1
|
Xie Y, Fang Y, Liu Y, Ji B, Sakurai R, Wang Y, Li H, Zhang L, Wu L, Guo T, Quan Y, Rehan VK. Electroacupuncture may protect pulmonary dysplasia in offspring with perinatal nicotine exposure by altering maternal gut microbiota and metabolites. Front Microbiol 2025; 15:1465673. [PMID: 39850138 PMCID: PMC11754296 DOI: 10.3389/fmicb.2024.1465673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Background Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring. Objective Our previous studies demonstrated that electroacupuncture (EA) ameliorated PNE-induced impairment in offspring lung development. To further our study, we aimed to determine whether the protective effect of EA is associated with the modulation of changes in maternal gut microbiota and SCFAs. Methods We observed changes in maternal gut microbiota and serum SCFA levels in both mother and offspring after EA treatment using a PNE rat model. Furthermore, using broad-spectrum antibiotics, we established a pseudo-germ-free PNE rat model to explore whether EA can protect offspring's pulmonary function and lung morphology in the presence of depleted maternal gut microbiota. Results Our study revealed that EA increased the community richness (Sobs index) of perinatal nicotine-exposed maternal gut microbiota and the abundance of beneficial bacteria (RF39, Clostridia, Oscillospirales, etc.). This was accompanied by an upregulated serum levels of acetate, butyrate, and total SCFAs in both mother and offspring rats, as well as stimulated expression of SCFA receptors (GPR41 and GPR43) in the lung tissue of offspring rats. However, the beneficial effects of EA on offspring pulmonary function (FVC, PEF, PIF, and Cdyn) and lung morphology (alveolar number and MLI) were lost after maternal gut microbiota depletion. Conclusion These findings suggest that EA may exert its therapeutic effects on PNE-induced lung phenotype by altering maternal gut microbiota. The likely mechanism involves the associated improvement in serum SCFA levels in both mother and offspring, as well as the upregulation of SCFA receptors in the lung tissue of offspring.
Collapse
Affiliation(s)
- Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Fang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Reiko Sakurai
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yifei Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hewen Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Quan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Virender K. Rehan
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
2
|
Amabebe E, Ikumi N, Oosthuizen A, Soma-Pillay P, Matjila M, Anumba DOC. Gestation-dependent increase in cervicovaginal pro-inflammatory cytokines and cervical extracellular matrix proteins is associated with spontaneous preterm delivery within 2 weeks of index assessment in South African women. Front Immunol 2024; 15:1377500. [PMID: 39165357 PMCID: PMC11333255 DOI: 10.3389/fimmu.2024.1377500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Inflammation-induced remodelling of gestational tissues that underpins spontaneous preterm birth (sPTB, delivery < 37 weeks' gestation) may vary by race and context. To explore relationships between markers of these pathological processes, we (a) characterised the cervicovaginal fluid (CVF) cytokine profiles of pregnant South African women at risk of PTB; (b) determined CVF matrix-metalloproteinase-9 (MMP-9) and its regulator tissue inhibitor of metalloproteinase-1 (TIMP-1); and (c) explored the predictive potential of these markers for sPTB. Method of study The concentrations of 10 inflammatory cytokines and MMP-9 and TIMP-1 were determined by ELISA in CVF samples from 47 non-labouring women at high risk of PTB. We studied CVF sampled at three gestational time points (GTPs): GTP1 (20-22 weeks, n = 37), GTP2 (26-28 weeks, n = 40), and GTP3 (34-36 weeks, n = 29) and analysed for changes in protein concentrations and predictive capacities (area under the ROC curve (AUC) and 95% confidence interval (CI)) for sPTB. Results There were 11 (GTP1), 13 (GTP2), and 6 (GTP3) women who delivered preterm within 85.3 ± 25.9, 51.3 ± 15.3, and 11.8 ± 7.5 (mean ± SD) days after assessment, respectively. At GTP1, IL-8 was higher (4-fold, p = 0.02), whereas GM-CSF was lower (~1.4-fold, p = 0.03) in the preterm compared with term women with an average AUC = 0.73. At GTP2, IL-1β (18-fold, p < 0.0001), IL-8 (4-fold, p = 0.03), MMP-9 (17-fold, p = 0.0007), MMP-9/TIMP-1 ratio (9-fold, p = 0.004), and MMP-9/GM-CSF ratio (87-fold, p = 0.005) were higher in preterm compared with term women with an average AUC = 0.80. By contrast, IL-10 was associated with term delivery with an AUC (95% CI) = 0.75 (0.55-0.90). At GTP3, IL-1β (58-fold, p = 0.0003), IL-8 (12-fold, p = 0.002), MMP-9 (296-fold, p = 0.03), and TIMP-1 (35-fold, p = 0.01) were higher in preterm compared with term women with an average AUC = 0.85. Elevated IL-1β was associated with delivery within 14 days of assessment with AUC = 0.85 (0.67-0.96). Overall, elevated MMP-9 at GTP3 had the highest (13.3) positive likelihood ratio for distinguishing women at risk of sPTB. Lastly, a positive correlation between MMP-9 and TIMP-1 at all GTPs (ρ ≥ 0.61, p < 0.01) for women delivering at term was only observed at GTP1 for those who delivered preterm (ρ = 0.70, p < 0.03). Conclusions In this cohort, sPTB is associated with gestation-dependent increase in pro-inflammatory cytokines, decreased IL-10 and GM-CSF, and dysregulated MMP-9-TIMP-1 interaction. Levels of cytokine (especially IL-1β) and ECM remodelling proteins rise significantly in the final 2 weeks before the onset of labour when sPTB is imminent. The signalling mechanisms for these ECM remodelling observations remain to be elucidated.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nadia Ikumi
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ally Oosthuizen
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Priya Soma-Pillay
- Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Dilly O. C. Anumba
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Zhao X, Xiao H, Li X, Zhu L, Peng Y, Chen H, Chen L, Xu D, Wang H. Multi-organ developmental toxicity and its characteristics in fetal mice induced by dexamethasone at different doses, stages, and courses during pregnancy. Arch Toxicol 2024; 98:1891-1908. [PMID: 38522057 DOI: 10.1007/s00204-024-03707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
4
|
Olatunji LA, Badmus OO, Abdullahi KO, Usman TO, ologe M, Adejare A. Depletion of hepatic glutathione and adenosine by glucocorticoid exposure in Wistar rats is pregnancy-independent. Toxicol Rep 2024; 12:485-491. [PMID: 38741615 PMCID: PMC11090063 DOI: 10.1016/j.toxrep.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Liver diseases have gained increasing attention due to their substantial impact on health, independently as well as in association with cardio-metabolic disorders. Studies have suggested that glutathione and adenosine assist in providing protection against oxidative stress and inflammation while glucocorticoid (GC) therapy has been associated with chronic inflammatory disorders, even in pregnancy. The implications of Glucocorticoid exposure on maternal health and fetal growth is a concern, however, the possible role of glutathione and adenosine has not been thoroughly investigated. The study therefore hypothesize that exposure to glucocorticoids leads to depletion of hepatic glutathione and adenosine levels, contributing to oxidative stress and tissue injury. Additionally, we aim to investigate whether the effects of glucocorticoids on hepatic health are pregnancy dependent in female rats. Twelve Pregnant and twelve age-matched non-pregnant rats were used for this study; an exogenous administration of glucocorticoid (Dex: 0.2 mg/kg) or vehicle (po) was administered to six pregnant and six non-pregnant rats from gestational day 14 to 19 or for a period of 6 days respectively. Data obtained showed that GC exposure led to a decrease in hepatic glucose-6-phosphate dehydrogenase, glutathione peroxidase, GSH/GSSG ratio and adenosine content in both pregnant and non-pregnant rats. In addition, increased activities of adenosine deaminase and xanthine oxidase, along with increased production of uric acid and increased levels of lactate dehydrogenase, aspartate aminotransferase, alanine transferase, alkaline phosphatase and gamma-glutamyl transferase were observed. In summary, the study indicates that GC-induced liver damage is underlined by depleted hepatic adenosine and glutathione levels as well as elevated markers of tissue inflammation and/or injury. Furthermore, the findings suggest that the effects of GC exposure on hepatic health are pregnancy independent.
Collapse
Affiliation(s)
- Lawrence A. Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olufunto O. Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kamaldeen O. Abdullahi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Taofeek O. Usman
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Mary ologe
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
5
|
Liu Y, Chen SJ, Ai C, Yu PX, Fang M, Wang H. Prenatal dexamethasone exposure impairs rat blood-testis barrier function and sperm quality in adult offspring via GR/KDM1B/FSTL3/TGFβ signaling. Acta Pharmacol Sin 2024; 45:1237-1251. [PMID: 38472317 PMCID: PMC11130295 DOI: 10.1038/s41401-024-01244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFβ signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Si-Jia Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Peng-Xia Yu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Man Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Dong XY, Qi JH, Zhuo QC, Ding YJ, Qiao X, Wang Y, Yang DJ, Li D, Li L, Jiang HY, Liu QY, Li ZL, Zhang X, Zhang BJ, Yu YH. Association of antenatal corticosteroids with mortality and morbidities in very preterm infants born to women with hypertensive disorders of pregnancy: a multicenter prospective cohort study. BMC Pregnancy Childbirth 2024; 24:109. [PMID: 38317068 PMCID: PMC10840159 DOI: 10.1186/s12884-023-06195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) is the most common cause of indicated preterm delivery, but the impact of prenatal steroid exposure on the outcomes of preterm infants born to HDP mothers, who may be at risk for intrauterine hypoxia-ischemia, remains uncertain. The study objective is to evaluate the mortality and morbidities in HDP for very preterm infants (VPIs) exposed to different course of ANS. METHODS This is a prospective cohort study comprising infants with < 32 weeks gestation born to women with HDP only from 1 Jan. 2019 to 31 Dec. 2021 within 40 participating neonatal intensive care units (NICUs) in Sino-northern network. ANS courses included completed, partial, repeated, and no ANS. Univariate and multivariable analyses were performed on administration of ANS and short-term outcomes before discharge. RESULTS Among 1917 VPIs born to women with HDP only, 987(51.4%) received a complete course of ANS within 48 h to 7 days before birth, 560(29.2%) received partial ANS within 24 h before delivery, 100(5.2%) received repeat ANS and 270 (14.1%) did not receive any ANS. Compared to infants who received complete ANS, infants unexposed to ANS was associated with higher odds of death (AOR 1.85; 95%CI 1.10, 3.14), Severe Neurological Injury (SNI) or death (AOR 1.68; 95%CI 1.29,3.80) and NEC or death (AOR 1.78; 95%CI 1.55, 2.89), the repeated ANS group exhibits a significant negative correlation with the duration of oxygen therapy days (correlation coefficient - 18.3; 95%CI-39.2, -2.1). However, there were no significant differences observed between the full course and partial course groups in terms of outcomes. We can draw similar conclusions in the non-SGA group, while the differences are not significant in the SGA group. From KM curve, it showed that the repeated group had the highest survival rate, but the statistical analysis did not indicate a significant difference. CONCLUSIONS Even partial courses of ANS administered within 24 h before delivery proved to be protective against death and other morbidities. The differences mentioned above are more pronounced in the non-SGA group. Repeat courses demonstrate a trend toward protection, but this still needs to be confirmed by larger samples.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- Department of Pediatrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jian-Hong Qi
- Department of Neonatology, Shandong University; Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, HuaiYin District, Jinan, Shandong, 250021, China
| | - Qing-Cui Zhuo
- Department of Neonatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Jie Ding
- Department of Neonatology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xin Qiao
- Department of Neonatology, Jinan Maternity and Child Healthcare Hospital, Jinan, China
| | - Yan Wang
- Department of Neonatology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - De-Juan Yang
- Department of Neonatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dan Li
- Department of Neonatology, Liaocheng People's Hospital, Liaocheng, China
| | - Li Li
- Department of Neonatology, Linyi People's Hospital, Linyi, China
| | - Hai-Yan Jiang
- Department of Pediatrics, The Third Hospital of Baogang Group, Baotou, China
| | - Qiong-Yu Liu
- Department of Neonatology, Women and Children's Healthcare Hospital of Linyi, Linyi, China
| | - Zhong-Liang Li
- Department of Neonatology, W.F. Maternal and Child Health Hospital, Weifang, China
| | - Xiang Zhang
- Department of Neonatology, Hebei Petro China Central Hospital, Langfang, China
| | - Bing-Jin Zhang
- Department of Neonatology, Shengli Olifield Central Hospital, Yantai, China
| | - Yong-Hui Yu
- Department of Neonatology, Shandong University; Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, HuaiYin District, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
He Z, Zhang J, Chen Y, Ai C, Gong X, Xu D, Wang H. Transgenerational inheritance of adrenal steroidogenesis inhibition induced by prenatal dexamethasone exposure and its intrauterine mechanism. Cell Commun Signal 2023; 21:294. [PMID: 37853416 PMCID: PMC10585925 DOI: 10.1186/s12964-023-01303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Adrenal gland is the synthesis and secretion organ of glucocorticoid, which is crucial to fetal development and postnatal fate. Recently, we found that prenatal dexamethasone exposure (PDE) could cause adrenal dysfunction in offspring rats, but its multigenerational genetic effects and related mechanisms have not been reported. METHODS The PDE rat model was established, and female filial generation 1 (F1) rats mate with wild males to produce the F2, the same way for the F3. Three generation rats were sacrificed for the related detection. SW-13 cells were used to clarify the epigenetic molecular mechanism. RESULTS This study confirmed that PDE could activate fetal adrenal glucocorticoid receptor (GR). The activated GR, on the one hand, up-regulated Let-7b (in human cells) to inhibit steroidogenic acute regulatory protein (StAR) expression directly; on the other hand, down-regulated CCCTC binding factor (CTCF) and up-regulated DNA methyltransferase 3a/3b (Dnmt3a/3b), resulting in H19 hypermethylation and low expression. The decreased interaction of H19 and let-7 can further inhibit adrenal steroidogenesis. Additionally, oocytes transmitted the expression change of H19/let-7c axis to the next generation rats. Due to its genetic stability, F2 generation oocytes indirectly exposed to dexamethasone also inhibited H19 expression, which could be inherited to the F3 generation. CONCLUSIONS This cascade effect of CTCF/H19/Let-7c ultimately resulted in the transgenerational inheritance of adrenal steroidogenesis inhibition of PDE offspring. This study deepens the understanding of the intrauterine origin of adrenal developmental toxicity, and it will provide evidence for the systematic analysis of the transgenerational inheritance effect of acquired traits induced by PDE. Video Abstract.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
8
|
Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, Zhang S, Jiang T, Wang T, Yao B, Wang H, Xu D. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B 2023; 13:3708-3727. [PMID: 37719378 PMCID: PMC10501875 DOI: 10.1016/j.apsb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons. Here we explored how gestational exposure to dexamethasone, a synthetic glucocorticoid commonly used in clinical practice, has lasting effects on offspring's learning and memory. Adult offspring rats of prenatal dexamethasone exposure (PDE) displayed significant impairments in novelty recognition and spatial learning memory, with some phenotypes maintained transgenerationally. PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations, and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory, but these changes failed to carry over to offspring of F5 and F7 generations. Mechanistically, altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission, which might be related to oocyte-specific high expression and transmission of miR-133a-3p. Together, PDE affects hippocampal excitatory synaptic transmission, with lasting consequences across generations, and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.
