1
|
Zheng P, Jiang D, Liu C, Wei X, Li S. Nitric Oxide Inhalation Therapy Attenuates Postoperative Hypoxemia in Obese Patients with Acute Type A Aortic Dissection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9612548. [PMID: 35360551 PMCID: PMC8964131 DOI: 10.1155/2022/9612548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
Objective To investigate the differences between inhaled nitric oxide (iNO) treatment and conventional therapy in the treatment of postoperative hypoxemia in obese patients with acute type A aortic dissection (ATAAD). Methods ATAAD patients diagnosed and treated with emergency surgery in our hospital from June 2017 to December 2019 were retrospectively analyzed. Patients with postoperative hypoxemia were divided into the iNO group and control group. Propensity score matching was used to analyze clinical characteristics and results of the two groups. Results A total of 218 ATAAD patients with BMI ≥ 25 were treated with surgery. Among them, 115 patients developed refractory hypoxemia (64 in the control group and 51 in the iNO group). Patients in the iNO group had significantly shorter invasive mechanical ventilation time, intensive care unit (ICU) stay, and hospital stay. After 6 h of iNO treatment, the PaO2/FiO2 ratio in the iNO group increased significantly, and this ratio was higher than that in the control group at 6, 12, 24, 48, and 72 h after treatment. Conclusion Low-dose iNO could improve oxygenation and shorten mechanical ventilation and ICU stay in patients with hypoxemia after ATAAD surgery, but without significant side effects or increase in postoperative mortality or morbidity. These findings provide a basis for a randomized multicenter controlled trial to assess the efficacy of iNO in the treatment of hypoxemia after ATAAD surgery.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dingsheng Jiang
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun Liu
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiang Wei
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiliang Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Ma GG, Hao GW, Lai H, Yang XM, Liu L, Wang CS, Tu GW, Luo Z. Initial clinical impact of inhaled nitric oxide therapy for refractory hypoxemia following type A acute aortic dissection surgery. J Thorac Dis 2019; 11:495-504. [PMID: 30962993 PMCID: PMC6409278 DOI: 10.21037/jtd.2019.01.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND To evaluate the effect of inhaled nitric oxide (iNO) therapy on oxygenation and clinical outcomes in patients with refractory hypoxemia after surgical reconstruction for acute type A aortic dissection (TAAD). METHODS A before-and-after interventional study was conducted in patients with refractory hypoxemia after surgical reconstruction for TAAD. Postoperative refractory hypoxemia was defined as a persistent PaO2/FiO2 ratio ≤100 mmHg despite conventional therapy. From January to November 2016, conventional treatment was carried out for refractory hypoxemia. From December 2016 to October 2017, on the basis of conventional therapy, we explored the use of iNO to treat refractory hypoxemia. RESULTS Fifty-three TAAD patients with refractory hypoxemia were enrolled in this study. Twenty-seven patients received conventional treatment (conventional group), while the remaining 26 patients received iNO therapy. The PaO2/FiO2 ratio was significantly higher in the iNO group after treatment than in the conventional group when analyzed over the entire 72 hours. The duration of invasive mechanical ventilation was significantly reduced in the iNO group (69.19 vs. 104.56 hours; P=0.003). Other outcomes, such as mortality (3.85% vs. 7.41%, P=1.000), intensive care unit (ICU) duration (9.88 vs. 12.36 days, P=0.059) and hospital stay (16.88 vs. 20.76 days, P=0.060), were not significantly different between the two groups. CONCLUSIONS iNO therapy might play an ameliorative role in patients with refractory hypoxemia after surgical reconstruction for TAAD. This therapy may lead to sustained improvement in oxygenation and reduce the duration of invasive mechanical ventilation.
Collapse
Affiliation(s)
- Guo-Guang Ma
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guang-Wei Hao
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Lai
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Mei Yang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lan Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chun-Sheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Guervilly C, Bisbal M, Forel JM, Mechati M, Lehingue S, Bourenne J, Perrin G, Rambaud R, Adda M, Hraiech S, Marchi E, Roch A, Gainnier M, Papazian L. Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med 2016; 43:408-418. [DOI: 10.1007/s00134-016-4653-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
4
|
Banfi C, Pozzi M, Siegenthaler N, Brunner ME, Tassaux D, Obadia JF, Bendjelid K, Giraud R. Veno-venous extracorporeal membrane oxygenation: cannulation techniques. J Thorac Dis 2016; 8:3762-3773. [PMID: 28149575 DOI: 10.21037/jtd.2016.12.88] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The development of extracorporeal membrane oxygenation (ECMO) technology allows a new approach for the intensive care management of acute cardiac and/or respiratory failure in adult patients who are not responsive to conventional treatment. Current ECMO therapies provide a variety of options for the multidisciplinary teams who are involved in the management of these critically ill patients. In this regard, veno-venous ECMO (VV-ECMO) can provide quite complete respiratory support, even if this highly complex technique presents substantial risks, such as bleeding, thromboembolic events and infection. While VV-ECMO circuits usually include the cannulation of two vessels (double cannulation) in its classic configuration, the use of a single cannula is now possible for VV-ECMO support. Recently, experienced centers have employed more advanced approaches by cannulating three vessels (triple cannulation) which follows veno-arterio-venous (VAV) or veno-arterio-pulmonary-arterial cannulation (VAPa). However, 'triple' cannulation expands the field of application but increases the complexity of ECMO systems. In the present review, the authors focus on the indications for VV-ECMO, patient assessment prior to cannulation, the role of ultrasound-guided vessel puncture, double lumen single bicaval cannulations, and finally triple cannulation in VV-ECMO.
