1
|
Mahmoud R, Kalivarathan J, Castillo AJ, Wang S, Fuglestad B, Kanak MA, Dhakal S. Aptabinding of tumor necrosis factor-α (TNFα) inhibits its proinflammatory effects and alleviates islet inflammation. Biotechnol J 2024; 19:e2300374. [PMID: 37772688 DOI: 10.1002/biot.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
Pancreatic islet cell transplantation (ICT) has emerged as an effective therapy for diabetic patients lacking endogenous insulin production. However, the islet graft function is compromised by a nonspecific inflammatory and thrombotic reaction known as the instant blood-meditated inflammatory reaction (IBMIR). Here, we report the characterization of four single-stranded DNA aptamers that bind specifically to TNFα - a pivotal cytokine that causes proinflammatory signaling during the IBMIR process - using single molecule binding analysis and functional assays as a means to assess the aptamers' ability to block TNFα activity and inhibiting the downstream proinflammatory gene expression in the islets. Our single-molecule fluorescence analyses of mono- and multivalent aptamers showed that they were able to bind effectively to TNFα with monoApt2 exhibiting the strongest binding (Kd ∼ 0.02 ± 0.01 nM), which is ∼3 orders of magnitude smaller than the Kd of the other aptamers. Furthermore, the in vitro cell viability analysis demonstrated an optimal and safe dosage of 100 μM for monoApt2 compared to 50 μM for monoApt1 and significant protection from proinflammatory cytokine-mediated cell death. More interestingly, monoApt2 reversed the upregulation of IBMIR mediating genes induced by TNFα in the human islets, and this was comparable to established TNFα antagonists. Both monoaptamers showed high specificity and selectivity for TNFα. Collectively, these findings suggest the potential use of aptamers as anti-inflammatory and localized immune-modulating agents for cellular transplant therapy.
Collapse
Affiliation(s)
- Roaa Mahmoud
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jagan Kalivarathan
- Department of Surgery, Virginia Commonwealth University - School of Medicine, Virginia, USA
- Islet Cell Lab, Hume-Lee Transplant Center, VCU Health System, Richmond, Virginia, USA
| | - Abdul J Castillo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sasha Wang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University - School of Medicine, Virginia, USA
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Nagaya M, Hasegawa K, Uchikura A, Nakano K, Watanabe M, Umeyama K, Matsunari H, Osafune K, Kobayashi E, Nakauchi H, Nagashima H. Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes. World J Diabetes 2021; 12:306-330. [PMID: 33889282 PMCID: PMC8040081 DOI: 10.4239/wjd.v12.i4.306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is among the top 10 causes of death in adults and caused approximately four million deaths worldwide in 2017. The incidence and prevalence of diabetes is predicted to increase. To alleviate this potentially severe situation, safer and more effective therapeutics are urgently required. Mice have long been the mainstay as preclinical models for basic research on diabetes, although they are not ideally suited for translating basic knowledge into clinical applications. To validate and optimize novel therapeutics for safe application in humans, an appropriate large animal model is needed. Large animals, especially pigs, are well suited for biomedical research and share many similarities with humans, including body size, anatomical features, physiology, and pathophysiology. Moreover, pigs already play an important role in translational studies, including clinical trials for xenotransplantation. Progress in genetic engineering over the past few decades has facilitated the development of transgenic animals, including porcine models of diabetes. This article discusses features that attest to the attractiveness of genetically modified porcine models of diabetes for testing novel treatment strategies using recent technical advances.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki 261-8511, Kanagawa, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Ayuko Uchikura
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Kyoto, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Shinjuku 160-8582, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato 108-8639, Tokyo, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
3
|
Pathak V, Pathak NM, O'Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419844521. [PMID: 31105434 PMCID: PMC6501476 DOI: 10.1177/1179551419844521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Varun Pathak
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nupur Madhur Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Villegas MR, Baeza A, Vallet-Regí M. Nanotechnological Strategies for Protein Delivery. Molecules 2018; 23:E1008. [PMID: 29693640 PMCID: PMC6100203 DOI: 10.3390/molecules23051008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022] Open
Abstract
The use of therapeutic proteins plays a fundamental role in the treatment of numerous diseases. The low physico-chemical stability of proteins in physiological conditions put their function at risk in the human body until they reach their target. Moreover, several proteins are unable to cross the cell membrane. All these facts strongly hinder their therapeutic effect. Nanomedicine has emerged as a powerful tool which can provide solutions to solve these limitations and improve the efficacy of treatments based on protein administration. This review discusses the advantages and limitations of different types of strategies employed for protein delivery, such as PEGylation, transport within liposomes or inorganic nanoparticles or their in situ encapsulation.
Collapse
Affiliation(s)
- María Rocío Villegas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Alejandro Baeza
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes. Int J Mol Sci 2018; 19:ijms19020362. [PMID: 29370114 PMCID: PMC5855584 DOI: 10.3390/ijms19020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023] Open
Abstract
Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.
Collapse
|
7
|
Casu A, Bottino R, Balamurugan AN, Hara H, van der Windt DJ, Campanile N, Smetanka C, Cooper DKC, Trucco M. Metabolic aspects of pig-to-monkey (Macaca fascicularis) islet transplantation: implications for translation into clinical practice. Diabetologia 2008; 51:120-9. [PMID: 17960359 DOI: 10.1007/s00125-007-0844-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/30/2007] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Attempts to use an alternative source of islets to restore glucose homeostasis in diabetic patients require preclinical islet xenotransplantation models to be tested. These models raise questions about metabolic compatibility between species and the most appropriate metabolic parameters to be used to monitor graft function. The present study investigated and compared relevant gluco-metabolic parameters in pigs, monkeys and the pig-to-monkey islet transplantation model to gain insight into the potential clinical outcome of pig-to-human islet transplantation. METHODS Basal and IVGTT-stimulated blood glucose, C-peptide, insulin and glucagon levels were assessed in non-diabetic pigs and monkeys. The same parameters were used to evaluate the performance of porcine islet xenografts in diabetic monkeys. RESULTS Non-diabetic cynomolgus monkeys showed lower levels of fasting and stimulated blood glucose but higher levels of C-peptide and insulin than non-diabetic pigs. The reported levels in humans lie between those of monkeys and pigs, and differences in metabolic parameters between pigs and humans appear to be smaller than those between pigs and cynomolgus monkeys. The transplantation data indicated that the degree of graft function (evaluated by the measurement of C-peptide levels) necessary to normalise blood glucose in the recipient was determined by the recipient levels rather than by the donor levels. CONCLUSIONS/INTERPRETATION The differences between donor and recipient species may affect the transplantation outcome and need to be considered when assessing graft function in xenotransplantation models. Given the differences between monkeys and humans as potential recipients of pig islets, it should be easier to reach glucose homeostasis in pig-to-human than in pig-to-non-human primate islet xenotransplantation.
Collapse
Affiliation(s)
- A Casu
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, Rangos Research Centre, Rm 6103, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|