Collapse
Affiliation(s)
- Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lulu Xie
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Baozhen Yao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
9
|
Zhang S, Hu S, Dong W, Huang S, Jiao Z, Hu Z, Dai S, Yi Y, Gong X, Li K, Wang H, Xu D. Prenatal dexamethasone exposure induces anxiety- and depressive-like behavior of male offspring rats through intrauterine programming of the activation of NRG1-ErbB4 signaling in hippocampal PV interneurons. Cell Biol Toxicol 2023; 39:657-678. [PMID: 34189720 DOI: 10.1007/s10565-021-09621-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Dexamethasone is a commonly used synthetic glucocorticoid in the clinic. As a compound that can cross the placental barrier to promote fetal lung maturation, dexamethasone is extensively used in pregnant women at risk of premature delivery. However, the use of glucocorticoids during pregnancy increases the risk of neurodevelopmental disorders. In the present study, we observed anxiety- and depressive-like behavior changes and hyperexcitability of hippocampal neurons in adult rat offspring with previous prenatal dexamethasone exposure (PDE); the observed changes were related to in utero damage of parvalbumin interneurons. A programmed change in neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ErbB4) signaling was the key to the damage of parvalbumin interneurons in the hippocampus of PDE offspring. Anxiety- and depressive-like behavior, NRG1-ErbB4 signaling activation, and damage of parvalbumin interneurons in PDE offspring were aggravated after chronic stress. The intervention of NRG1-ErbB4 signaling contributed to the improvement in dexamethasone-mediated injury to parvalbumin interneurons. These results suggested that PDE might cause anxiety- and depressive-like behavior changes in male rat offspring through the programmed activation of NRG1-ErbB4 signaling, resulting in damage to parvalbumin interneurons and hyperactivity of the hippocampus. Intrauterine programming of neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ERBB4) overactivation by dexamethasone mediates anxiety- and depressive-like behavior in male rat offspring.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Songqiang Huang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhexiao Jiao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zewen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Dan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Ahmadi A, Ramazanzadeh R, Derakhshan S, Khodabandehloo M, Farhadifar F, Roshani D, Mousavi A, Hedayati MA, Taheri M. Prevalence of Listeria monocytogenes infection in women with spontaneous abortion, normal delivery, fertile and infertile. BMC Pregnancy Childbirth 2022; 22:974. [PMID: 36578001 PMCID: PMC9795612 DOI: 10.1186/s12884-022-05330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Listeria monocytogenes with a vast range of natural reservoirs is more known for being a food-borne pathogen. Human infections have shown an impact on pregnancy outcomes, so, this study surveyed the frequency of L. monocytogenes infection involving different groups of women. METHODS This study enrolled a total sample consisting of 109 women with spontaneous abortion, 109 women with normal delivery, 100 fertile women, and 99 infertile women aged 19-40 years and willing to participate in the study. The research tool in this study was a questionnaire and Polymerase chain reaction (PCR) test. RESULTS According to the results, the frequency of L. monocytogenes infection was 4/109 (3.66%) observed among women with spontaneous abortion, 2/109 (1.83%) among women with normal delivery, 3/100 (3%) among fertile women, and 0/99 (0%) among infertile women. CONCLUSION There was no significant relationship between Listeria monocytogenes infection and pregnancy outcomes of spontaneous abortion and infertility.
Collapse
Affiliation(s)
- Amjad Ahmadi
- grid.484406.a0000 0004 0417 6812Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran ,grid.411950.80000 0004 0611 9280Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rashid Ramazanzadeh
- grid.411426.40000 0004 0611 7226Department of Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safoura Derakhshan
- grid.484406.a0000 0004 0417 6812Liver and Digestive Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences, Sanandaj, 66177-13446 Iran
| | - Mazaher Khodabandehloo
- grid.484406.a0000 0004 0417 6812Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fariba Farhadifar
- grid.484406.a0000 0004 0417 6812Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Daem Roshani
- grid.484406.a0000 0004 0417 6812Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Atefeh Mousavi
- grid.484406.a0000 0004 0417 6812Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Ahmadi Hedayati
- grid.484406.a0000 0004 0417 6812Liver and Digestive Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences, Sanandaj, 66177-13446 Iran ,grid.484406.a0000 0004 0417 6812Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Taheri
- grid.411950.80000 0004 0611 9280Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Timing of antenatal steroid administration for imminent preterm birth: results of a prospective observational study in Germany. Arch Gynecol Obstet 2022:10.1007/s00404-022-06724-9. [PMID: 36042053 DOI: 10.1007/s00404-022-06724-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To evaluate the timing of antenatal steroid administration and associated medical interventions in women with imminent preterm birth. METHODS We performed a prospective observational study at a single tertiary center in Germany from September 2018 to August 2019. We included pregnant women who received antenatal steroids for imminent preterm birth and evaluated the interval from administration to birth. 120 women with antenatal steroid application were included into our analysis. Descriptive statistics were performed to analyze factors influencing the timing of antenatal steroids and to evaluate additional medical interventions which women with imminent preterm birth experience. RESULTS Of the 120 women included into our study, 35.8% gave birth before 34/0 weeks and 64.2% before 37/0 weeks of gestation. Only 25/120 women (20.8%) delivered within the optimal time window of 1-7 days after antenatal steroid application. 5/120 women (4.2%) only received one dose of antenatal steroids before birth and 3/120 (2.5%) gave birth within 8 to 14 days after antenatal steroids. Most women gave birth more than 14 days after steroid application (72.5%, 87/120). Women with preeclampsia (60%), PPROM (31%), and FGR (30%) had the highest rates of delivery within the optimal time window. Women of all timing groups received additional interventions and medications like antibiotics, tocolytics, or anticoagulation. CONCLUSION Our observational data indicate that most pregnant women do not give birth within 7 days after the administration of antenatal steroids. The timing was best for preterm birth due to preeclampsia, PPROM, and FGR. Especially for women with symptoms of preterm labor and bleeding placenta previa, antenatal steroids should be indicated more restrictively to improve neonatal outcome and reduce untimely and unnecessary interventions.
Collapse
|
12
|
Williams MJ, Ramson JA, Brownfoot FC. Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth. Cochrane Database Syst Rev 2022; 8:CD006764. [PMID: 35943347 PMCID: PMC9362990 DOI: 10.1002/14651858.cd006764.pub4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Despite the widespread use of antenatal corticosteroids to prevent respiratory distress syndrome (RDS) in preterm infants, there is currently no consensus as to the type of corticosteroid to use, dose, frequency, timing of use or the route of administration. OBJECTIVES: To assess the effects on fetal and neonatal morbidity and mortality, on maternal morbidity and mortality, and on the child and adult in later life, of administering different types of corticosteroids (dexamethasone or betamethasone), or different corticosteroid dose regimens, including timing, frequency and mode of administration. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (9 May 2022) and reference lists of retrieved studies. SELECTION CRITERIA We included all identified published and unpublished randomised controlled trials or quasi-randomised controlled trials comparing any two corticosteroids (dexamethasone or betamethasone or any other corticosteroid that can cross the placenta), comparing different dose regimens (including frequency and timing of administration) in women at risk of preterm birth. We planned to exclude cross-over trials and cluster-randomised trials. We planned to include studies published as abstracts only along with studies published as full-text manuscripts. DATA COLLECTION AND ANALYSIS At least two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 11 trials (2494 women and 2762 infants) in this update, all of which recruited women who were at increased risk of preterm birth or had a medical indication for preterm birth. All trials were conducted in high-income countries. Dexamethasone versus betamethasone Nine trials (2096 women and 2319 infants) compared dexamethasone versus betamethasone. All trials administered both drugs intramuscularly, and the total dose in the course was consistent (22.8 mg or 24 mg), but the regimen varied. We assessed one new study to have no serious risk of bias concerns for most outcomes, but other studies were at moderate (six trials) or high (two trials) risk of bias due to selection, detection and attrition bias. Our GRADE assessments ranged between high- and low-certainty, with downgrades due to risk of bias and imprecision. Maternal outcomes The only maternal primary outcome reported was chorioamnionitis (death and puerperal sepsis were not reported). Although the rate of chorioamnionitis was lower with dexamethasone, we did not find conclusive evidence of a difference between the two drugs (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.48 to 1.06; 1 trial, 1346 women; moderate-certainty evidence). The proportion of women experiencing maternal adverse effects of therapy was lower with dexamethasone; however, there was not conclusive evidence of a difference between interventions (RR 0.63, 95% CI 0.35 to 1.13; 2 trials, 1705 women; moderate-certainty evidence). Infant outcomes We are unsure whether the choice of drug makes a difference to the risk of any known death after randomisation, because the 95% CI was compatible with both appreciable benefit and harm with dexamethasone (RR 1.03, 95% CI 0.66 to 1.63; 5 trials, 2105 infants; moderate-certainty evidence). The choice of drug may make little or no difference to the risk of RDS (RR 1.06, 95% CI 0.91 to 1.22; 5 trials, 2105 infants; high-certainty evidence). While there may be little or no difference in the risk of intraventricular haemorrhage (IVH), there was substantial unexplained statistical heterogeneity in this result (average (a) RR 0.71, 95% CI 0.28 to 1.81; 4 trials, 1902 infants; I² = 62%; low-certainty evidence). We found no evidence of a difference between the two drugs for chronic lung disease (RR 0.92, 95% CI 0.64 to 1.34; 1 trial, 1509 infants; moderate-certainty evidence), and we are unsure of the effects on necrotising enterocolitis, because there were few events in the studies reporting this outcome (RR 5.08, 95% CI 0.25 to 105.15; 2 studies, 441 infants; low-certainty evidence). Longer-term child outcomes Only one trial consistently followed up children longer term, reporting at two years' adjusted age. There is probably little or no difference between dexamethasone and betamethasone in the risk of neurodevelopmental disability at follow-up (RR 1.02, 95% CI 0.85 to 1.22; 2 trials, 1151 infants; moderate-certainty evidence). It is unclear whether the choice of drug makes a difference to the risk of visual impairment (RR 0.33, 95% CI 0.01 to 8.15; 1 trial, 1227 children; low-certainty evidence). There may be little or no difference between the drugs for hearing impairment (RR 1.16, 95% CI 0.63 to 2.16; 1 trial, 1227 children; moderate-certainty evidence), motor developmental delay (RR 0.89, 95% CI 0.66 to 1.20; 1 trial, 1166 children; moderate-certainty evidence) or intellectual impairment (RR 0.97, 95% CI 0.79 to 1.20; 1 trial, 1161 children; moderate-certainty evidence). However, the effect estimate for cerebral palsy is compatible with both an important increase in risk with dexamethasone, and no difference between interventions (RR 2.50, 95% CI 0.97 to 6.39; 1 trial, 1223 children; low-certainty evidence). No trials followed the children beyond early childhood. Comparisons of different preparations and regimens of corticosteroids We found three studies that included a comparison of a different regimen or preparation of either dexamethasone or betamethasone (oral dexamethasone 32 mg versus intramuscular dexamethasone 24 mg; betamethasone acetate plus phosphate versus betamethasone phosphate; 12-hourly betamethasone versus 24-hourly betamethasone). The certainty of the evidence for the main outcomes from all three studies was very low, due to small sample size and risk of bias. Therefore, we were limited in our ability to draw conclusions from any of these studies. AUTHORS' CONCLUSIONS Overall, it remains unclear whether there are important differences between dexamethasone and betamethasone, or between one regimen and another. Most trials compared dexamethasone versus betamethasone. While for most infant and early childhood outcomes there may be no difference between these drugs, for several important outcomes for the mother, infant and child the evidence was inconclusive and did not rule out significant benefits or harms. The evidence on different antenatal corticosteroid regimens was sparse, and does not support the use of one particular corticosteroid regimen over another.
Collapse
Affiliation(s)
- Myfanwy J Williams
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
13
|
Liu L, Li B, Li Q, Han H, Zhou S, Wu Z, Gao H, Zhu J, Gu H, Chen L, Wang H. Transforming growth factor-β receptor 1: An intervention target for genetic poor cartilage quality induced by prenatal dexamethasone exposure. J Adv Res 2022; 47:123-135. [PMID: 35953031 PMCID: PMC10173161 DOI: 10.1016/j.jare.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Fetal-originated osteoarthritis is relative to poor cartilage quality and may exhibit transgenerational genetic effects. Previous findings revealed prenatal dexamethasone exposure (PDE) induced poor cartilage quality in offspring. OBJECTIVES This study focused on further exploring molecular mechanism, heritability, and early intervention of fetal-originated osteoarthritis. METHODS Pregnant rats (F0) were segregated into control and PDE groups depending upon whether dexamethasone was administered on gestational days (GDs) 9-20. Some female offspring were bred with healthy males during postnatal week (PW) 8 to attain the F2 and F3 generations. The F3-generation rats were administrated with glucosamine intragastrically at PW12 for 6 weeks. The knee cartilages of male and female rats at different time points were harvested to assay their morphologies and functions. Furthermore, primary chondrocytes from the F3-generation rats were isolated to confirm the mechanism and intervention target of glucosamine. RESULTS Compared with the control, female and male rats in each generation of PDE group showed thinner cartilage thicknesses; shallower and uneven staining; fewer chondrocytes; higher Osteoarthritis Research Society International scores; and lower mRNA and protein expression of SP1, TGFβR1, Smad2, SOX9, ACAN and COL2A1. After F3-generation rats were treated with glucosamine, all of the above changes could be reversed. In primary chondrocytes isolated from the F3-generation rats of PDE group, glucosamine promoted SP1 expression and binding to TGFβR1 promoter to increase the expression of TGFβR1, p-Smad2, SOX9, ACAN and COL2A1, but these were prevented by SB431542 (a potent and selective inhibitor of TGFβR1). CONCLUSIONS PDE induced chondrodysplasia in offspring and stably inherited in F3-generation rats, which was related to decreased expression of SP1/TGFβR1/Smad2/SOX9 pathway to reduce the cartilage matrix synthesis, without major sex-based variations. Glucosamine could alleviate the poor genetic cartilage quality in offspring induced by PDE by up-regulating SP1/TGFβR1 signaling, which was prevented by a TGFβR1 inhibitor. This study elucidated the molecular mechanism and therapeutic target (TGFβR1) of genetic chondrodysplasia caused by PDE, which provides a research basis for precisely treating fetal-originated osteoarthritis.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Gao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiayong Zhu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hanwen Gu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
14
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Dagklis T, Sen C, Tsakiridis I, Villalaín C, Allegaert K, Wellmann S, Kusuda S, Serra B, Sanchez Luna M, Huertas E, Volpe N, Ayala R, Jekova N, Grunebaum A, Stanojevic M. The use of antenatal corticosteroids for fetal maturation: clinical practice guideline by the WAPM-World Association of Perinatal Medicine and the PMF-Perinatal Medicine foundation. J Perinat Med 2022; 50:375-385. [PMID: 35285217 DOI: 10.1515/jpm-2022-0066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
This practice guideline follows the mission of the World Association of Perinatal Medicine in collaboration with the Perinatal Medicine Foundation, bringing together groups and individuals throughout the world, with the goal of improving the use of antenatal corticosteroids (ACS) for fetal maturation. In fact, this document provides further guidance for healthcare practitioners on the appropriate use of ACS with the aim to increase the timely administration and avoid unnecessary or excessive use. Therefore, it is not intended to establish a legal standard of care. This document is based on consensus among perinatal experts throughout the world and serves as a guideline for use in clinical practice.