Collapse
Affiliation(s)
- Carlo Banfi
- Division of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland;; Faculty of Medicine, University of Geneva, Geneva, Switzerland;; Geneva Hemodynamic Research Group, Geneva, Switzerland
| | - Matteo Pozzi
- Department of Cardiac Surgery, "Louis Pradel" Cardiologic Hospital, "Claude Bernard" University, Lyon, France
| | - Nils Siegenthaler
- Faculty of Medicine, University of Geneva, Geneva, Switzerland;; Geneva Hemodynamic Research Group, Geneva, Switzerland;; Intensive Care Service, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Eve Brunner
- Intensive Care Service, Geneva University Hospitals, Geneva, Switzerland
| | - Didier Tassaux
- Intensive Care Service, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Francois Obadia
- Department of Cardiac Surgery, "Louis Pradel" Cardiologic Hospital, "Claude Bernard" University, Lyon, France
| | - Karim Bendjelid
- Faculty of Medicine, University of Geneva, Geneva, Switzerland;; Geneva Hemodynamic Research Group, Geneva, Switzerland;; Intensive Care Service, Geneva University Hospitals, Geneva, Switzerland
| | - Raphaël Giraud
- Faculty of Medicine, University of Geneva, Geneva, Switzerland;; Geneva Hemodynamic Research Group, Geneva, Switzerland;; Intensive Care Service, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
5
|
Claesson J, Freundlich M, Gunnarsson I, Laake JH, Møller MH, Vandvik PO, Varpula T, Aasmundstad TA. Scandinavian clinical practice guideline on fluid and drug therapy in adults with acute respiratory distress syndrome. Acta Anaesthesiol Scand 2016; 60:697-709. [PMID: 26988416 PMCID: PMC6680148 DOI: 10.1111/aas.12713] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/06/2016] [Accepted: 02/13/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The objective of the Scandinavian Society of Anaesthesiology and Intensive Care Medicine (SSAI) task force on fluid and drug therapy in adults with acute respiratory distress syndrome (ARDS) was to provide clinically relevant, evidence-based treatment recommendations according to standards for trustworthy guidelines. METHODS The guideline was developed according to standards for trustworthy guidelines, including a systematic review of the literature and use of the GRADE methodology for assessment of the quality of evidence and for moving from evidence to recommendations. RESULTS A total of seven ARDS interventions were assessed. We suggest fluid restriction in patients with ARDS (weak recommendation, moderate quality evidence). Also, we suggest early use of neuromuscular blocking agents (NMBAs) in patients with severe ARDS (weak recommendation, moderate quality evidence). We recommend against the routine use of other drugs, including corticosteroids, beta2 agonists, statins, and inhaled nitric oxide (iNO) or prostanoids in adults with ARDS (strong recommendations: low- to high-quality evidence). These recommendations do not preclude the use of any drug or combination of drugs targeting underlying or co-existing disorders. CONCLUSION This guideline emphasizes the paucity of evidence of benefit - and potential for harm - of common interventions in adults with ARDS and highlights the need for prudence when considering use of non-licensed interventions in this patient population.
Collapse
Affiliation(s)
- J. Claesson
- Anaesthesiology and Intensive Care MedicineUmeå University and the University Hospital of UmeåUmeåSweden
| | - M. Freundlich
- AnaesthesiologyAalborg University HospitalAalborgDenmark
| | - I. Gunnarsson
- Anaesthesiology and Intensive Care MedicineLandspitali University HospitalReykjavikIceland
| | - J. H. Laake
- AnaesthesiologyDivision of Critical CareOslo University HospitalOsloNorway
| | - M. H. Møller
- Intensive Care 4131Copenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - P. O. Vandvik
- MedicineInnlandet Hospital Trust‐Division GjøvikNorway and Norwegian Knowledge Centre for the Health ServicesOsloNorway
| | - T. Varpula
- Intensive Care MedicineHelsinki University HospitalHelsinkiFinland
| | - T. A. Aasmundstad
- AnaesthesiologyDivision of Critical CareOslo University HospitalOsloNorway
| |
Collapse
|
6
|
Prodhan P, Noviski N. Pediatric Acute Hypoxemic Respiratory Failure: Management of Oxygenation. J Intensive Care Med 2016; 19:140-53. [PMID: 15154995 DOI: 10.1177/0885066604263859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute hypoxemic respiratory failure (AHRF) is one of the hallmarks of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which are caused by an inflammatory process initiated by any of a number of potential systemic and/or pulmonary insults that result in heterogeneous disruption of the capillary-pithelial interface. In these critically sick patients, optimizing the management of oxygenation is crucial. Physicians managing pediatric patients with ALI or ARDS are faced with a complex array of options influencing oxygenation. Certain treatment strategies can influence clinical outcomes, such as a lung protective ventilation strategy that specifies a low tidal volume (6 mL/kg) and a plateau pressure limit (30 cm H2O). Other strategies such as different levels of positive end expiratory pressure, altered inspiration to expiration time ratios, recruitment maneuvers, prone positioning, and extraneous gases or drugs may also affect clinical outcomes. This article reviews state-of-the-art strategies on the management of oxygenation in acute hypoxemic respiratory failure in children.
