells were also affected. Weak immunoreactivity of Shh was detected in the dorsal telencephalon of wild types. Reduced Shh immunoreactivity in mutant dorsal telencephalons supports the above phenotypes. Our data indicate that Shh signaling plays an important role in development of the neocortex.
Collapse
Affiliation(s)
- Munekazu Komada
- Departmant of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Edison R, Muenke M. The interplay of genetic and environmental factors in craniofacial morphogenesis: holoprosencephaly and the role of cholesterol. Clin Genet 2008. [DOI: 10.1111/j.1399-0004.2003.tb02302.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
García-Calero E, Fernández-Garre P, Martínez S, Puelles L. Early mammillary pouch specification in the course of prechordal ventralization of the forebrain tegmentum. Dev Biol 2008; 320:366-77. [PMID: 18597750 DOI: 10.1016/j.ydbio.2008.05.545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/28/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
The mammillary body, a ventral specialization of the caudal hypothalamus, lies close to the transition between epichordal and prechordal parts of the forebrain (Puelles and Rubenstein, 2003). This report examines its presumed causal connection with either prechordal or notochordal mesodermal induction, as well as the timing of its specification, in the context of early ventral forebrain patterning. It was recently found that the ephrin receptor gene EphA7 is selectively expressed in the mammillary pouch from early stages of development (HH14: García-Calero et al., 2006). We used mammillary EphA7 expression as well as ventral hypothalamic expression of the gene markers Nkx2.1 and Shh to analyze experimental effects on mammillary specification and morphogenesis after axial mesoderm ablation at stages HH4+ to HH6. Progressively delayed ablation of the prechordal plate revealed its sequential implication in molecular specification of the entire ventral forebrain, including the mammillary and tuberal regions of the hypothalamus. We observed differential contact requirements for induction by the prechordal plate of all the forebrain regions expressing Shh and Nkx2.1, including distant subpallial ones. In contrast, ablation of the anterior notochordal tip at these stages did not elicit significant patterning changes, particularly no effects on mammillary EphA7 expression or mammillary pouch development.
Collapse
Affiliation(s)
- Elena García-Calero
- Department of Human Anatomy and Psychobiology and CIBER en Enfermedades Raras, U736, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | | | | | | |
Collapse
|
48
|
Zeiss CJ, Zarfoss MK, Johnson EE, Dubielzig RR. Ocular anomalies and holoprosencephaly in a lamb. Vet Ophthalmol 2008; 11:30-3. [PMID: 18190349 DOI: 10.1111/j.1463-5224.2007.00597.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The brain and eyes from a 1-day-old, male mixed-breed lamb with bilateral microphthalmia were examined. Bilateral ventral colobomata of choroid, sclera, retina and optic nerve were accompanied by agenesis of the optic nerve, and dilated lateral and third ventricular cavities that communicated with the subarachnoid space. Abundant neuroretinal tissue extending through the colobomatous defect to retro-orbital connective tissue, the meningeal surface and ventricular system were identified by histologic examination. Positive immunolabeling of these structures for recoverin (a photoreceptor marker) established the retinal origin of ectopic structures. The optic nerve was replaced by a short fibrous stalk containing glial nests. Sections of brainstem revealed extensive architectural disorganization. A developmental abnormality resulting from defective optic nerve and retina compartmentalization, accompanied by abnormalities of midline development consistent with the holoprosencephaly syndrome, was diagnosed. These lesions are consistent with signaling defects in the sonic hedgehog signaling pathway. Genetic and toxic causes of sonic hedgehog signaling defects are discussed.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06437, USA.
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Jin S Hahn
- Department of Neurology, Stanford University School of Medicine and the Lucile Packard Children's Hospital at Stanford, 300 Pasteur Drive, Stanford, CA, USA.
| |
Collapse
|
50
|
Abstract
Holoprosencephaly (HPE), the most common developmental defect of the forebrain and midface, is caused by a failure to delineate the midline in these structures. Both genetic and environmental etiologies exist for HPE, and clinical presentation is highly variable. HPE occurs in sporadic and inherited forms, and even HPE in pedigrees is characterized by incomplete penetrance and variable expressivity. Heterozygous mutations in eight different genes have been identified in human HPE, and disruption of Sonic hedgehog expression and/or signaling in the rostroventral region of the embryo is a major common effect of these mutations. An understanding of the mechanisms whereby genetic defects and teratogenic exposures become manifest as developmental anomalies of varying severity requires experimental models that accurately reproduce the spectrum of defects seen in human HPE. The mouse has emerged as such a model, because of its ease of genetic manipulation and similarity to humans in development of the forebrain and face. HPE is generally observed in mice homozygous for mutations in orthologs of human HPE genes though, unlike humans, rarely in mice with heterozygous mutations. Moreover, reverse genetics in the mouse has provided a wealth of new candidate human HPE genes. Construction of hypomorphic alleles, interbreeding to produce double mutants, and analysis of these mutations on different genetic backgrounds has generated multiple models of HPE and begun to provide insight into the conundrum of the HPE spectrum. Here, we review forebrain development with an emphasis on the pathways known to be defective in HPE and describe the strengths and weaknesses of various murine models of HPE.
Collapse
Affiliation(s)
- Karen A Schachter
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York 10029, USA
| | | |
Collapse
|