Collapse
Affiliation(s)
- Themistoklis Dagklis
- Third Department of Obstetrics and Gynaecology, Faculty of Health Sciences,School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Cihat Sen
- Department of Perinatal Medicine, Obstetrics and Gynecology, Perinatal Medicine Foundation and Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ioannis Tsakiridis
- Department of Obstetrics and Gynaecology, School of Medicine Faculty of Health Sciences, Aristotle University of Thessaloniki Third, Thessaloniki, Greece
| | - Cecilia Villalaín
- Department of Obstetrics and Gynecology, University Hospital 12 de Octubre, Complutense University of Madrid, Fetal Medicine Unit, Madrid, Spain
| | - Karel Allegaert
- KU Leuven, Leuven, Belgium.,Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands.,Department of Development and Regeneration, and Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Sven Wellmann
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Satoshi Kusuda
- Department of Pediatrics, Kyorin University, Tokyo, Japan
| | - Bernat Serra
- Department of Obstetrics, Gynecology and Reproduction, Hospital Universitari Dexeus, Barcelona, Spain
| | - Manuel Sanchez Luna
- Neonatology Division and NICU, Hospital General Universitario "Gregorio Marañón" Complutense University of Madrid, Madrid, Spain
| | - Erasmo Huertas
- Department of Obstetric and Gynecology, San Marcos National University, Lima, Peru
| | - Nicola Volpe
- Department of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria di Parma Fetal Medicine Unit, Parma, Italy
| | - Rodrigo Ayala
- Department of Obstetrics and Gynecology, Centro Medico ABC Santa Fe, Mexico City, Mexico
| | - Nelly Jekova
- Department of Neonatology, University Hospital of Obstetrics and Gynecology "Maichin dom", Medical University, Sofia, Bulgaria
| | - Amos Grunebaum
- Department of Obstetrics and Gynecology, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
| | - Milan Stanojevic
- Department of Obstetrics and Gynecology, Neonatal Unit, Medical School University of Zagreb, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| |
Collapse
|
16
|
Travers CP, Hansen NI, Das A, Rysavy MA, Bell EF, Ambalavanan N, Peralta-Carcelen M, Tita AT, Van Meurs KP, Carlo WA. Potential missed opportunities for antenatal corticosteroid exposure and outcomes among periviable births: observational cohort study. BJOG 2022; 129:10.1111/1471-0528.17230. [PMID: 35611472 PMCID: PMC9684347 DOI: 10.1111/1471-0528.17230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Test the hypothesis potential missed opportunities for antenatal corticosteroids increase as gestational age decreases and are associated with adverse outcomes. DESIGN Observational cohort study. SETTING 24 US centers in the Neonatal Research Network. POPULATION Actively treated infants 22-25 weeks' gestation and birth weight 401-1000 grams, without major birth defects, born 2006-2018. METHODS Potential missed opportunity was defined as no antenatal corticosteroids but did have prenatal antibiotics, and/or magnesium sulfate, and/or prolonged rupture of membranes. Poisson regression models adjusted for baseline characteristics. MAIN OUTCOME MEASURES Antenatal corticosteroid exposure, mortality, and severe intracranial hemorrhage or periventricular leukomalacia. RESULTS 6966 (87.5%) were exposed to antenatal corticosteroids, 454 (5.7%) had no exposure but potential missed opportunities for antenatal corticosteroid exposure, and 537 (6.7%) had no exposure and no evidence of potential missed opportunities. Compared with infants born at 25 weeks, potential missed opportunities for antenatal corticosteroid exposure were more likely at 22 weeks (adjusted relative risk (aRR) [95% CI] 11.06 [7.52-16.27]) and 23 weeks (3.24 [2.44-4.29]) but did not differ at 24 weeks (1.08 [0.82-1.42]). Potential missed opportunities for antenatal corticosteroids decreased over time at 22-23 weeks' gestation. Antenatal corticosteroid exposed infants had lower risk of death (31.0% vs 54.8%; 0.77 [0.70-0.84]) and survivors had lower risk of severe brain injury (25.0% v 44.5%; 0.64 [0.55-0.73]) compared with infants with potential missed opportunities. CONCLUSION Potential missed opportunities for antenatal corticosteroid exposure increased with decreasing gestational age and were associated with higher rates of death and severe brain injury among actively treated periviable births.
Collapse
Affiliation(s)
- Colm P. Travers
- Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nellie I. Hansen
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, United States
| | - Abhik Das
- Social, Statistical and Environmental Sciences Unit, RTI International, Rockville, MD, United States
| | | | - Edward F. Bell
- Pediatrics, University of Iowa, Iowa City, IA, United States
| | | | | | - Alan T. Tita
- Obstetrics & Gynecology, and Center for Women’s Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Waldemar A. Carlo
- Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
17
|
Carpenter JR, Jablonski KA, Koncinsky J, Varner MW, Gyamfi-Bannerman C, Joss-Moore LA. Antenatal Steroids and Cord Blood T-cell Glucocorticoid Receptor DNA Methylation and Exon 1 Splicing. Reprod Sci 2022; 29:1513-1523. [PMID: 35146694 PMCID: PMC9010373 DOI: 10.1007/s43032-022-00859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/18/2022] [Indexed: 02/03/2023]
Abstract
Antenatal administration of glucocorticoids such as betamethasone (BMZ) during the late preterm period improves neonatal respiratory outcomes. However, glucocorticoids may elicit programming effects on immune function and gene regulation. Here, we test the hypothesis that exposure to antenatal BMZ alters cord blood immune cell composition in association with altered DNA methylation and alternatively expressed Exon 1 transcripts of the glucocorticoid receptor (GR) gene in cord blood CD4+ T-cells. Cord blood was collected from 51 subjects in the Antenatal Late Preterm Steroids Trial: 27 BMZ, 24 placebo. Proportions of leukocytes were compared between BMZ and placebo. In CD4+ T-cells, methylation at CpG sites in the GR promoter regions and expression of GR mRNA exon 1 variants were compared between BMZ and placebo. BMZ was associated with an increase in granulocytes (51.6% vs. 44.7% p = 0.03) and a decrease in lymphocytes (36.8% vs. 43.0% p = 0.04) as a percent of the leukocyte population vs. placebo. Neither GR methylation nor exon 1 transcript levels differed between groups. BMZ is associated with altered cord blood leukocyte proportions, although no associated alterations in GR methylation were observed.
Collapse
Affiliation(s)
| | - Kathleen A. Jablonski
- Milken School of Public Health, Biostatistics Center, George Washington University, Washington, D.C, USA
| | | | - Michael W. Varner
- Obstetrics & Gynecology, University of Utah, Salt Lake City, Utah, USA
| | | | - Lisa A. Joss-Moore
- Pediatrics, University of Utah, Salt Lake City, Utah, USA,Corresponding author: Lisa Joss-Moore, Ph.D., University of Utah, Department of Pediatrics, 295 Chipeta Way, Salt Lake City, Utah, 84108, USA, Ph: 1-801-213-3494,
| | | |
Collapse
|
18
|
Walters A, McKinlay C, Middleton P, Harding JE, Crowther CA. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev 2022; 4:CD003935. [PMID: 35377461 PMCID: PMC8978608 DOI: 10.1002/14651858.cd003935.pub5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Infants born preterm (before 37 weeks' gestation) are at risk of respiratory distress syndrome (RDS) and need for respiratory support due to lung immaturity. One course of prenatal corticosteroids, administered to women at risk of preterm birth, reduces the risk of respiratory morbidity and improves survival of their infants, but these benefits do not extend beyond seven days. Repeat doses of prenatal corticosteroids have been used for women at ongoing risk of preterm birth more than seven days after their first course of corticosteroids, with improvements in respiratory outcomes, but uncertainty remains about any long-term benefits and harms. This is an update of a review last published in 2015. OBJECTIVES To assess the effectiveness and safety, using the best available evidence, of a repeat dose(s) of prenatal corticosteroids, given to women who remain at risk of preterm birth seven or more days after an initial course of prenatal corticosteroids with the primary aim of reducing fetal and neonatal mortality and morbidity. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP), and reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials, including cluster-randomised trials, of women who had already received one course of corticosteroids seven or more days previously and were still at risk of preterm birth, randomised to further dose(s) or no repeat doses, with or without placebo. Quasi-randomised trials were excluded. Abstracts were accepted if they met specific criteria. All trials had to meet criteria for trustworthiness, including a search of the Retraction Watch database for retractions or expressions of concern about the trials or their publications. DATA COLLECTION AND ANALYSIS We used standard Cochrane Pregnancy and Childbirth methods. Two review authors independently selected trials, extracted data, and assessed trial quality and scientific integrity. We chose primary outcomes based on clinical importance as measures of effectiveness and safety, including serious outcomes, for the women and their fetuses/infants, infants in early childhood (age two to less than five years), the infant in mid- to late childhood (age five to less than 18 years) and the infant as an adult. We assessed risk of bias at the outcome level using the RoB 2 tool and assessed certainty of evidence using GRADE. MAIN RESULTS We included 11 trials (4895 women and 5975 babies). High-certainty evidence from these trials indicated that treatment of women who remain at risk of preterm birth seven or more days after an initial course of prenatal corticosteroids with repeat dose(s) of corticosteroids, compared with no repeat corticosteroid treatment, reduced the risk of their infants experiencing the primary infant outcome of RDS (risk ratio (RR) 0.82, 95% confidence interval (CI) 0.74 to 0.90; 3540 babies; number needed to treat for an additional beneficial outcome (NNTB) 16, 95% CI 11 to 29) and had little or no effect on chronic lung disease (RR 1.00, 95% CI 0.83 to 1.22; 5661 babies). Moderate-certainty evidence indicated that the composite of serious infant outcomes was probably reduced with repeat dose(s) of corticosteroids (RR 0.88, 95% CI 0.80 to 0.97; 9 trials, 5736 babies; NNTB 39, 95% CI 24 to 158), as was severe lung disease (RR 0.83, 95% CI 0.72 to 0.97; NNTB 45, 95% CI 27 to 256; 4955 babies). Moderate-certainty evidence could not exclude benefit or harm for fetal or neonatal or infant death less than one year of age (RR 0.95, 95% CI 0.73 to 1.24; 5849 babies), severe intraventricular haemorrhage (RR 1.13, 95% CI 0.69 to 1.86; 5066 babies) and necrotising enterocolitis (RR 0.84, 95% CI 0.59 to 1.22; 5736 babies). In women, moderate-certainty evidence found little or no effect on the likelihood of a caesarean birth (RR 1.03, 95% CI 0.98 to 1.09; 4266 mothers). Benefit or harm could not be excluded for maternal death (RR 0.32, 95% 0.01 to 7.81; 437 women) and maternal sepsis (RR 1.13, 95% CI 0.93 to 1.39; 4666 mothers). The evidence was unclear for risk of adverse effects and discontinuation of therapy due to maternal adverse effects. No trials reported breastfeeding status at hospital discharge or risk of admission to the intensive care unit. At early childhood follow-up, moderate- to high-certainty evidence identified little or no effect of exposure to repeat prenatal corticosteroids compared with no repeat corticosteroids for primary outcomes relating to neurodevelopment (neurodevelopmental impairment: RR 0.97, 95% CI 0.85 to 1.10; 3616 children), survival without neurodevelopmental impairment (RR 1.01, 95% CI 0.98 to 1.04; 3845 children) and survival without major neurodevelopmental impairment (RR 1.02, 95% CI 0.98 to 1.05; 1816 children). An increase or decrease in the risk of death since randomisation could not be excluded (RR 1.06, 95% CI 0.81 to 1.40; 5 trials, 4565 babies randomised). At mid-childhood follow-up, moderate-certainty evidence identified little or no effect of exposure to repeat prenatal corticosteroids compared with no repeat corticosteroids on survival free of neurocognitive impairment (RR 1.01, 95% CI 0.95 to 1.08; 963 children) or survival free of major neurocognitive impairment (RR 1.00, 95% CI 0.97 to 1.04; 2682 children). Benefit or harm could not be excluded for death since randomisation (RR 0.93, 95% CI 0.69 to 1.26; 2874 babies randomised) and any neurocognitive impairment (RR 0.96, 95% CI 0.72 to 1.29; 897 children). No trials reported data for follow-up into adolescence or adulthood. Risk of bias across outcomes was generally low although there were some concerns of bias. For childhood follow-up, most outcomes had some concerns of risk of bias due to missing data from loss to follow-up. AUTHORS' CONCLUSIONS The short-term benefits for babies included less respiratory distress and fewer serious health problems in the first few weeks after birth with repeat dose(s) of prenatal corticosteroids for women still at risk of preterm birth seven days or more after an initial course. The current available evidence reassuringly shows no significant harm for the women or child in early and mid-childhood, although no benefit. Further research is needed on the long-term benefits and risks for the baby into adulthood.