Collapse
Affiliation(s)
- Parthak Prodhan
- Division of Pediatric Critical Care Medicine, MassGeneral Hospital for Children, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
7
|
Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 2016; 2016:CD002787. [PMID: 27347773 PMCID: PMC6464789 DOI: 10.1002/14651858.cd002787.pub3] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Acute hypoxaemic respiratory failure (AHRF) and mostly acute respiratory distress syndrome (ARDS) are critical conditions. AHRF results from several systemic conditions and is associated with high mortality and morbidity in individuals of all ages. Inhaled nitric oxide (INO) has been used to improve oxygenation, but its role remains controversial. This Cochrane review was originally published in 2003, and has been updated in 2010 and 2016. OBJECTIVES The primary objective was to examine the effects of administration of inhaled nitric oxide on mortality in adults and children with ARDS. Secondary objectives were to examine secondary outcomes such as pulmonary bleeding events, duration of mechanical ventilation, length of stay, etc. We conducted subgroup and sensitivity analyses, examined the role of bias and applied trial sequential analyses (TSAs) to examine the level of evidence. SEARCH METHODS In this update, we searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015 Issue 11); MEDLINE (Ovid SP, to 18 November 2015), EMBASE (Ovid SP, to 18 November 2015), CAB, BIOSIS and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). We handsearched the reference lists of the newest reviews and cross-checked them with our search of MEDLINE. We contacted the main authors of included studies to request any missed, unreported or ongoing studies. The search was run from inception until 18 November 2015. SELECTION CRITERIA We included all randomized controlled trials (RCTs), irrespective of publication status, date of publication, blinding status, outcomes published or language. We contacted trial investigators and study authors to retrieve relevant and missing data. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and resolved disagreements by discussion. Our primary outcome measure was all-cause mortality. We performed several subgroup and sensitivity analyses to assess the effects of INO in adults and children and on various clinical and physiological outcomes. We presented pooled estimates of the effects of interventions as risk ratios (RRs) with 95% confidence intervals (CIs). We assessed risk of bias through assessment of trial methodological components and risk of random error through trial sequential analysis. MAIN RESULTS Our primary objective was to assess effects of INO on mortality. We found no statistically significant effects of INO on longest follow-up mortality: 250/654 deaths (38.2%) in the INO group compared with 221/589 deaths (37.5%) in the control group (RR 1.04, 95% CI 0.9 to 1.19; I² statistic = 0%; moderate quality of evidence). We found no statistically significant effects of INO on mortality at 28 days: 202/587 deaths (34.4%) in the INO group compared with 166/518 deaths (32.0%) in the control group (RR 1.08, 95% CI 0.92 to 1.27; I² statistic = 0%; moderate quality of evidence). In children, there was no statistically significant effects of INO on mortality: 25/89 deaths (28.1%) in the INO group compared with 34/96 deaths (35.4%) in the control group (RR 0.78, 95% CI 0.51 to 1.18; I² statistic = 22%; moderate quality of evidence).Our secondary objective was to assess the benefits and harms of INO. For partial pressure of oxygen in arterial blood (PaO2)/fraction of inspired oxygen (FiO2), we found significant improvement at 24 hours (mean difference (MD) 15.91, 95% CI 8.25 to 23.56; I² statistic = 25%; 11 trials, 614 participants; moderate quality of evidence). For the oxygenation index, we noted significant improvement at 24 hours (MD -2.31, 95% CI -2.73 to -1.89; I² statistic = 0%; five trials, 368 participants; moderate quality of evidence). For ventilator-free days, the difference was not statistically significant (MD -0.57, 95% CI -1.82 to 0.69; I² statistic = 0%; five trials, 804 participants; high quality of evidence). There was a statistically significant increase in renal failure in the INO groups (RR 1.59, 95% CI 1.17 to 2.16; I² statistic = 0%; high quality of evidence). AUTHORS' CONCLUSIONS Evidence is insufficient to support INO in any category of critically ill patients with AHRF. Inhaled nitric oxide results in a transient improvement in oxygenation but does not reduce mortality and may be harmful, as it seems to increase renal impairment.
Collapse
Affiliation(s)
- Fabienne Gebistorf
- Geneva University HospitalPediatric Intensive Care Unit6 rue Willy DonzéGenevaSwitzerland1205
| | - Oliver Karam
- Children's Hospital of Richmond at VCUDivision of Pediatric Critical Care1250 East Marshall StRichmondVAUSA23298
| | - Jørn Wetterslev
- Department 7812, Rigshospitalet, Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Arash Afshari
- Rigshospitalet, Copenhagen University HospitalJuliane Marie Centre ‐ Anaesthesia and Surgical Clinic Department 4013CopenhagenDenmark
| | | |
Collapse
|
8
|
Hawkes MT, Conroy AL, Opoka RO, Hermann L, Thorpe KE, McDonald C, Kim H, Higgins S, Namasopo S, John C, Miller C, Liles WC, Kain KC. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial. Malar J 2015; 14:421. [PMID: 26510464 PMCID: PMC4625637 DOI: 10.1186/s12936-015-0946-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/21/2015] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Severe malaria remains a major cause of childhood mortality globally. Decreased endothelial nitric oxide is associated with severe and fatal malaria. The hypothesis was that adjunctive inhaled nitric oxide (iNO) would improve outcomes in African children with severe malaria. METHODS A randomized, blinded, placebo-controlled trial of iNO at 80 ppm by non-rebreather mask versus room air placebo as adjunctive treatment to artesunate in children with severe malaria was conducted. The primary outcome was the longitudinal course of angiopoietin-2 (Ang-2), an endothelial biomarker of malaria severity and clinical outcome. RESULTS One hundred and eighty children were enrolled; 88 were assigned to iNO and 92 to placebo (all received IV artesunate). Ang-2 levels measured over the first 72 h of hospitalization were not significantly different between groups. The mortality at 48 h was similar between groups [6/87 (6.9 %) in the iNO group vs 8/92 (8.7 %) in the placebo group; OR 0.78, 95 % CI 0.26-2.3; p = 0.65]. Clinical recovery times and parasite clearance kinetics were similar (p > 0.05). Methaemoglobinaemia >7 % occurred in 25 % of patients receiving iNO and resolved without sequelae. The incidence of neurologic deficits (<14 days), acute kidney injury, hypoglycaemia, anaemia, and haemoglobinuria was similar between groups (p > 0.05). CONCLUSIONS iNO at 80 ppm administered by non-rebreather mask was safe but did not affect circulating levels of Ang-2. Alternative methods of enhancing endothelial NO bioavailability may be necessary to achieve a biological effect and improve clinical outcome. TRIAL REGISTRATION ClinicalTrials.gov NCT01255215.
Collapse
Affiliation(s)
- Michael T Hawkes
- 3-588D Edmonton Clinic Health Academy, University of Alberta, 11405 87 Ave NW, Edmonton, AB, T6G 1C9, Canada.
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, MaRS Centre, University of Toronto, 101 College St TMDT 10-360A, Toronto, ON, M5G 1L7, Canada.
| | - Robert O Opoka
- Global Health Uganda, Upper Paediatrics Office, Mulago Hospital, PO Box 33842, Plot 138, Upper Mawanda Road, Kawempe, Kampala, Uganda.
| | - Laura Hermann
- Sandra Rotman Centre for Global Health, MaRS Centre, University of Toronto, 101 College St TMDT 10-360A, Toronto, ON, M5G 1L7, Canada.
| | - Kevin E Thorpe
- Applied Health Research Centre, St Michael's Hospital, 250 Yonge St, 6th Floor, Toronto, ON, M5T 3M7, Canada.
| | - Chloe McDonald
- Sandra Rotman Centre for Global Health, MaRS Centre, University of Toronto, 101 College St TMDT 10-360A, Toronto, ON, M5G 1L7, Canada.
| | - Hani Kim
- Johns Hopkins School of Public Health, International Vaccine Access Center, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| | - Sarah Higgins
- Sandra Rotman Centre for Global Health, MaRS Centre, University of Toronto, 101 College St TMDT 10-360A, Toronto, ON, M5G 1L7, Canada.
| | - Sophie Namasopo
- Jinja Regional Referral Hospital, Plot 7, Nalufenya Road, Jinja, Uganda.
| | - Chandy John
- Department of Pediatrics, Indiana University, 702 Barnhill Dr, Room 5900, Indianapolis, IN, 46202, USA.
| | - Chris Miller
- Division of Infectious Disease, University of British Columbia, Rm D433, HP East, Vancouver Hospital, 2733 Heather Street, Vancouver, BC, V5Z-3J5, Canada.
| | - W Conrad Liles
- Department of Medicine, University of Washington, 1959 NE Pacific Street, HSB RR-511, Box 356420, Seattle, WA, 98195-6420, USA.
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, MaRS Centre, University of Toronto, 101 College St TMDT 10-360A, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
9
|
Dzierba AL, Abel EE, Buckley MS, Lat I. A review of inhaled nitric oxide and aerosolized epoprostenol in acute lung injury or acute respiratory distress syndrome. Pharmacotherapy 2014; 34:279-90. [PMID: 24734313 DOI: 10.1002/phar.1365] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are conditions associated with an estimated mortality of 40–50%. The use of inhaled vasodilators can help to improve oxygenation without hemodynamic effects. This article reviews relevant studies addressing the safety and efficacy of inhaled nitric oxide (iNO) and aerosolized epoprostenol (aEPO) in the treatment of life-threatening hypoxemia associated with ARDS and ALI. In addition, the article also provides a practicable guide to the clinical application of these therapies. Nine prospective randomized controlled trials were included for iNO reporting on changes in oxygenation or clinical outcomes. Seven reports of aEPO were examined for changes in oxygenation. Based on currently available data, the use of either iNO or aEPO is safe to use in patients with ALI or ARDS to transiently improve oxygenation. No differences have been observed in survival, ventilator-free days, or attenuation in disease severity. Further studies with consistent end points using standard delivery devices and standard modes of mechanical ventilation are needed to determine the overall benefit with iNO or aEPO.
Collapse
|
10
|
Abstract
Pulmonary arterial hypertension is a serious disease with significant morbidity and mortality. Although it can occur idiopathically, it is more commonly associated with other cardiac or lung diseases. While most of the available therapies have been tested in adult populations and most therapies in children remain off-label, new reports and randomized trials are emerging that inform the treatment of pediatric populations. This review discusses currently available therapies for pediatric pulmonary hypertension, their biological rationales, and evidence for their clinical effectiveness.
Collapse
Affiliation(s)
- Robin H Steinhorn
- Department of Pediatrics, The Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, 225 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Darwish I, Miller C, Kain KC, Liles WC. Inhaled nitric oxide therapy fails to improve outcome in experimental severe influenza. Int J Med Sci 2012; 9:157-62. [PMID: 22253563 PMCID: PMC3258558 DOI: 10.7150/ijms.3880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/06/2012] [Indexed: 11/12/2022] Open
Abstract
In vitro, nitric oxide (NO) has been shown to have antimicrobial activity against a wide range of viruses, including influenza A virus. Therefore, we hypothesized that inhaled nitric oxide (iNO) would increase survival in vivo by reducing the viral load in C57Bl/6 mice infected with a lethal dose of influenza A/WSN/33 (H1N1; WSN/33) virus. NO was delivered to influenza-infected mice either continuously or intermittently at 80 or 160 ppm, respectively, using both prophylactic and post-infection treatment strategies. Murine survival and weight loss were assessed, and lung viral load was quantified via plaque assay. Here, we report that iNO administered prophylactically or post-influenza infection failed to improve survival of infected mice. No difference in lung viral load was observed between experimental groups. Although NO has antiviral activity against influenza A virus in vitro, iNO therapy provided no apparent benefit when used for treatment of influenza A virus infection in vivo.