Collapse
Affiliation(s)
- Anthony Walters
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jane E Harding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
19
|
Biedermann R, Schleussner E, Lauten A, Heimann Y, Lehmann T, Proquitté H, Weschenfelder F. Inadequate Timing Limits the Benefit of Antenatal Corticosteroids on Neonatal Outcome: Retrospective Analysis of a High-Risk Cohort of Preterm Infants in a Tertiary Center in
Germany. Geburtshilfe Frauenheilkd 2022; 82:317-325. [PMID: 35250380 PMCID: PMC8893984 DOI: 10.1055/a-1608-1138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/22/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction
A common problem in the treatment of threatened preterm birth is the timing and the unrestricted use of antenatal corticosteroids (ACS). This study was performed to
evaluate the independent effects of the distinct timing of antenatal corticosteroids on neonatal outcome parameters in a cohort of very low (VLBW; 1000 – 1500 g) and extreme low birth weight
infants (ELBW; < 1000 g). We hypothesize that a prolonged ACS-to-delivery interval leads to an increase in respiratory complications.
Materials and Methods
Main data source was the prospectively collected single center data for the German nosocomial infection surveillance system (KISS) between 2015 and 2018.
Multivariate regression analysis was performed to determine independent effects of the ACS-to-delivery interval on the need for ventilation, surfactant or the occurrence of bronchopulmonary
dysplasia, neonatal sepsis or necrotizing enterocolitis. Subgroup analysis was performed for ELBW and VLBW neonates.
Results
A total of 239 neonates were included. We demonstrate a significantly increased risk of respiratory distress characterized by the need for ventilation (OR 1.045; CI
1.011 – 1.080) and surfactant administration (OR 1.050, CI 1.018 – 1.083) depending on the ACS-to-delivery interval irrespective of other confounders. Every additional day between ACS and
delivery increased the risk for ventilation by 4.5% and for surfactant administration by 5%. Subgroup analysis revealed significant differences of respiratory complications in VLBW
infants.
Conclusions
Our data strongly support the deliberate use and timing of antenatal corticosteroids in pregnancies with threatened preterm birth versus a liberal strategy. When given
more than 7 days before birth, each day between application and delivery increases is relevant concerning major effects on the infant. Especially VLBW preterm neonates benefit from optimal
timing.
Collapse
Affiliation(s)
- Richard Biedermann
- University Hospital Jena, Unit Neonatology, Department of Paediatrics, Jena, Germany
| | | | - Angela Lauten
- University Hospital Jena, Department of Obstetrics, Jena, Germany
| | - Yvonne Heimann
- University Hospital Jena, Department of Obstetrics, Jena, Germany
| | - Thomas Lehmann
- University Hospital Jena, Institute of Medical Statistics and Computer Science, Jena, Germany
| | - Hans Proquitté
- University Hospital Jena, Unit Neonatology, Department of Paediatrics, Jena, Germany
| | | |
Collapse
|
20
|
Han H, Xiao H, Wu Z, Liu L, Chen M, Gu H, Wang H, Chen L. The miR-98-3p/JAG1/Notch1 axis mediates the multigenerational inheritance of osteopenia caused by maternal dexamethasone exposure in female rat offspring. Exp Mol Med 2022; 54:298-308. [PMID: 35332257 PMCID: PMC8979986 DOI: 10.1038/s12276-022-00743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
As a synthetic glucocorticoid, dexamethasone is widely used to treat potential premature delivery and related diseases. Our previous studies have shown that prenatal dexamethasone exposure (PDE) can cause bone dysplasia and susceptibility to osteoporosis in female rat offspring. However, whether the effect of PDE on bone development can be extended to the third generation (F3 generation) and its multigenerational mechanism of inheritance have not been reported. In this study, we found that PDE delayed fetal bone development and reduced adult bone mass in female rat offspring of the F1 generation, and this effect of low bone mass caused by PDE even continued to the F2 and F3 generations. Furthermore, we found that PDE increases the expression of miR-98-3p but decreases JAG1/Notch1 signaling in the bone tissue of female fetal rats. Moreover, the expression changes of miR-98-3p/JAG1/Notch1 caused by PDE continued from the F1 to F3 adult offspring. Furthermore, the expression levels of miR-98-3p in oocytes of the F1 and F2 generations were increased. We also confirmed that dexamethasone upregulates the expression of miR-98-3p in vitro and shows targeted inhibition of JAG1/Notch1 signaling, leading to poor osteogenic differentiation of bone marrow mesenchymal stem cells. In conclusion, maternal dexamethasone exposure caused low bone mass in female rat offspring with a multigenerational inheritance effect, the mechanism of which is related to the inhibition of JAG1/Notch1 signaling caused by the continuous upregulation of miR-98-3p expression in bone tissues transmitted by F2 and F3 oocytes.
Collapse
Affiliation(s)
- Hui Han
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
21
|
Sotiriadis A, McGoldrick E, Makrydimas G, Papatheodorou S, Ioannidis JP, Stewart F, Parker R. Antenatal corticosteroids prior to planned caesarean at term for improving neonatal outcomes. Cochrane Database Syst Rev 2021; 12:CD006614. [PMID: 34935127 PMCID: PMC8692259 DOI: 10.1002/14651858.cd006614.pub4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Infants born at term by elective caesarean section are more likely to develop respiratory morbidity than infants born vaginally. Prophylactic corticosteroids in singleton preterm pregnancies accelerate lung maturation and reduce the incidence of respiratory complications. It is unclear whether administration at term gestations, prior to caesarean section, improves the respiratory outcomes for these babies without causing any unnecessary morbidity to the mother or the infant. OBJECTIVES The objective of this review was to assess the effect of prophylactic corticosteroid administration before elective caesarean section at term, as compared to usual care (which could be placebo or no treatment), on fetal, neonatal and maternal morbidity. We also assessed the impact of the treatment on the child in later life. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov (20 January 2021) and reference lists of retrieved studies. SELECTION CRITERIA We included randomised controlled trials comparing prophylactic antenatal corticosteroid administration (betamethasone or dexamethasone) with placebo or with no treatment, given before elective caesarean section at term (at or after 37 weeks of gestation). Quasi-randomised and cluster-randomised controlled trials were also eligible for inclusion. DATA COLLECTION AND ANALYSIS We used standard Cochrane Pregnancy and Childbirth methods for data collection and analysis. Two review authors independently assessed trials for inclusion, assessed risk of bias, evaluated trustworthiness (based on predefined criteria developed by Cochrane Pregnancy and Childbirth), extracted data and checked them for accuracy and assessed the certainty of the evidence using the GRADE approach. Our primary outcomes were respiratory distress syndrome (RDS), transient tachypnoea of the neonate (TTN), admission to neonatal special care for respiratory morbidity and need for mechanical ventilation. We planned to perform subgroup analyses for the primary outcomes according to gestational age at randomisation and type of corticosteroid (betamethasone or dexamethasone). We also planned to perform sensitivity analysis, including only studies at low risk of bias. MAIN RESULTS We included one trial in which participants were randomised to receive either betamethasone or usual care. The trial included 942 women and 942 neonates recruited from 10 UK hospitals between 1995 and 2002. This review includes only trials that met predefined criteria for trustworthiness. We removed three trials from the analysis that were included in the previous version of this review. The risk of bias was low for random sequence generation, allocation concealment and incomplete outcome data. The risk of bias for selective outcome reporting was unclear because there was no published trial protocol, and therefore it is unclear whether all the planned outcomes were reported in full. Due to a lack of blinding we judged there to be high risk of performance bias and detection bias. We downgraded the certainty of the evidence because of concerns about risk of bias and because of imprecision due to low event rates and wide 95% confidence intervals (CIs), which are consistent with possible benefit and possible harm Compared with usual care, it is uncertain if antenatal corticosteroids reduce the risk of RDS (relative risk (RR) 0.34 95% CI 0.07 to 1.65; 1 study; 942 infants) or TTN (RR 0.52, 95% CI 0.25 to 1.11; 1 study; 938 infants) because the certainty of evidence is low and the 95% CIs are consistent with possible benefit and possible harm. Antenatal corticosteroids probably reduce the risk of admission to neonatal special care for respiratory complications, compared with usual care (RR 0.45, 95% CI 0.22 to 0.90; 1 study; 942 infants; moderate-certainty evidence). The proportion of infants admitted to neonatal special care for respiratory morbidity after treatment with antenatal corticosteroids was 2.3% compared with 5.1% in the usual care group. It is uncertain if antenatal steroids have any effect on the risk of needing mechanical ventilation, compared with usual care (RR 4.07, 95% CI 0.46 to 36.27; 1 study; 942 infants; very low-certainty evidence). The effect of antenatal corticosteroids on the maternal development of postpartum infection/pyrexia in the first 72 hours is unclear due to the very low certainty of the evidence; one study (942 women) reported zero cases. The included studies did not report any data for neonatal hypoglycaemia or maternal mortality/severe mortality. AUTHORS' CONCLUSIONS Evidence from one randomised controlled trial suggests that prophylactic corticosteroids before elective caesarean section at term probably reduces admission to the neonatal intensive care unit for respiratory morbidity. It is uncertain if administration of antenatal corticosteroids reduces the rates of respiratory distress syndrome (RDS) or transient tachypnoea of the neonate (TTN). The overall certainty of the evidence for the primary outcomes was found to be low or very low, apart from the outcome of admission to neonatal special care (all levels) for respiratory morbidity, for which the evidence was of moderate certainty. Therefore, there is currently insufficient data to draw any firm conclusions. More evidence is needed to investigate the effect of prophylactic antenatal corticosteroids on the incidence of recognised respiratory morbidity such as RDS. Any future trials should assess the balance between respiratory benefit and potential immediate adverse effects (e.g. hypoglycaemia) and long-term adverse effects (e.g. academic performance) for the infant. There is very limited information on maternal health outcomes to provide any assurances that corticosteroids do not pose any increased risk of harm to the mother. Further research should consider investigating the effectiveness of antenatal steroids at different gestational ages prior to caesarean section. There are nine potentially eligible studies that are currently ongoing and could be included in future updates of this review.
Collapse
Affiliation(s)
- Alexandros Sotiriadis
- Second Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emma McGoldrick
- Obstetrics Directorate, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - George Makrydimas
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Ioannina, Greece
| | | | - John Pa Ioannidis
- Stanford Prevention Research Center, Department of Medicine and Department of Health Research and Policy, Palo Alto, California, USA
| | - Fiona Stewart
- c/o Cochrane Incontinence, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- c/o Cochrane Pregnancy and Childbirth, Department of Women's and Children's Health, The University of Liverpool, Liverpool, UK
| | - Roses Parker
- Cochrane MOSS Network, c/o Cochrane Pain Palliative and Supportive Care Group, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
22
|
Chen Y, Xia X, Fang M, Chen G, Cao J, Qu H, Wang H. Maternally derived low glucocorticoid mediates adrenal developmental programming alteration in offspring induced by dexamethasone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149084. [PMID: 34303245 DOI: 10.1016/j.scitotenv.2021.149084] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Adverse environments during pregnancy can increase susceptibility to chronic diseases in adult offspring. The occurrence and development of fetal-originated diseases were associated with adrenal developmental programming and homeostasis alteration in offspring. Dexamethasone is widely used for preterm delivery-related pregnancy diseases, but the intrauterine programming alteration and its occurrence mechanism of prenatal dexamethasone exposure (PDE) on adrenal development in offspring have not been clarified. In this study, prenatal dexamethasone therapy could inhibit neonatal development and cause a low exposure of maternally derived glucocorticoid in clinic. Then, we established a rat model of PDE and observed a similar phenomenon. Further, the adrenal steroidogenic function was continuously inhibited in the PDE male offspring rats, accompanied by the decreased H3K27ac level of adrenal insulin-like growth factor 1 (IGF1) and its expression. Moreover, chronic stress in PDE adult offspring rats could reverse the changes of the above indicators through the high level of glucocorticoid. In combination with in vivo, in vitro and a series of interference experiments, we confirmed that the low level of endogenous glucocorticoids inhibited the adrenal IGF1 expression and steroidogenic function through the GRα/miR-370-3p/Sirt3 pathway. In summary, PDE could continuously inhibit the adrenal steroidogenic function in the male offspring, which is associated with the maternally derived low glucocorticoid-mediated the adrenal developmental programming alteration in offspring. This study provides a theoretical and experimental basis for explaining the adrenal development origin of PDE-induced adult chronic diseases.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jiangang Cao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
23
|
Zigron R, Rotem R, Erlichman I, Rottenstreich M, Rosenbloom JI, Porat S, Rottenstreich A. Factors associated with the development of neonatal hypoglycemia after antenatal corticosteroid administration: It's all about timing. Int J Gynaecol Obstet 2021; 158:385-389. [PMID: 34625970 DOI: 10.1002/ijgo.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine the factors associated with neonatal hypoglycemia among neonates exposed to antenatal corticosteroid (ACS). METHODS A retrospective study conducted during 2017-2019 at a tertiary-care center including all neonates delivered between 24 and 34 weeks of gestation after ACS administration. The primary outcome was neonatal hypoglycemia (<40 mg/dl). RESULTS Overall, 362 early preterm neonates, including 205 singletons and 157 twins, were exposed to ACS before delivery and constituted the study group. Of them, 275 (76.0%) were exposed to a single ACS course and 87 (24.0%) to an additional rescue ACS course. Neonatal hypoglycemia occurred in 84 (23.2%) neonates. The incidence of neonatal hypoglycemia was significantly higher in those delivered between 24 and 48 h after ACS administration compared with those delivered outside this time interval (10/25, 40.0% vs 74/337, 21.9%; P = 0.049). In multivariate analysis, after adjusting for neonatal birth weight and gestational age, delivery within 24-48 h after ACS administration was the only independent risk factor associated with neonatal hypoglycemia (adjusted odds ratio 2.41, 95% confidence interval 1.03-5.68; P = 0.044). CONCLUSION Neonatal hypoglycemia occurred in over one-fifth of those exposed to ACS, and was independently associated with delivery between 24 and 48 h after ACS administration.
Collapse
Affiliation(s)
- Roy Zigron
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Rotem
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ira Erlichman
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Misgav Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joshua I Rosenbloom
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Porat
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Muehlbacher T, Bassler D, Bryant MB. Evidence for the Management of Bronchopulmonary Dysplasia in Very Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2021; 8:298. [PMID: 33924638 PMCID: PMC8069828 DOI: 10.3390/children8040298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Very preterm birth often results in the development of bronchopulmonary dysplasia (BPD) with an inverse correlation of gestational age and birthweight. This very preterm population is especially exposed to interventions, which affect the development of BPD. OBJECTIVE The goal of our review is to summarize the evidence on these daily procedures and provide evidence-based recommendations for the management of BPD. METHODS We conducted a systematic literature research using MEDLINE/PubMed on antenatal corticosteroids, surfactant-replacement therapy, caffeine, ventilation strategies, postnatal corticosteroids, inhaled nitric oxide, inhaled bronchodilators, macrolides, patent ductus arteriosus, fluid management, vitamin A, treatment of pulmonary hypertension and stem cell therapy. RESULTS Evidence provided by meta-analyses, systematic reviews, randomized controlled trials (RCTs) and large observational studies are summarized as a narrative review. DISCUSSION There is strong evidence for the use of antenatal corticosteroids, surfactant-replacement therapy, especially in combination with noninvasive ventilation strategies, caffeine and lung-protective ventilation strategies. A more differentiated approach has to be applied to corticosteroid treatment, the management of patent ductus arteriosus (PDA), fluid-intake and vitamin A supplementation, as well as the treatment of BPD-associated pulmonary hypertension. There is no evidence for the routine use of inhaled bronchodilators and prophylactic inhaled nitric oxide. Stem cell therapy is promising, but should be used in RCTs only.