Collapse
Affiliation(s)
- Ilyse Darwish
- 1. Institute of Medical Science, University of Toronto, Toronto, Canada
- 2. Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto
| | - Chris Miller
- 3. Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kevin C. Kain
- 1. Institute of Medical Science, University of Toronto, Toronto, Canada
- 2. Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto
- 4. Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| | - W. Conrad Liles
- 1. Institute of Medical Science, University of Toronto, Toronto, Canada
- 2. Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto
- 4. Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One 2011; 6:e27714. [PMID: 22110737 PMCID: PMC3218025 DOI: 10.1371/journal.pone.0027714] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/22/2011] [Indexed: 01/08/2023] Open
Abstract
The host immune response contributes to the onset and progression of severe malaria syndromes, such as cerebral malaria. Adjunctive immunomodulatory strategies for severe malaria may improve clinical outcome beyond that achievable with artemisinin-based therapy alone. Here, we report that prophylaxis with inhaled nitric oxide significantly reduced systemic inflammation (lower TNF, IFNγ and MCP-1 in peripheral blood) and endothelial activation (decreased sICAM-1 and vWF, and increased angiopoeitin-1 levels in peripheral blood) in an experimental cerebral malaria model. Mice that received inhaled nitric oxide starting prior to infection had reduced parasitized erythrocyte accumulation in the brain, decreased brain expression of ICAM-1, and preserved vascular integrity compared to control mice. Inhaled nitric oxide administered in combination with artesunate, starting as late as 5.5 days post-infection, improved survival over treatment with artesunate alone (70% survival in the artesunate only vs. 100% survival in the artesunate plus iNO group, p = 0.03). These data support the clinical investigation of inhaled nitric oxide as a novel adjunctive therapy in patients with severe malaria.
Collapse
|
13
|
Steinhorn RH. Therapeutic approaches using nitric oxide in infants and children. Free Radic Biol Med 2011; 51:1027-34. [PMID: 21237265 PMCID: PMC3156336 DOI: 10.1016/j.freeradbiomed.2011.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/05/2011] [Indexed: 11/20/2022]
Abstract
Pulmonary hypertension contributes significantly to the morbidity and mortality associated with many pediatric pulmonary and cardiac diseases. Nitric oxide, a gas molecule, is a unique pharmaceutical agent that can be inhaled and thus delivered directly to the lung. Inhaled nitric oxide was approved by the FDA in 1999 as a therapy for infants with persistent pulmonary hypertension. Since then, the use of inhaled nitric oxide has expanded to other neonatal and pediatric conditions, and our knowledge of its properties and mechanisms of action has increased tremendously. This review discusses the physiology of nitric oxide signaling, the most common indications for its clinical use, and promising new investigations that may enhance endogenous production of nitric oxide and/or improve vascular response to it.
Collapse
Affiliation(s)
- Robin H Steinhorn
- Department of Pediatrics, Children's Memorial Hospital and Northwestern University's Feinberg School of Medicine, Chicago, IL 60614, USA.
| |
Collapse
|
14
|
Hawkes M, Opoka RO, Namasopo S, Miller C, Thorpe KE, Lavery JV, Conroy AL, Liles WC, John CC, Kain KC. Inhaled nitric oxide for the adjunctive therapy of severe malaria: protocol for a randomized controlled trial. Trials 2011; 12:176. [PMID: 21752262 PMCID: PMC3151218 DOI: 10.1186/1745-6215-12-176] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/13/2011] [Indexed: 12/22/2022] Open
Abstract
Background Severe malaria remains a major cause of global morbidity and mortality. Despite the use of potent anti-parasitic agents, the mortality rate in severe malaria remains high. Adjunctive therapies that target the underlying pathophysiology of severe malaria may further reduce morbidity and mortality. Endothelial activation plays a central role in the pathogenesis of severe malaria, of which angiopoietin-2 (Ang-2) has recently been shown to function as a key regulator. Nitric oxide (NO) is a major inhibitor of Ang-2 release from endothelium and has been shown to decrease endothelial inflammation and reduce the adhesion of parasitized erythrocytes. Low-flow inhaled nitric oxide (iNO) gas is a US FDA-approved treatment for hypoxic respiratory failure in neonates. Methods/Design This prospective, parallel arm, randomized, placebo-controlled, blinded clinical trial compares adjunctive continuous inhaled nitric oxide at 80 ppm to placebo (both arms receiving standard anti-malarial therapy), among Ugandan children aged 1-10 years of age with severe malaria. The primary endpoint is the longitudinal change in Ang-2, an objective and quantitative biomarker of malaria severity, which will be analysed using a mixed-effects linear model. Secondary endpoints include mortality, recovery time, parasite clearance and neurocognitive sequelae. Discussion Noteworthy aspects of this trial design include its efficient sample size supported by a computer simulation study to evaluate statistical power, meticulous attention to complex ethical issues in a cross-cultural setting, and innovative strategies for safety monitoring and blinding to treatment allocation in a resource-constrained setting in sub-Saharan Africa. Trial Registration ClinicalTrials.gov Identifier: NCT01255215
Collapse
Affiliation(s)
- Michael Hawkes
- Institute of Medical Sciences, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Novel interventional approaches for ALI/ARDS: cell-based gene therapy. Mediators Inflamm 2011; 2011:560194. [PMID: 21785528 PMCID: PMC3139183 DOI: 10.1155/2011/560194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) and its more severe
form, acute respiratory distress syndrome (ARDS),
continue to be a major cause of morbidity and
mortality in critically ill patients. The present
therapeutic strategies for ALI/ARDS including
supportive care, pharmacological treatments, and
ventilator support are still controversial. More
scientists are focusing on therapies involving
stem cells, which have self-renewing capabilities
and differentiate into multiple cell lineages,
and, genomics therapy which has the potential to
upregulate expression of anti-inflammatory
mediators. Recently, the combination of cell and
gene therapy which has been demonstrated to
provide additive benefit has opened up a new
chapter in therapeutic strategy and provides a
basis for the development of an innovative
approach for the prevention and treatment of
ALI/ARDS.
Collapse
|
16
|
Manejo de la falla respiratoria catastrófica en el adulto. REVISTA MÉDICA CLÍNICA LAS CONDES 2011. [DOI: 10.1016/s0716-8640(11)70427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Afshari A, Brok J, Møller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults. Cochrane Database Syst Rev 2010:CD002787. [PMID: 20614430 DOI: 10.1002/14651858.cd002787.pub2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acute hypoxaemic respiratory failure (AHRF), defined as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), are critical conditions. AHRF results from a number of systemic conditions and is associated with high mortality and morbidity in all ages. Inhaled nitric oxide (INO) has been used to improve oxygenation but its role remains controversial. OBJECTIVES To systematically assess the benefits and harms of INO in critically ill patients with AHRF. SEARCH STRATEGY Randomized clinical trials (RCTs) were identified from electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 1); MEDLINE; EMBASE; Science Citation Index Expanded; International Web of Science; CINAHL; LILACS; and the Chinese Biomedical Literature Database (up to 31st January 2010). We contacted trial authors, authors of previous reviews, and manufacturers in the field. SELECTION CRITERIA We included all RCTs, irrespective of blinding or language, that compared INO with no intervention or placebo in children or adults with AHRF. DATA COLLECTION AND ANALYSIS Two authors independently abstracted data and resolved any disagreements by discussion. We presented pooled estimates of the intervention effects on dichotomous outcomes as relative risks (RR) with 95% confidence intervals (CI). Our primary outcome measure was all cause mortality. We performed subgroup and sensitivity analyses to assess the effect of INO in adults and children and on various clinical and physiological outcomes. We assessed the risk of bias through assessment of trial methodological components and the risk of random error through trial sequential analysis. MAIN RESULTS We included 14 RCTs with a total of 1303 participants; 10 of these trials had a high risk of bias. INO showed no statistically significant effect on overall mortality (40.2% versus 38.6%) (RR 1.06, 95% CI 0.93 to 1.22; I(2) = 0) and in several subgroup and sensitivity analyses, indicating robust results. Limited data demonstrated a statistically insignificant effect of INO on duration of ventilation, ventilator-free days, and length of stay in the intensive care unit and hospital. We found a statistically significant but transient improvement in oxygenation in the first 24 hours, expressed as the ratio of partial pressure of oxygen to fraction of inspired oxygen and the oxygenation index (MD 15.91, 95% CI 8.25 to 23.56; I(2) = 25%). However, INO appears to increase the risk of renal impairment among adults (RR 1.59, 95% CI 1.17 to 2.16; I(2) = 0) but not the risk of bleeding or methaemoglobin or nitrogen dioxide formation. AUTHORS' CONCLUSIONS INO cannot be recommended for patients with AHRF. INO results in a transient improvement in oxygenation but does not reduce mortality and may be harmful.
Collapse
Affiliation(s)
- Arash Afshari
- The Cochrane Anaesthesia Review Group & Copenhagen Trial Unit and Department of Paediatric and Obstetric Anaesthesia, Rigshospitalet, Blegdamsvej 9, Afsnit 3342, rum 52, Copenhagen, Denmark, 2100
| | | | | | | |
Collapse
|
18
|
Raoof S, Goulet K, Esan A, Hess DR, Sessler CN. Severe Hypoxemic Respiratory Failure. Chest 2010; 137:1437-48. [DOI: 10.1378/chest.09-2416] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Mesiano G, Davis GM. Ventilatory strategies in the neonatal and paediatric intensive care units. Paediatr Respir Rev 2008; 9:281-8; quiz 288-9. [PMID: 19026369 DOI: 10.1016/j.prrv.2008.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mechanical ventilation is a common form of support in the modern day intensive care unit (ICU). In order for the clinician better to understand and apply mechanical ventilation, it is important that they understand the physiological principles of ventilation. This review describes these basic concepts; parameters of mechanical ventilation, high frequency ventilation and non-invasive ventilation. An overview of ventilatory strategies for four common diseases seen in paediatric and neonatal ICUs will be discussed.
Collapse
Affiliation(s)
- Giulia Mesiano
- McGill University Health Center, Montreal Children's Hospital, Montreal, Quebec, Canada.
| | | |
Collapse
|
20
|
Affiliation(s)
- George C Velmahos
- John F. Burke Professor of Surgery, Harvard Medical School, Chief, Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
21
|
Papadimos TJ. The beneficial effects of inhaled nitric oxide in patients with severe traumatic brain injury complicated by acute respiratory distress syndrome: a hypothesis. J Trauma Manag Outcomes 2008; 2:1. [PMID: 18272001 PMCID: PMC2241770 DOI: 10.1186/1752-2897-2-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/14/2008] [Indexed: 12/21/2022]
Abstract
Background The Iraq war has vividly brought the problem of traumatic brain injury to the foreground. The costs of death and morbidity in lost wages, lost taxes, and rehabilitative costs, let alone the emotional costs, are enormous. Military personnel with traumatic brain injury and acute respiratory distress syndrome may represent a substantial problem. Each of these entities, in and of itself, may cause a massive inflammatory response. Both presenting in one patient can precipitate an overwhelming physiological scenario. Inhaled nitric oxide has recently been demonstrated to have anti-inflammatory effects beyond the pulmonary system, in addition to its ability to improve arterial oxygenation. Furthermore, it is virtually without side effects, and can easily be applied to combat casualties or to civilian casualties. Presentation of hypothesis Use of inhaled nitric oxide in patients with severe traumatic brain injury and acute respiratory distress syndrome will show a benefit through improved physiological parameters, a decrease in biochemical markers of inflammation and brain injury, thus leading to better outcomes. Testing of hypothesis A prospective, randomized, non-blinded clinical trial may be performed in which patients meeting the case definition could be entered into the study. The hypothesis may be confirmed by: (1) demonstrating an improvement in physiologic parameters, intracranial pressure, and brain oxygenation with inhaled nitric oxide use in severely head injured patients, and (2) demonstrating a decrease in biochemical serum markers in such patients; specifically, glial fibrillary acidic protein, inflammatory cytokines, and biomarkers of the hypothalamic-pituitary-adrenal axis, and (3) documentation of outcomes. Implications of hypothesis Inhaled nitric oxide therapy in traumatic brain injury patients with acute respiratory distress syndrome could result in increased numbers of lives saved, decreased patient morbidity, decreased hospital costs, decreased insurance carrier and government rehabilitation costs, increased tax revenue secondary to occupational rehabilitation, and families could still have their loved ones among them.