Collapse
Affiliation(s)
- Tobias Muehlbacher
- Department of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland; (D.B.); (M.B.B.)
| | | | | |
Collapse
|
25
|
Mwita S, Jande M, Katabalo D, Kamala B, Dewey D. Reducing neonatal mortality and respiratory distress syndrome associated with preterm birth: a scoping review on the impact of antenatal corticosteroids in low- and middle-income countries. World J Pediatr 2021; 17:131-140. [PMID: 33389692 DOI: 10.1007/s12519-020-00398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The most common cause of death among preterm infants in low- and middle-income countries is respiratory distress syndrome. The purpose of this review was to assess whether antenatal corticosteroids given to women at risk of preterm birth at ≤ 34 weeks of gestation reduce rates of neonatal mortality and respiratory distress syndrome in low- and middle-income countries. METHODS Two reviewers independently searched four databases including MEDLINE (through PubMed), CINAHL, Embase, and Cochrane Libraries. We did not apply any language or date restrictions. All publications up to April 2020 were included in this search. RESULTS The search yielded 71 articles, 10 of which were included in this review (3 randomized controlled trials, 7 observational studies, 36,773 neonates). The majority of studies reported associations between exposure to antenatal corticosteroids and lower rates of neonatal mortality and respiratory distress syndrome. However, a few studies reported that antenatal corticosteroids were not associated with improved preterm birth outcomes. CONCLUSIONS Most of the studies in low- and middle-income countries showed that use of antenatal corticosteroids in hospitals with high levels of neonatal care was associated with lower rates of neonatal mortality and respiratory distress syndrome. However, the findings are inconclusive because some studies in low-resource settings reported that antenatal corticosteroids had no benefit in reducing rates of neonatal mortality or respiratory distress syndrome. Further research on the impact of antenatal corticosteroids in resource-limited settings in low-income countries is a priority.
Collapse
Affiliation(s)
- Stanley Mwita
- School of Pharmacy, Catholic University of Health and Allied Sciences, Bugando Area, PO Box 1464, Mwanza, Tanzania.
| | - Mary Jande
- School of Pharmacy, Catholic University of Health and Allied Sciences, Bugando Area, PO Box 1464, Mwanza, Tanzania
| | - Deogratias Katabalo
- School of Pharmacy, Catholic University of Health and Allied Sciences, Bugando Area, PO Box 1464, Mwanza, Tanzania
| | - Benjamin Kamala
- School of Pharmacy, Catholic University of Health and Allied Sciences, Bugando Area, PO Box 1464, Mwanza, Tanzania
| | - Deborah Dewey
- School of Pharmacy, Catholic University of Health and Allied Sciences, Bugando Area, PO Box 1464, Mwanza, Tanzania
| |
Collapse
|
26
|
Effects of 'rescue' dose of antenatal corticosteroids on placental histopathology in preterm births. Placenta 2021; 107:41-45. [PMID: 33761427 DOI: 10.1016/j.placenta.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Antenatal corticosteroids (ACS) are frequently used to reduce neonatal morbidity in preterm births (PTBs). A 'rescue' dose of ACS can be administer, if the risk of PTB remains. Some reports indicated that repeated doses of ACS might impact placental histology and possibly its function. We aimed to study whether repeated doses of ACS effect placental histopathology and pregnancy outcome. METHODS The medical files and placental reports of all PTB, at 24-336/7 weeks, between Nov 2008-Dec 2019, were reviewed. The study population was divided into three groups; no-ACS (PTBs without ACS treatment), one-ACS (PTBs after a full or partial ACS course), and rescue-ACS (PTBs after a 'rescue' course of ACS). Placental lesions were classified according to "Amsterdam" criteria into maternal and fetal vascular malperfusion lesions, maternal and fetal inflammatory responses and chronic villitis. Placental lesions and pregnancy outcome were compared between the study groups. RESULTS The no-ACS group (n = 58) was characterized by increased rates of PTB<28 weeks (p = 0.003), perinatal death (p < 0.001) and composite neonatal infectious morbidity (p = 0.022), as compared to the one-ACS group (n = 331) and the rescue-ACS group (n = 53). Placental MIR lesions were more common among the rescue-ACS group, compared to the one- and no-ACS groups (p = 0.022). Other placental lesions did not differ between the groups. On multivariate logistic regression analysis, MIR lesions were independently associated with rescue-ACS treatment (aOR 3.00, 95% CI 1.10-8/17, p = 0.031). DISCUSSION Rescue course of ACS is associated with increased rate of placental maternal inflammatory response. These findings probably result from maternal stress stimuli without an adverse impact on early neonatal outcome.
Collapse
|
27
|
Shangguan Y, Wu Z, Xie X, Zhou S, He H, Xiao H, Liu L, Zhu J, Chen H, Han H, Wang H, Chen L. Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochem Pharmacol 2021; 185:114414. [PMID: 33434537 DOI: 10.1016/j.bcp.2021.114414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Dexamethasone is a common synthetic glucocorticoid drug that can promote foetal lung maturity. An increasing number of studies have shown that prenatal dexamethasone exposure (PDE) can cause a variety of short-term and long-term hazards to offspring, including bone development toxicity. H-type vessels are a newly discovered subtype of blood vessels associated with promoted bone formation and maintenance of bone mass. In this study, we aimed to explore whether H-type blood vessels are involved in PDE-induced long bone development toxicity in offspring and its mechanism. In vivo, we injected dexamethasone (0.2 mg/kg.d) subcutaneously at gestational days 9-20 and observed the H-type vessel abundance and bone mass at different time points in the offspring rats. In vitro, we investigated the effect of dexamethasone (0, 20, 100, and 500 nM) on the tube formation function of rat bone marrow-derived endothelial progenitor cells (EPCs) and explored its mechanism. Our results showed that the adult PDE female offspring rats were susceptible to osteoporosis. In addition, PDE inhibited bone mass, H-type vessel formation and the expression of bone platelet-derived growth factor receptor β (PDGFRβ)/focal adhesion kinase (FAK) pathway-related genes in antenatal and postnatal female offspring. Moreover, PDE promoted the expression of bone glucocorticoid receptor (GR), CCAAT and enhancer binding protein α (C/EBPα) and miR-34c in female foetuses. Dexamethasone suppressed the tube formation of rat bone marrow-derived EPCs and the activity of the PDGFRβ/FAK pathway, which was mediated by GR/C/EBPα/miR-34c signalling activation. In summary, PDE can cause H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring, and its mechanism is related to the low-activity programming of the PDGFRβ/FAK pathway induced by GR/C/EBPα/miR-34c signalling activation. This study enhances the understanding of the molecular mechanism of dexamethasone-induced bone development toxicity and provides new insights for exploring the early intervention and therapeutic targets of foetal-derived osteoporosis.
Collapse
Affiliation(s)
- Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xingkui Xie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hangyuan He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jiayong Zhu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
28
|
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int J Mol Sci 2021; 22:1671. [PMID: 33562339 PMCID: PMC7915709 DOI: 10.3390/ijms22041671] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.
Collapse
Affiliation(s)
- Nathanael Yates
- The Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia;
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair J. Gunn
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Simerdeep K. Dhillon
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Joanne O. Davidson
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| |
Collapse
|
29
|
Liu H, He B, Hu W, Liu K, Dai Y, Zhang D, Wang H. Prenatal dexamethasone exposure induces nonalcoholic fatty liver disease in male rat offspring via the miR-122/YY1/ACE2-MAS1 pathway. Biochem Pharmacol 2021; 185:114420. [PMID: 33460628 DOI: 10.1016/j.bcp.2021.114420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that nonalcoholic fatty liver disease (NAFLD) has an intrauterine developmental origin. We aimed to demonstrate that NAFLD is caused by prenatal dexamethasone exposure (PDE) in adult male rat offspring and to investigate the intrauterine programming mechanism. Liver samples were obtained on gestational day (GD) 21 and postnatal week (PW) 28. The effects and epigenetic mechanism of dexamethasone were studied with bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and other cell models. In the PDE group, lipid accumulation increased, triglyceride synthesis-related gene expression increased, and oxidation-related gene expression decreased in livers of adult male rat offspring. In utero, hepatic triglyceride synthesis increased and oxidative function decreased in PDE fetal male rats. Moreover, low hepatic miR-122 expression, high Yin Yang-1 (YY1) expression and angiotensin-converting enzyme 2 (ACE2)-Mas receptor (MAS1) signaling pathway inhibition were observed before and after birth. At the cellular level, dexamethasone (100-2500 nM) elevated the intracellular triglyceride content, increased triglyceride synthesis-related gene expression and decreased oxidation-related gene expression. Dexamethasone treatment also decreased miR-122 expression, increased YY1 expression and inhibited the ACE2-MAS1 signaling pathway. Interference or overexpression of glucocorticoid receptor (GR), miR-122, YY1 and ACE2 could reverse the changes in downstream gene expression. In summary, PDE could induce NAFLD in adult male rat offspring. The programming mechanism included inhibition of miR-122 expression after GR activation, and dexamethasone increased hepatocyte YY1 expression; these effects resulted in ACE2-MAS1 signaling pathway inhibition, which led to increased hepatic triglyceride synthesis and decreased oxidative function. The increased triglyceride synthesis and decreased oxidative function of hepatocytes caused by low miR-122 expression due to dexamethasone could continue postnatally, eventually leading to NAFLD in adult rat offspring.
Collapse
Affiliation(s)
- Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Bo He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
30
|
Panel of suitable reference genes and its gender differences of fetal rat liver under physiological conditions and exposure to dexamethasone during pregnancy. Reprod Toxicol 2021; 100:74-82. [PMID: 33453333 DOI: 10.1016/j.reprotox.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023]
Abstract
The panel of suitable reference genes in the fetal liver have not been reported. In this study, five commonly used reference genes (GAPDH, β-actin, Rn18 s, Rpl13a, and Rps29) were firstly selected as candidates. Bestkeeper, GeNorm, and NormFinder software were then used to screen out the panel of suitable reference genes of male and female fetal rat liver under physiological and prenatal dexamethasone exposure (PDE) conditions. Finally, we verified the reliability of the screened panel of reference genes by standardizing sterol regulatory element binding protein 1c (SREBP1c) expression with different reference genes. The results showed that GAPDH + Rn18 s and GAPDH + Rpl13a were respectively the panel of suitable reference genes in male and female rat fetal liver under the physiological model, while Rn18 s + Rps29 and GAPDH + Rn18 s were respectively under the PDE model. The results showed that different reference genes affected the statistical results of SREBP1c expression, and the screened panel of suitable reference genes under the PDE model had smaller intragroup differences, when compared with other reference genes under physiological and PDE models. In conclusion, we screened and determined that the panel of suitable reference genes were GAPDH + Rn18 s and Rn18 s + Rps29 in the male rat fetal liver under physiological and PDE models, while they were GAPDH + Rpl13a and GAPDH + Rn18 s in the females, and confirmed that the selection of the panel of suitable reference genes in the fetal liver had gender differences and pathological model specificity.
Collapse
|
31
|
Zhang D, Liu K, Hu W, Lu X, Li L, Zhang Q, Huang H, Wang H. Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation. Toxicology 2021; 449:152664. [PMID: 33359579 DOI: 10.1016/j.tox.2020.152664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
As a synthetic glucocorticoid, dexamethasone has been widely used in the clinical treatment of premature birth and related pregnant diseases, but its clinical use is still controversial due to developmental toxicity. This study aimed to confirm the proliferation inhibitory effect of pregnant dexamethasone exposure (PDE) on fetal liver development and elucidate its molecular mechanism. In vitro studies, we found that dexamethasone inhibited hepatocyte proliferation through autophagy activated by glucocorticoid receptor (GR)-forkhead protein O1 (FOXO1) pathway. Subsequently, in vivo, we confirmed in a PDE rat model that male fetal liver proliferation was inhibited, and the expression of the GR-FOXO1 pathway and autophagy were increased. Taken together, PDE induces autophagy by activating the GR-FOXO1 pathway, which leads to fetal liver proliferation inhibition and dysplasia in offspring rats. This study confirmed that dexamethasone activates cell autophagy in utero through the GR-FOXO1 pathway, thereby inhibiting hepatocyte proliferation and liver development, which provides theoretical basis for understanding the developmental toxicity of dexamethasone and guiding the rational clinical use.
Collapse
Affiliation(s)
- Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hegui Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Wuhan No.1 Hospital, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
32
|
McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2020; 12:CD004454. [PMID: 33368142 PMCID: PMC8094626 DOI: 10.1002/14651858.cd004454.pub4] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Respiratory morbidity including respiratory distress syndrome (RDS) is a serious complication of preterm birth and the primary cause of early neonatal mortality and disability. Despite early evidence indicating a beneficial effect of antenatal corticosteroids on fetal lung maturation and widespread recommendations to use this treatment in women at risk of preterm delivery, some uncertainty remains about their effectiveness particularly with regard to their use in lower-resource settings, different gestational ages and high-risk obstetric groups such as women with hypertension or multiple pregnancies. This updated review (which supersedes an earlier review Crowley 1996) was first published in 2006 and subsequently updated in 2017. OBJECTIVES To assess the effects of administering a course of corticosteroids to women prior to anticipated preterm birth (before 37 weeks of pregnancy) on fetal and neonatal morbidity and mortality, maternal mortality and morbidity, and on the child in later life. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (3 September 2020), ClinicalTrials.gov, the databases that contribute to the WHO International Clinical Trials Registry Platform (ICTRP) (3 September 2020), and reference lists of the retrieved studies. SELECTION CRITERIA We considered all randomised controlled comparisons of antenatal corticosteroid administration with placebo, or with no treatment, given to women with a singleton or multiple pregnancy, prior to anticipated preterm delivery (elective, or following rupture of membranes or spontaneous labour), regardless of other co-morbidity, for inclusion in this review. DATA COLLECTION AND ANALYSIS We used standard Cochrane Pregnancy and Childbirth methods for data collection and analysis. Two review authors independently assessed trials for inclusion, assessed risk of bias, evaluated trustworthiness based on predefined criteria developed by Cochrane Pregnancy and Childbirth, extracted data and checked them for accuracy, and assessed the certainty of the evidence using the GRADE approach. Primary outcomes included perinatal death, neonatal death, RDS, intraventricular haemorrhage (IVH), birthweight, developmental delay in childhood and maternal death. MAIN RESULTS We included 27 studies (11,272 randomised women and 11,925 neonates) from 20 countries. Ten trials (4422 randomised women) took place in lower- or middle-resource settings. We removed six trials from the analysis that were included in the previous version of the review; this review only includes trials that meet our pre-defined trustworthiness criteria. In 19 trials the women received a single course of steroids. In the remaining eight trials repeated courses may have been prescribed. Fifteen trials were judged to be at low risk of bias, two had a high risk of bias in two or more domains and we ten trials had a high risk of bias due to lack of blinding (placebo was not used in the control arm. Overall, the certainty of evidence was moderate to high, but it was downgraded for IVH due to indirectness; for developmental delay due to risk of bias and for maternal adverse outcomes (death, chorioamnionitis and endometritis) due to imprecision. Neonatal/child outcomes Antenatal corticosteroids reduce the risk of: - perinatal death (risk ratio (RR) 0.85, 95% confidence interval (CI) 0.77 to 0.93; 9833 infants; 14 studies; high-certainty evidence; 2.3% fewer, 95% CI 1.1% to 3.6% fewer), - neonatal death (RR 0.78, 95% CI 0.70 to 0.87; 10,609 infants; 22 studies; high-certainty evidence; 2.6% fewer, 95% CI 1.5% to 3.6% fewer), - respiratory distress syndrome (RR 0.71, 95% CI 0.65 to 0.78; 11,183 infants; studies = 26; high-certainty evidence; 4.3% fewer, 95% CI 3.2% to 5.2% fewer). Antenatal corticosteroids probably reduce the risk of IVH (RR 0.58, 95% CI 0.45 to 0.75; 8475 infants; 12 studies; moderate-certainty evidence; 1.4% fewer, 95% CI 0.8% to1.8% fewer), and probably have little to no effect on birthweight (mean difference (MD) -14.02 g, 95% CI -33.79 to 5.76; 9551 infants; 19 studies; high-certainty evidence). Antenatal corticosteroids probably lead to a reduction in developmental delay in childhood (RR 0.51, 95% CI 0.27 to 0.97; 600 children; 3 studies; moderate-certainty evidence; 3.8% fewer, 95% CI 0.2% to 5.7% fewer). Maternal outcomes Antenatal corticosteroids probably result in little to no difference in maternal death (RR 1.19, 95% CI 0.36 to 3.89; 6244 women; 6 studies; moderate-certainty evidence; 0.0% fewer, 95% CI 0.1% fewer to 0.5% more), chorioamnionitis (RR 0.86, 95% CI 0.69 to 1.08; 8374 women; 15 studies; moderate-certainty evidence; 0.5% fewer, 95% CI 1.1% fewer to 0.3% more), and endometritis (RR 1.14, 95% CI 0.82 to 1.58; 6764 women; 10 studies; moderate-certainty; 0.3% more, 95% CI 0.3% fewer to 1.1% more) The wide 95% CIs in all of these outcomes include possible benefit and possible harm. AUTHORS' CONCLUSIONS Evidence from this updated review supports the continued use of a single course of antenatal corticosteroids to accelerate fetal lung maturation in women at risk of preterm birth. Treatment with antenatal corticosteroids reduces the risk of perinatal death, neonatal death and RDS and probably reduces the risk of IVH. This evidence is robust, regardless of resource setting (high, middle or low). Further research should focus on variations in the treatment regimen, effectiveness of the intervention in specific understudied subgroups such as multiple pregnancies and other high-risk obstetric groups, and the risks and benefits in the very early or very late preterm periods. Additionally, outcomes from existing trials with follow-up into childhood and adulthood are needed in order to investigate any longer-term effects of antenatal corticosteroids. We encourage authors of previous studies to provide further information which may answer any remaining questions about the use of antenatal corticosteroids without the need for further randomised controlled trials. Individual patient data meta-analyses from published trials are likely to provide answers for most of the remaining clinical uncertainties.
Collapse
Affiliation(s)
- Emma McGoldrick
- Obstetrics Directorate, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Fiona Stewart
- Cochrane Children and Families Network, c/o Cochrane Pregnancy and Childbirth, Department of Women's and Children's Health, The University of Liverpool, Liverpool, UK
| | - Roses Parker
- Musculoskeletal, Oral, Skin and Sensory Network, Oxford University Hospitals NHS Foundation Trust Second Floor, OUH Cowley Unipart House Business Centre, Oxford, UK
| | - Stuart R Dalziel
- Departments of Surgery and Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
- Children's Emergency Department, Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
33
|
Martins CA, Neves LT, de Oliveira MMBP, Bagatini PB, Barboza R, Mestriner RG, Xavier LL, Rasia-Filho AA. Neuroprotective effect of ACTH on collagenase-induced peri-intraventricular hemorrhage in newborn male rats. Sci Rep 2020; 10:17734. [PMID: 33082383 PMCID: PMC7576182 DOI: 10.1038/s41598-020-74712-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Peri-intraventricular hemorrhage (PIVH) is a common and serious prematurity-related complication in neonates. Adrenocorticotropic hormone (ACTH) has neuroprotective actions and is a candidate to ameliorate brain damage following PIVH. Here, we tested the efficacy of ACTH1-24 on a collagenase-induced lesion of the germinal matrix (GM) in newborn male rats. Animals received microinjection of the vehicle (PBS, 2 µl) or collagenase type VII (0.3 IU) into the GM/periventricular tissue on postnatal day (PN) 2. Twelve hours later pups received microinjection of either the agonist ACTH1-24 (0.048 mg/kg), or the antagonist SHU9119 (antagonist of MCR3/MCR4 receptors, 0.01 mg/kg), or their combination. Morphological outcomes included striatal injury extension, neuronal and glial cells counting, and immunohistochemical expression of brain lesion biomarkers ipsilateral and contralateral to the hemorrhagic site. Data were evaluated on PN 8. Collagenase induced PIVH and severe ipsilateral striatal lesion. ACTH1-24 dampened the deleterious effects of collagenase-induced hemorrhage in significantly reducing the extension of the damaged area, the striatal neuronal and glial losses, and the immunoreactive expression of the GFAP, S100β, and NG2-glia biomarkers in the affected periventricular area. SHU9119 blocked the glial density rescuing effect of ACTH1-24. ACTH1-24 could be further evaluated to determine its suitability for preclinical models of PVH in premature infants.
Collapse
Affiliation(s)
- Camila A Martins
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90170-050, Brazil
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, Porto Alegre, RS, 90170-050, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Marina M B P de Oliveira
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Pamela Brambilla Bagatini
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Rafaela Barboza
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Alberto A Rasia-Filho
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90170-050, Brazil.
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, Porto Alegre, RS, 90170-050, Brazil.
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90170-050, Brazil.
| |
Collapse
|
34
|
Marie E, Ducarme G, Boivin M, Badon V, Pelerin H, Le Thuaut A, Lamoureux Z, Riche VP, Winer N, Thubert T, Dochez V. The value of a vaginal sample for detecting PAMG-1 (Partosure®) in women with a threatened preterm delivery (the MAPOSURE Study): protocol for a multicenter prospective study. BMC Pregnancy Childbirth 2020; 20:442. [PMID: 32746802 PMCID: PMC7397666 DOI: 10.1186/s12884-020-03129-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Threatened preterm delivery (TPD) is the leading cause of inpatient admissions during pregnancy. The ability to predict the risk of imminent preterm delivery is thus a major priority in obstetrics. The aim of our study is to assess the diagnostic performance of the test to detect the placental alpha microglobulin 1 (PAMG-1) for the prediction of delivery within 7 days in women with TPD. METHODS This is a prospective multicenter diagnostic study. Inclusion criteria are singleton pregnancy, gestational age between 24 + 0 and 33 + 6 weeks inclusive, cervical measurement 25 mm or less assessed by transvaginal ultrasound (with or without uterine contractions), clinically intact membranes and cervical dilatation < 3 cm assessed by digital examination. According to the current protocol, when a women presents with TPD and the diagnosis is confirmed by transvaginal ultrasound, a vaginal sample to test for genital infection is performed. At the same time, the midwife will perform the PartoSure® test. To perform this analysis, a sample of cervicovaginal secretions is taken with the vaginal swab furnished in the test kit. The primary outcome is the specificity of the PartoSure® test of women who gave birth more than 7 days after their hospitalization for TPD. The secondary outcomes are the sensitivity, PPV, and NPV of the Partosure® test and the factors associated with false positives (with a univariate logistic regression model). Starting with the hypothesis of an anticipated specificity of 89%, if we want to estimate this specificity with a confidence interval of ± 5%, we will require 151 women who do not give birth within 7 days. We therefore decided to include 400 women over a period of two years to have a larger number of events (deliveries within 7 days). DISCUSSION The different tests already used such as fetal fibronectin and phIGFBP-1, are not sufficiently relevant to recommend their use in daily practice. The different studies of PAMG-1 described above thus provide support for the use of this substance, tested by PartoSure®. Nonetheless, other larger studies are necessary to validate its use in daily practice and our study could answer this question. TRIAL REGISTRATION NCT03401255 (January 15, 2018).
Collapse
Affiliation(s)
- Emilie Marie
- Service de Gynécologie-Obstétrique, CHU de Nantes, Nantes, France
| | - Guillaume Ducarme
- Service de Gynécologie-Obstétrique, CHD Vendée, La Roche sur Yon, France
| | - Marion Boivin
- Centre d’Investigation Clinique CIC FEA, CHU de Nantes, Nantes, France
| | - Virginie Badon
- Centre d’Investigation Clinique CIC FEA, CHU de Nantes, Nantes, France
| | - Hélène Pelerin
- Unité de Recherche Clinique URC, CHD Vendée, La Roche sur Yon, France
| | - Aurélie Le Thuaut
- Plateforme de statistiques - Direction de la Recherche CHU de Nantes, Nantes, France
| | - Zeineb Lamoureux
- Coordination Cellule Recherche Non Interventionnelle - Direction de la Recherche CHU de Nantes, Nantes, France
| | - Valéry-Pierre Riche
- Cellule Innovation – Département Partenariat et Innovation - Direction de la Recherche CHU de Nantes, Nantes, France
| | - Norbert Winer
- Service de Gynécologie-Obstétrique, CHU de Nantes, Nantes, France
| | - Thibault Thubert
- Service de Gynécologie-Obstétrique, CHU de Nantes, Nantes, France
| | - Vincent Dochez
- Service de Gynécologie-Obstétrique, CHU de Nantes, Nantes, France
| |
Collapse
|
35
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
36
|
Rohwer AC, Oladapo OT, Hofmeyr GJ. Strategies for optimising antenatal corticosteroid administration for women with anticipated preterm birth. Cochrane Database Syst Rev 2020; 5:CD013633. [PMID: 32452555 PMCID: PMC7387231 DOI: 10.1002/14651858.cd013633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Preterm birth is a serious and common pregnancy complication. The burden is particularly high in low- and middle-income countries where available care is often inadequate to ensure preterm newborn survival. Administration of antenatal corticosteroids (ACS) is recommended as the standard care for the management of women at risk of imminent preterm birth but its coverage varies globally. Efforts to improve preterm newborn survival have largely been focused on optimising the coverage of ACS use. However, the benefits and harms of such strategies are unclear. OBJECTIVES To determine the relative benefits and risks of individual patient protocols, health service policies, educational interventions or other strategies which aim to optimise the use of ACS for anticipated preterm birth. SEARCH METHODS We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (26 September 2019), and reference lists of retrieved studies. SELECTION CRITERIA We planned to include randomised controlled trials (RCTs), randomised at individual or cluster level, and quasi-randomised trials that assessed strategies to optimise (either by increasing or restricting) the administration of ACS compared with usual care amongst women at risk of preterm birth. Our primary outcomes were perinatal death and a composite outcome of offspring mortality and early or late neurodevelopmental morbidity. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion. All three review authors independently extracted data and assessed risk of bias. We used narrative synthesis to analyse results, as we were unable to pool data from the included studies. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS We included three cluster-RCTs, all assessing the effects of a multifaceted strategy aiming to promote the use of ACS among women at risk of preterm birth. We did not identify any trials assessing strategies to restrict the use of ACS versus usual care. Two of the included trials assessed use of ACS in high-resource hospital settings. The third trial, the Antenatal Corticosteroid Trial (ACT) was a multi-site trial conducted in rural and semi-urban settings of six low- and middle-income countries in South Asia, sub-Saharan Africa and Central and South America. In two trials, promoting the use of ACS resulted in increased use of ACS, whereas one trial did not find a difference in the rate of ACS administration compared to usual care. Whilst we included three studies, we were unable to pool the data in meta-analysis due to outcomes not being reported across all studies, or outcome results being reported in different ways. The main source of data in this review is from the ACT trial. We assessed the ACT trial as high risk for performance and selective reporting bias. In the protocol for this review, we planned to report all settings and subgroup by low-middle versus high-income countries; these planned analyses were not possible in this version of the review, although adding further studies in future updates may allow us to carry out planned subgroup analyses. The ACT trial was conducted in low-resource settings and reported data on appropriate ACS treatment and inappropriate ACS treatment. Although a strategy of promoting the administration of ACS compared to routine care may increase appropriate ACS treatment (RR 4.34, 95%CI 3.59 to 5.25; 1 study; n = 4389; low-certainty evidence), it may also increase inappropriate ACS treatment (RR 9.11 95%CI 8.04 to 10.33, 1 study, n = 89,237; low-certainty evidence). In low-resource settings, a strategy of promoting the administration of ACS probably increases population level perinatal death by 3 per 1000 infants (risk ratio (RR) 1.11, 95% confidence interval (CI) 1.04 to 1.19; 1 study; n = 100,705; moderate-certainty evidence); stillbirth by 2 per 1000 infants (RR 1.11, 95% CI 1.02 to 1.21; 1 study; n = 100,705; moderate-certainty evidence); and neonatal death before 28 days by 2 per 1000 infants (RR 1.12, 95% CI 1.02 to 1.23; 1 study; n = 100,705; moderate-certainty evidence); may increase the risk for 'suspected' maternal infection or inflammation (RR 1.49, 95% CI 1.32 to 1.68; 1 study; n = 99,742; low-certainty evidence); and make little or no difference to the risk of maternal mortality (RR 1.11, 95% CI 0.64 to 1.92; 1 study; n = 99,742; low-certainty evidence) compared to routine care. Included trials did not report on the composite outcomes offspring mortality, early neurodevelopmental morbidity or late neurodevelopmental morbidity; and offspring mortality or severe neonatal morbidity. AUTHORS' CONCLUSIONS In low-resource settings, a strategy of actively promoting the use of ACS in women at risk of preterm birth may increase ACS use in the target population, but may also carry a substantial risk of unnecessary exposure of ACS to women in whom ACS is not indicated. At the population level, these effects are probably associated with increased risks of stillbirth, perinatal death, neonatal death before 28 days, and maternal infection. The findings of this review support a more conservative approach to clinical protocols and clinical decision-making particularly in low-resource settings, along the lines of the World Health Organization's ACS 2015 recommendations, which take into account both the established clinical efficacy of ACS when used in the correct situation and context, and the possibility of important adverse effects when certain conditions are not met. Given the unanticipated results of the ACT trial, further research on strategies to optimise the use of ACS in low-resource settings is justified.