Collapse
Affiliation(s)
- Thomas J Papadimos
- Department of Anesthesiology, University of Toledo, College of Medicine, 3000 Arlington Avenue, Toledo, Ohio 43614, USA.
| |
Collapse
|
22
|
Adhikari NKJ, Burns KEA, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ 2007; 334:779. [PMID: 17383982 PMCID: PMC1852043 DOI: 10.1136/bmj.39139.716794.55] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To review the literature on the use of inhaled nitric oxide to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and to summarise the effects of nitric oxide, compared with placebo or usual care without nitric oxide, in adults and children with ALI or ARDS. DESIGN Systematic review and meta-analysis. DATA SOURCES Medline, CINAHL, Embase, and CENTRAL (to October 2006), proceedings from four conferences, and additional information from authors of 10 trials. REVIEW METHODS Two reviewers independently selected parallel group randomised controlled trials comparing nitric oxide with control and extracted data related to study methods, clinical and physiological outcomes, and adverse events. MAIN OUTCOME MEASURES Mortality, duration of ventilation, oxygenation, pulmonary arterial pressure, adverse events. RESULTS 12 trials randomly assigning 1237 patients met inclusion criteria. Overall methodological quality was good. Using random effects models, we found no significant effect of nitric oxide on hospital mortality (risk ratio 1.10, 95% confidence interval 0.94 to 1.30), duration of ventilation, or ventilator-free days. On day one of treatment, nitric oxide increased the ratio of partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2 ratio) (13%, 4% to 23%) and decreased the oxygenation index (14%, 2% to 25%). Some evidence suggested that improvements in oxygenation persisted until day four. There was no effect on mean pulmonary arterial pressure. Patients receiving nitric oxide had an increased risk of developing renal dysfunction (1.50, 1.11 to 2.02). CONCLUSIONS Nitric oxide is associated with limited improvement in oxygenation in patients with ALI or ARDS but confers no mortality benefit and may cause harm. We do not recommend its routine use in these severely ill patients.
Collapse
Affiliation(s)
- Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Namachivayam P, Theilen U, Butt WW, Cooper SM, Penny DJ, Shekerdemian LS. Sildenafil Prevents Rebound Pulmonary Hypertension after Withdrawal of Nitric Oxide in Children. Am J Respir Crit Care Med 2006; 174:1042-7. [PMID: 16917115 DOI: 10.1164/rccm.200605-694oc] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Rebound pulmonary hypertension (PHT) can complicate the weaning of nitric oxide (NO), and is in part related to transient depletion of intrinsic cyclic guanosine monophosphate. Rebound is characterized by increased pulmonary arterial (PA) pressure, cardiopulmonary instability, and in some cases, the need to continue NO beyond the intended period of use. There is anecdotal evidence that sildenafil, a phosphodiesterase-5 inhibitor, may prevent recurrence of rebound. OBJECTIVES We investigated the role of sildenafil in preventing rebound (an increase in PA pressure of 20% or greater, or failure to discontinue NO) in patients in whom previous attempts had not been made to wean from NO. METHODS Thirty ventilated infants and children, receiving 10 ppm or greater inhaled NO, were randomized to receive 0.4 mg/kg of sildenafil, or placebo, 1 h before discontinuing NO. Twenty-nine patients completed the study. MEASUREMENTS PA pressures and blood gases were measured before the study drug, and 1 and 4 h after stopping NO. MAIN RESULTS Rebound occurred in 10 of 14 placebo patients, and 0 of 15 sildenafil patients (p < 0.001). PA pressure increased by 25% (14-67) in placebo patients, and by 1%(-9-5) in sildenafil patients (p < 0.001). Four placebo patients could not be weaned from NO due to severe cardiovascular instability, whereas all sildenafil patients were weaned (p = 0.042). Duration of ventilation after study was 98.0 (47.0-223.5) h for placebo patients and 28.2 (15.7-54.6) h for sildenafil patients (p = 0.024). CONCLUSION A single dose of sildenafil prevented rebound after withdrawal of NO, and reduced the duration of mechanical ventilation. Prophylaxis with sildenafil should be considered when weaning patients from inhaled NO.
Collapse
|
24
|
Lynch JE, Cheek JM, Chan EY, Zwischenberger JB. Adjuncts to Mechanical Ventilation in ARDS. Semin Thorac Cardiovasc Surg 2006; 18:20-7. [PMID: 16766249 DOI: 10.1053/j.semtcvs.2006.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2006] [Indexed: 11/11/2022]
Abstract
Since its first description, acute respiratory distress syndrome has been characterized by abnormal physiologic and gas exchange properties of the lungs. Many adjunctive therapies have been developed to reduce the stresses of mechanical ventilation on already damaged lungs. We examined the mechanism of action and the latest clinical trial information of several adjunctive therapies including prone positioning, nitric oxide, extracorporeal membrane oxygenation, arterial venous carbon dioxide removal, and liquid ventilation. While all of these therapies have demonstrated short-term improvements in arterial blood gases and in the limitation of lung injury, none have shown an evidence-based survival benefit.