Collapse
Affiliation(s)
- Anke C Rohwer
- Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Olufemi T Oladapo
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - G Justus Hofmeyr
- Effective Care Research Unit, University of the Witwatersrand/Fort Hare, East London, South Africa; Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; and, University of Botswana, Gaborone, Botswana
| |
Collapse
|
37
|
Wynne K, Rowe C, Delbridge M, Watkins B, Brown K, Addley J, Woods A, Murray H. Antenatal corticosteroid administration for foetal lung maturation. F1000Res 2020; 9. [PMID: 32269758 PMCID: PMC7111495 DOI: 10.12688/f1000research.20550.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 01/27/2023] Open
Abstract
Antenatal corticosteroids are an essential component in the management of women at risk for preterm labour. They promote lung maturation and reduce the risk of other preterm neonatal complications. This narrative review discusses the contentious issues and controversies around the optimal use of antenatal corticosteroids and their consequences for both the mother and the neonate. The most recent evidence base is presented.
Collapse
Affiliation(s)
- Katie Wynne
- Department of Diabetes & Endocrinology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.,Mothers and Babies, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Christopher Rowe
- Department of Diabetes & Endocrinology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.,Mothers and Babies, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Matthew Delbridge
- School of Medicine and Public Health, University of New England, Armidale, NSW, 2351, Australia
| | - Brendan Watkins
- School of Medicine and Public Health, University of New England, Armidale, NSW, 2351, Australia
| | - Karina Brown
- School of Medicine and Public Health, University of New England, Armidale, NSW, 2351, Australia
| | - Jordan Addley
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Andrew Woods
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Department of Obstetrics, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Henry Murray
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Department of Obstetrics, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
38
|
Tuohy JF, Bloomfield FH, Harding JE, Crowther CA. Patterns of antenatal corticosteroid administration in a cohort of women with diabetes in pregnancy. PLoS One 2020; 15:e0229014. [PMID: 32106249 PMCID: PMC7046227 DOI: 10.1371/journal.pone.0229014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Antenatal corticosteroids administered to the mother prior to birth decrease the risk of mortality and major morbidity in infants born at less than 35 weeks’ gestation. However, the evidence relating to women with diabetes in pregnancy is limited. Clinical guidelines for antenatal corticosteroid administration recommend that women with diabetes in pregnancy are treated in the same way as women without diabetes, but there are no recent descriptions of whether contemporary practice complies with this guidance. This study is a retrospective review of antenatal corticosteroid administration at a New Zealand tertiary hospital in women with diabetes in pregnancy. We found that in this cohort, for both an initial course at less than 35 weeks’ gestation and repeat courses at less than 33 weeks’, the administration of antenatal corticosteroid to women with diabetes in pregnancy is largely consistent with current Australian and New Zealand recommendations. However, almost 25% of women received their last dose of antenatal corticosteroid at or beyond the latest recommended gestation of 35 weeks’ gestation. Pre-existing diabetes and planned caesarean section were independently associated with an increased rate of antenatal corticosteroid administration. We conclude that diabetes in pregnancy does not appear to be a deterrent to antenatal corticosteroid administration. The high rates of administration at gestations beyond recommendations, despite the lack of evidence of benefit in this group of women, highlights the need for further research into the risks and benefits of antenatal corticosteroid administration to women with diabetes in pregnancy, particularly in the late preterm and early term periods.
Collapse
Affiliation(s)
- Jeremy F. Tuohy
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Jane E. Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
39
|
Wastnedge E, Vogel J, Been JV, Bannerman-Gyamfi C, Schuit E, Roberts D, Reynolds RM, Stock S. An evaluation of the benefits and harms of antenatal corticosteroid treatment for women at risk of imminent preterm birth or prior to elective Caesarean-section: Study protocol for an individual participant data meta-analysis. Wellcome Open Res 2020; 5:38. [PMID: 32529039 PMCID: PMC7268149 DOI: 10.12688/wellcomeopenres.15661.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Antenatal corticosteroid treatment (ACT) has been widely accepted as a safe, beneficial treatment which improves outcomes following preterm birth. It has been shown to reduce respiratory distress syndrome and neonatal mortality and is commonly used in threatened or planned preterm delivery, as well as prior to elective Caesarean-section at term. There are some concerns however, that in some cases, ACT is used in patients where clinical benefit has not been established, or may potentially increase harm. Many women who receive ACT do not deliver preterm and the long-term consequences of ACT treatment are unclear. This study aims to evaluate the benefits and harms of ACT using latest trial evidence to allow refinement of current practice. Methods: This study will compare ACT with placebo or non-treatment. Inclusion criteria are: Randomised Controlled Trials (RCT) comparing ACT vs. no ACT (with or without placebo) in all settings. Exclusion criteria are: non-randomised or quasi-randomised studies and studies comparing single vs. multiple courses of ACT. Main outcomes are to evaluate, for women at risk of preterm birth or undergoing planned Caesarean- section, the benefits and harms of ACT, on maternal, fetal, newborn, and long-term offspring health outcomes. The individual participant data (IPD) of identified RCTs will be collected and consecutively synthesised using meta-analysis with both a one-stage model where all IPD is analysed together and a two-stage model where treatment effect estimates are calculated for each trial individually first and thereafter pooled in a meta-analysis. Sub-group analysis will be performed to identify heterogeneous effects of ACT across predefined risk groups. Discussion: Co-opt is the Consortium for the Study of Pregnancy Treatments and aims to complete a robust evaluation of the benefits and harms of ACT. This IPD meta-analysis will contribute to this by allowing detailed interrogation of existing trial datasets. PROSPERO registration: CRD42020167312 (03/02/2020).
Collapse
Affiliation(s)
| | - Joshua Vogel
- Maternal and Child Health Program, Burnet Institute, Melbourne, Australia
| | - Jasper V. Been
- Division of Neonatology, Department of Paediatrics, Division of Obstetrics and Gynaecology and Department of Publisc Health, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ewoud Schuit
- Julian Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Rebecca M. Reynolds
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Sarah Stock
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Co_Opt collaboration
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- Maternal and Child Health Program, Burnet Institute, Melbourne, Australia
- Division of Neonatology, Department of Paediatrics, Division of Obstetrics and Gynaecology and Department of Publisc Health, Erasmus MC, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Columbia University, New York, USA
- Julian Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Vaughan OR, Powell TL, Jansson T. Glucocorticoid regulation of amino acid transport in primary human trophoblast cells. J Mol Endocrinol 2019; 63:239-248. [PMID: 31505460 PMCID: PMC6872941 DOI: 10.1530/jme-19-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Excess maternal glucocorticoids reduce placental amino acid transport and fetal growth, but whether these effects are mediated directly on the syncytiotrophoblast remains unknown. We hypothesised that glucocorticoids inhibit mechanistic target of rapamycin (mTOR) signaling and insulin-stimulated System A amino acid transport activity in primary human trophoblast (PHT) cells. Syncytialised PHTs, isolated from term placentas (n = 15), were treated with either cortisol (1 μM) or dexamethasone (1 μM), ± insulin (1 nM) for 24 h. Compared to vehicle, dexamethasone increased mRNA expression, but not protein abundance of the mTOR suppressor, regulated in development and DNA damage response 1 (REDD1). Dexamethasone enhanced insulin receptor abundance, activated mTOR complex 1 and 2 signaling and stimulated System A activity, measured by Na+-dependent 14C-methylaminoisobutyric acid uptake. Cortisol also activated mTORC1 without significantly altering insulin receptor or mTORC2 read-outs or System A activity. Both glucocorticoids downregulated expression of the glucocorticoid receptor and the System A transporter genes SLC38A1, SLC38A2 and SLC38A4, without altering SNAT1 or SNAT4 protein abundance. Neither cortisol nor dexamethasone affected System L amino acid transport. Insulin further enhanced mTOR and System A activity, irrespective of glucocorticoid treatment and despite downregulating its own receptor. Contrary to our hypothesis, glucocorticoids do not inhibit mTOR signaling or cause insulin resistance in cultured PHT cells. We speculate that glucocorticoids stimulate System A activity in PHT cells by activating mTOR signaling, which regulates amino acid transporters post-translationally. We conclude that downregulation of placental nutrient transport in vivo following excess maternal glucocorticoids is not mediated by a direct effect on the placenta.
Collapse
Affiliation(s)
- O R Vaughan
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - T L Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - T Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
41
|
Melamed N, Asztalos E, Murphy K, Zaltz A, Redelmeier D, Shah BR, Barrett J. Neurodevelopmental disorders among term infants exposed to antenatal corticosteroids during pregnancy: a population-based study. BMJ Open 2019; 9:e031197. [PMID: 31575578 PMCID: PMC6773295 DOI: 10.1136/bmjopen-2019-031197] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE An increasing proportion of fetuses are exposed to antenatal corticosteroids (ACS). Despite their immediate beneficial effects, the long-term safety of ACS has been an ongoing source of concern. In the current study, we assessed the likelihood of neurodevelopmental problems among term infants exposed to ACS earlier in pregnancy compared with non-exposed term infants. DESIGN Retrospective cohort study (2006-2011). Median duration of follow-up was 7.8 (IQR 6.4-9.2) years. SETTING Population-based study, Ontario, Canada. PARTICIPANTS All live singleton infants born at term (≥370/7 weeks gestation) (n=529 205). EXPOSURE ACS during pregnancy. PRIMARY AND SECONDARY OUTCOME MEASURES A composite of diagnostic or billing codes reflecting proven or suspected neurodevelopmental problems during childhood including audiometry testing, visual testing or physician service claim with a diagnosis code related to a suspected neurocognitive disorder. RESULTS At 5 years of age, the cumulative rate for the primary outcome was higher among infants exposed to ACS compared with non-exposed infants: 61.7% (3346/5423) vs 57.8% (302 520/523 782), respectively (p<0.001; number needed to harm (NNH)=25, 95% CI 19 to 38; adjusted HR (aHR) 1.12, 95% CI 1.08 to 1.16). Similar findings were observed for each of the individual components of the primary outcome: 15.3% vs 12.7% for audiometry testing (p<0.001; NNH=39, 95% CI 29 to 63; aHR 1.18, 95% CI 1.11 to 1.25); 45.4% vs 43.5% for visual testing (p=0.006; NNH=54, 95% CI 31 to 200; aHR 1.08, 95% CI 1.04 to 1.12) and 25.8% vs 21.6% for suspected neurocognitive disorder (p<0.001; NNH=24, 95% CI 19 to 33; aHR 1.16, 95% CI 1.10 to 1.21). CONCLUSIONS We found an association among term infants between exposure to ACS during pregnancy and healthcare utilisation during childhood related to suspected neurocognitive and neurosensory disorders.
Collapse
Affiliation(s)
- Nir Melamed
- Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Elizabeth Asztalos
- Department of Newborn & Developmental Paediatrics, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Kellie Murphy
- Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arthur Zaltz
- Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Baiju R Shah
- Endocrinology, Sunnybrooke Health Sciences Centre, Toronto, Ontario, Canada
| | - Jon Barrett
- Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Aupiais C, Alberti C, Schmitz T, Baud O, Ursino M, Zohar S. A Bayesian non-inferiority approach using experts' margin elicitation - application to the monitoring of safety events. BMC Med Res Methodol 2019; 19:187. [PMID: 31533631 PMCID: PMC6751616 DOI: 10.1186/s12874-019-0826-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/21/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND When conducing Phase-III trial, regulatory agencies and investigators might want to get reliable information about rare but serious safety outcomes during the trial. Bayesian non-inferiority approaches have been developed, but commonly utilize historical placebo-controlled data to define the margin, depend on a single final analysis, and no recommendation is provided to define the prespecified decision threshold. In this study, we propose a non-inferiority Bayesian approach for sequential monitoring of rare dichotomous safety events incorporating experts' opinions on margins. METHODS A Bayesian decision criterion was constructed to monitor four safety events during a non-inferiority trial conducted on pregnant women at risk for premature delivery. Based on experts' elicitation, margins were built using mixtures of beta distributions that preserve experts' variability. Non-informative and informative prior distributions and several decision thresholds were evaluated through an extensive sensitivity analysis. The parameters were selected in order to maintain two rates of misclassifications under prespecified rates, that is, trials that wrongly concluded an unacceptable excess in the experimental arm, or otherwise. RESULTS The opinions of 44 experts were elicited about each event non-inferiority margins and its relative severity. In the illustrative trial, the maximal misclassification rates were adapted to events' severity. Using those maximal rates, several priors gave good results and one of them was retained for all events. Each event was associated with a specific decision threshold choice, allowing for the consideration of some differences in their prevalence, margins and severity. Our decision rule has been applied to a simulated dataset. CONCLUSIONS In settings where evidence is lacking and where some rare but serious safety events have to be monitored during non-inferiority trials, we propose a methodology that avoids an arbitrary margin choice and helps in the decision making at each interim analysis. This decision rule is parametrized to consider the rarity and the relative severity of the events and requires a strong collaboration between physicians and the trial statisticians for the benefit of all. This Bayesian approach could be applied as a complement to the frequentist analysis, so both Data Safety Monitoring Boards and investigators can benefit from such an approach.