Collapse
Affiliation(s)
- James E Lynch
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
25
|
Shargall Y, Guenther G, Ahya VN, Ardehali A, Singhal A, Keshavjee S. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part VI: Treatment. J Heart Lung Transplant 2005; 24:1489-500. [PMID: 16210120 DOI: 10.1016/j.healun.2005.03.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 02/23/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022] Open
Affiliation(s)
- Yaron Shargall
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Giuseppe A Marraro
- Department of Anaesthesia and Intensive Care, Pediatric Intensive Care Unit, Fatebenefratelli and Ophthalmiatric Hospital, Milano, Italy.
| |
Collapse
|
27
|
Germann P, Braschi A, Della Rocca G, Dinh-Xuan AT, Falke K, Frostell C, Gustafsson LE, Hervé P, Jolliet P, Kaisers U, Litvan H, Macrae DJ, Maggiorini M, Marczin N, Mueller B, Payen D, Ranucci M, Schranz D, Zimmermann R, Ullrich R. Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive Care Med 2005; 31:1029-41. [PMID: 15973521 DOI: 10.1007/s00134-005-2675-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 05/24/2005] [Indexed: 01/06/2023]
Abstract
BACKGROUND Inhaled nitric oxide (iNO) has been used for treatment of acute respiratory failure and pulmonary hypertension since 1991 in adult patients in the perioperative setting and in critical care. METHODS This contribution assesses evidence for the use of iNO in this population as presented to a expert group jointly organised by the European Society of Intensive Care Medicine and the European Association of Cardiothoracic Anaesthesiologists. CONCLUSIONS Expert recommendations on the use of iNO in adults were agreed on following presentation of the evidence at the expert meeting held in June 2004.
Collapse
Affiliation(s)
- Peter Germann
- Department of Anaesthesiology and General Intensive Care, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Important advances have been made over the past decade towards understanding the optimal approach to ventilating patients with acute respiratory failure. Evidence now supports the use of noninvasive positive pressure ventilation in selected patients with hypercapnic respiratory failure and chronic obstructive pulmonary disease, cardiogenic pulmonary edema, and for facilitating the discontinuation of ventilatory support in patients with chronic pulmonary disease. The concept of a lung protective ventilatory strategy has revolutionized the management of the acute respiratory distress syndrome. The process of liberation from mechanical ventilation is becoming more standardized, with evidence supporting daily trials of spontaneous breathing in all suitable mechanically ventilated patients. This article critically reviews the most important recent advances in mechanical ventilation and suggests future directions for further research in the field.
Collapse
Affiliation(s)
- Carolyn S Calfee
- Cardiovascular Research Institute, San Francisco, California, USA.
| | | |
Collapse
|
29
|
|
30
|
Adhikari N, Burns KEA, Meade MO. Pharmacologic therapies for adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev 2004; 2004:CD004477. [PMID: 15495113 PMCID: PMC6517021 DOI: 10.1002/14651858.cd004477.pub2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Multiple pharmacologic treatments have been studied for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). OBJECTIVES Our objective was to determine the effects of pharmacologic treatments on clinical outcomes in adults with ALI or ARDS. SEARCH STRATEGY We searched OVID versions of CENTRAL (The Cochrane Library Issue 3, 2003), MEDLINE (1966 to week 2, January 2004), EMBASE (1980 to week 4, 2004), CINAHL (1982 to week 2, January 2004), and HEALTHSTAR (1995 to December 2003); proceedings from four conferences (1994 to 2003); and bibliographies of review articles and included studies. SELECTION CRITERIA Randomized controlled trials of pharmacologic treatments compared to no therapy or placebo for established ALI or ARDS in adults admitted to an intensive care unit, with measurement of early mortality (primary outcome), late mortality, duration of mechanical ventilation, ventilator-free days to day 28, or adverse events. We excluded trials of nitric oxide, partial liquid ventilation, fluid and nutritional interventions, oxygen, and trials in other populations reporting outcomes in subgroups of patients with ALI or ARDS. DATA COLLECTION AND ANALYSIS Two reviewers independently screened titles and abstracts, rated studies for inclusion, extracted data and assessed methodologic quality of included studies. Disagreements were resolved by consensus in consultation with a third reviewer. For each pharmacologic therapy, we quantitatively pooled the results of studies using random effects models where permitted by the available data. We contacted study authors when clarification of the primary outcome was required. MAIN RESULTS Thirty three trials randomizing 3272 patients met our inclusion criteria. Pooling of results showed no effect on early mortality of prostaglandin E1 (seven trials randomizing 697 patients; relative risk [RR] 0.95, 95% confidence interval [CI] 0.77 to 1.17), N-acetylcysteine (five trials randomizing 239 patients; RR 0.89, 95% CI 0.65 to 1.21), early high-dose corticosteroids (two trials randomizing 187 patients; RR 1.12, 95% CI 0.72 to 1.74), or surfactant (nine trials randomizing 1441 patients; RR 0.93, 95% CI 0.77 to 1.12). Two interventions were beneficial in single small trials; corticosteroids given for late phase ARDS reduced hospital mortality (24 patients; RR 0.20, 95% CI 0.05 to 0.81), and pentoxifylline reduced one-month mortality (RR 0.67, 95% CI 0.47 to 0.95) in 30 patients with metastatic cancer and ARDS. Individual trials of nine additional interventions failed to show a beneficial effect on prespecified outcomes. REVIEWERS' CONCLUSIONS Effective pharmacotherapy for ALI and ARDS is extremely limited, with insufficient evidence to support any specific intervention.
Collapse
Affiliation(s)
- N Adhikari
- Critical Care Medicine and Medicine, Sunnybrook and Women's College Health Centre, 2075 Bayview Avenue, B7.04a, Toronto, M4N 3M5, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Abstract
This paper summarises how evidence based practice is defined, and what can be considered to constitute evidence. It describes the steps which should be undertaken in a systematic review of evidence and some of the issues involved in implementing the findings from such reviews in practice. This includes identifying the types of evidence which should inform decisions about practice and how these should be integrated with clinical expertise and client choice in order to achieve best practice.
Collapse
|
32
|
Slebos DJ, Ryter SW, Choi AMK. Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respir Res 2003; 4:7. [PMID: 12964953 PMCID: PMC193681 DOI: 10.1186/1465-9921-4-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 08/07/2003] [Indexed: 12/03/2022] Open
Abstract
Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXalpha, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states.
Collapse
Affiliation(s)
- Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Hospital Groningen, Groningen, The Netherlands
| | - Stefan W Ryter
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Augustine MK Choi
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|