Collapse
Affiliation(s)
- Camille Aupiais
- Inserm, U1138, Equipe 22, Centre de Recherche des Cordeliers, Sorbonne University, University Paris Descartes, 15 rue de l’École de médecine, Paris, 75006 France
- University Paris Diderot, Site Villemin, 10 avenue de Verdun, Paris, 75010 France
- Inserm, U1123, ECEVE, 10 avenue de Verdun, Paris, 75010 France
- Unité d’épidémiologie clinique, CIC-EC 1426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, Paris, 75019 France
| | - Corinne Alberti
- University Paris Diderot, Site Villemin, 10 avenue de Verdun, Paris, 75010 France
- Inserm, U1123, ECEVE, 10 avenue de Verdun, Paris, 75010 France
- Unité d’épidémiologie clinique, CIC-EC 1426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, Paris, 75019 France
| | - Thomas Schmitz
- University Paris Diderot, Site Villemin, 10 avenue de Verdun, Paris, 75010 France
- Service de Gynécologie Obstétrique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, Paris, 75019 France
- Inserm, U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Center, Obstetrical, Perinatal and Pediatric Epidemiology Team, 53 avenue de l’observatoire, Paris, 75014 France
| | - Olivier Baud
- Service de néonatalogie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, Paris, 75019 France
- Inserm, U1141, Hôpital Robert Debré, 48 boulevard Sérurier, Paris, 75019 France
- (Present address) Service de néonatalogie, Hôpitaux universitaires de Genève, 32 boulevard de la Cluse, Genève, 1205 Suisse
| | - Moreno Ursino
- Inserm, U1138, Equipe 22, Centre de Recherche des Cordeliers, Sorbonne University, University Paris Descartes, 15 rue de l’École de médecine, Paris, 75006 France
- Unité d’épidémiologie clinique, CIC-EC 1426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, Paris, 75019 France
- F-CRIN PARTNERS Platform (AP-HP), 10 avenue de Verdun, Paris, 75010 France
| | - Sarah Zohar
- Inserm, U1138, Equipe 22, Centre de Recherche des Cordeliers, Sorbonne University, University Paris Descartes, 15 rue de l’École de médecine, Paris, 75006 France
| |
Collapse
|
43
|
Huang S, Dong W, Jiao Z, Liu J, Li K, Wang H, Xu D. Prenatal Dexamethasone Exposure Induced Alterations in Neurobehavior and Hippocampal Glutamatergic System Balance in Female Rat Offspring. Toxicol Sci 2019; 171:369-384. [PMID: 31518422 DOI: 10.1093/toxsci/kfz163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological investigations have suggested that periodic use of dexamethasone during pregnancy is a risk factor for abnormal behavior in offspring, but the potential mechanism remains unclear. In this study, we investigated the changes in the glutamatergic system and neurobehavior in female offspring with prenatal dexamethasone exposure (PDE) to explore intrauterine programing mechanisms. Compared with the control group, rat offspring with PDE exhibited spatial memory deficits and anxiety-like behavior. The expression of hippocampal glucocorticoid receptors (GR) and histone deacetylase 2 (HDAC2) increased, whereas histone H3 lysine 14 acetylation (H3K14ac) of brain-derived neurotrophic factor (BDNF) exon IV (BDNF IV) and expression of BDNF decreased. The glutamatergic system also changed. We further observed that changes in the fetal hippocampus were consistent with those in adult offspring. In vitro, the administration of 0.5 μM dexamethasone to the H19-7 fetal hippocampal neuron cells directly led to a cascade of changes in the GR/HDAC2/BDNF pathway, whereas the GR antagonist RU486 and the HDAC2 inhibitor romidepsin (Rom) reversed changes caused by dexamethasone to the H3K14ac level of BDNF IV and to the expression of BDNF. The increase in HDAC2 can be reversed by RU486, and the changes in the glutamatergic system can be partially reversed after supplementation with BDNF. It is suggested that PDE increases the expression of HDAC2 by activating GR, reducing the H3K14ac level of BDNF IV, inducing alterations in neurobehavior and hippocampal glutamatergic system balance. The findings suggest that BDNF supplementation and glutamatergic system improvement are potential therapeutic targets for the fetal origins of abnormal neurobehavior.
Collapse
Affiliation(s)
- Songqiang Huang
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Wanting Dong
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Zhexiao Jiao
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Jie Liu
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Ke Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, China
| | - Hui Wang
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| | - Dan Xu
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| |
Collapse
|
44
|
Dosing and formulation of antenatal corticosteroids for fetal lung maturation and gene expression in rhesus macaques. Sci Rep 2019; 9:9039. [PMID: 31227752 PMCID: PMC6588577 DOI: 10.1038/s41598-019-45171-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Antenatal corticosteroids (ANS) are the major intervention to decrease respiratory distress syndrome and mortality from premature birth and are standard of care. The use of ANS is expanding to include new indications and gestational ages, although the recommended dosing was never optimized. The most widely used treatment is two intramuscular doses of a 1:1 mixture of betamethasone-phosphate (Beta-P) and betamethasone-acetate (Beta-Ac) - the clinical drug. We tested in a primate model the efficacy of the slow release Beta-Ac alone for enhancing fetal lung maturation and to reduce fetal corticosteroid exposure and potential toxic effects. Pregnant rhesus macaques at 127 days of gestation (80% of term) were treated with either the clinical drug (0.25 mg/kg) or Beta-Ac (0.125 mg/kg). Beta-Ac alone increased lung compliance and surfactant concentration in the fetal lung equivalently to the clinical drug. By transcriptome analyses the early suppression of genes associated with immune responses and developmental pathways were less affected by Beta-Ac than the clinical drug. Promoter and regulatory analysis prediction identified differentially expressed genes targeted by the glucocorticoid receptor in the lung. At 5 days the clinical drug suppressed genes associated with neuronal development and differentiation in the fetal hippocampus compared to control, while low dose Beta-Ac alone did not. A low dose ANS treatment with Beta-Ac should be assessed for efficacy in human trials.
Collapse
|
45
|
Pofi R, Tomlinson JW. Glucocorticoids in pregnancy. Obstet Med 2019; 13:62-69. [PMID: 32714437 DOI: 10.1177/1753495x19847832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
The physiological changes that occur during pregnancy include altered regulation of the hypothalamo-pituitary-adrenal axis. The fetoplacental unit plays a major role in this, together with alteration of circulating cortisol-binding globulin levels, with a net effect to increase both total and free cortisol levels. Importantly, there are several pathological conditions that require steroid treatment or replacement during pregnancy, and optimizing therapy is clearly crucial. The potential for acute and chronic adverse effects that can impact upon both the mother and the fetus makes the decision of how and when to instigate steroid therapy particularly challenging. In this review, we describe the physio-pathological changes to the hypothalamo-pituitary-adrenal axis that occur during pregnancy, tools to assess endogenous glucocorticoid reserve as well as discuss treatment strategies and the potential for the development of adverse events.
Collapse
Affiliation(s)
- Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
46
|
Cao S, Walter L, Valenzuela GJ, Roloff K. Delayed-Interval Delivery of Twin Gestation via Cesarean Section: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:739-742. [PMID: 31127078 PMCID: PMC6558120 DOI: 10.12659/ajcr.915196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Multifetal pregnancies are at high risk for preterm delivery. Under certain circumstances, delayed vaginal delivery of the second twin is performed to improve morbidity and mortality. Most of the information on optimal management of delayed-interval delivery comes from published case reports in which the first twin was delivered vaginally. This case report is unique in that twin A was delivered via cesarean section. CASE REPORT Our patient was a 21-year-old G2P1, with dichorionic diamniotic twins of unknown gestational age, with prenatal care at a different facility, who presented with preterm prelabor rupture of membranes and cord prolapse. Twin A, with an estimated weight by ultrasound of 528 g, was delivered via cesarean section and twin B was left in utero until the patient went into preterm labor 10 days later. Obstetrical management included tocolytic protocol from the Management of Myelomeningocele Study trial, preterm prelabor rupture of membrane antibiotics with broad-spectrum coverage, and judicious use of fetal lung maturity steroids and magnesium sulfate. CONCLUSIONS This case is important as we have demonstrated that cesarean section in the setting of delayed-interval delivery may be an option to improve survival at the limits of viability. We also discussed our treatment approach and how we delayed delivery of the second twin by 10 days. Unexpectedly, the surviving twin was the one born first, at 22 4/7 weeks determined 2 days after birth by prenatal records.
Collapse
Affiliation(s)
- Suzanne Cao
- Department of Women's Health, Arrowhead Regional Medical Center, Colton, CA, USA
| | - Logan Walter
- Department of Women's Health, Arrowhead Regional Medical Center, Colton, CA, USA
| | | | - Kristina Roloff
- Department of Women's Health, Arrowhead Regional Medical Center, Colton, CA, USA
| |
Collapse
|
47
|
Story L, Simpson NAB, David AL, Alfirevic Z Z, Bennett PR, Jolly M, Shennan AH. Reducing the impact of preterm birth: Preterm birth commissioning in the United Kingdom. Eur J Obstet Gynecol Reprod Biol X 2019; 3:100018. [PMID: 31403111 PMCID: PMC6687377 DOI: 10.1016/j.eurox.2019.100018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/02/2019] [Accepted: 04/03/2019] [Indexed: 11/25/2022] Open
Abstract
Reducing preterm birth is a priority for Maternity and Children’s services. In the recent UK Department of Health publication ‘Safer Maternity Care’ the Secretary of State for Health aimed to achieve the national maternity safety ambition by pledging to reduce the rate of preterm birth from 8% to 6%. It was proposed that specialist preterm birth services should be established in the UK in order to achieve this aim. In response the Preterm Clinical Network has written Commissioning Guidance aimed to establish best practice pathways and agreed models of care to reduce variation nationally. They have been developed by clinical experts in the field, from within the UK, to provide recommendations for commissioning groups and to recommend pathways to organisations with the aim of reducing the incidence of preterm birth. Three key areas of care provision are focused on: prediction, prevention and preparation of women at high risk of PTB. This Expert Opinion, will summarise the Commissioning Guidance.
Collapse
Affiliation(s)
- Lisa Story
- Department of Women and Children's Health, School of Life Courses Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Nigel A B Simpson
- Department of Women's and Children's Health, School of Medicine, University of Leeds, LS2 9NL, United Kingdom
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 74 Huntley Street, London, WC1 6AU, United Kingdom
| | - Zarko Alfirevic Z
- Women and Children's Health, University of Liverpool, L69 3BX, United Kingdom
| | - Phillip R Bennett
- Institute for Reproductive and Developmental Biology, Imperial College, London, Queen Charlotte's and Chelsea Hospital, W12 0HS, United Kingdom
| | - Matthew Jolly
- NHS England, Skipton House, London, SE1 6LH, United Kingdom
| | - Andrew H Shennan
- Department of Women and Children's Health, School of Life Courses Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | | |
Collapse
|
48
|
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, Plavka R, Roehr CC, Saugstad OD, Simeoni U, Speer CP, Vento M, Visser GHA, Halliday HL. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology 2019; 115:432-450. [PMID: 30974433 PMCID: PMC6604659 DOI: 10.1159/000499361] [Citation(s) in RCA: 689] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As management of respiratory distress syndrome (RDS) advances, clinicians must continually revise their current practice. We report the fourth update of "European Guidelines for the Management of RDS" by a European panel of experienced neonatologists and an expert perinatal obstetrician based on available literature up to the end of 2018. Optimising outcome for babies with RDS includes prediction of risk of preterm delivery, need for appropriate maternal transfer to a perinatal centre and timely use of antenatal steroids. Delivery room management has become more evidence-based, and protocols for lung protection including initiation of CPAP and titration of oxygen should be implemented immediately after birth. Surfactant replacement therapy is a crucial part of management of RDS, and newer protocols for its use recommend early administration and avoidance of mechanical ventilation. Methods of maintaining babies on non-invasive respiratory support have been further developed and may cause less distress and reduce chronic lung disease. As technology for delivering mechanical ventilation improves, the risk of causing lung injury should decrease, although minimising time spent on mechanical ventilation using caffeine and, if necessary, postnatal steroids are also important considerations. Protocols for optimising general care of infants with RDS are also essential with good temperature control, careful fluid and nutritional management, maintenance of perfusion and judicious use of antibiotics all being important determinants of best outcome.
Collapse
Affiliation(s)
- David G Sweet
- Regional Neonatal Unit, Royal Maternity Hospital, Belfast, United Kingdom,
| | - Virgilio Carnielli
- Department of Neonatology, Polytechnic University of Marche, and Azienda Ospedaliero-Universitaria Ospedali Riuniti Ancona, Ancona, Italy
| | - Gorm Greisen
- Department of Neonatology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mikko Hallman
- Department of Pediatrics and Adolescence, Oulu University Hospital, and PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
| | - Eren Ozek
- Department of Pediatrics, Marmara University Medical Faculty, Istanbul, Turkey
| | - Arjan Te Pas
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Richard Plavka
- Division of Neonatology, Department of Obstetrics and Gynecology, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Charles C Roehr
- Department of Paediatrics, University of Oxford, Medical Sciences Division, Newborn Services, John Radcliffe Hospitals, Oxford, United Kingdom
| | - Ola D Saugstad
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Umberto Simeoni
- Division of Pediatrics, CHUV & University of Lausanne, Lausanne, Switzerland
| | - Christian P Speer
- Department of Pediatrics, University Children's Hospital, Würzburg, Germany
| | - Maximo Vento
- Department of Pediatrics and Neonatal Research Unit, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Gerhard H A Visser
- Department of Obstetrics and Gynecology, University Medical Centre, Utrecht, The Netherlands
| | - Henry L Halliday
- Department of Child Health, Queen's University Belfast and Royal Maternity Hospital, Belfast, United Kingdom
| |
Collapse
|
49
|
Crowther CA, Middleton PF, Voysey M, Askie L, Zhang S, Martlow TK, Aghajafari F, Asztalos EV, Brocklehurst P, Dutta S, Garite TJ, Guinn DA, Hallman M, Hardy P, Lee MJ, Maurel K, Mazumder P, McEvoy C, Murphy KE, Peltoniemi OM, Thom EA, Wapner RJ, Doyle LW. Effects of repeat prenatal corticosteroids given to women at risk of preterm birth: An individual participant data meta-analysis. PLoS Med 2019; 16:e1002771. [PMID: 30978205 PMCID: PMC6461224 DOI: 10.1371/journal.pmed.1002771] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Infants born preterm compared with infants born at term are at an increased risk of dying and of serious morbidities in early life, and those who survive have higher rates of neurological impairments. It remains unclear whether exposure to repeat courses of prenatal corticosteroids can reduce these risks. This individual participant data (IPD) meta-analysis (MA) assessed whether repeat prenatal corticosteroid treatment given to women at ongoing risk of preterm birth in order to benefit their infants is modified by participant or treatment factors. METHODS AND FINDINGS Trials were eligible for inclusion if they randomised women considered at risk of preterm birth who had already received an initial, single course of prenatal corticosteroid seven or more days previously and in which corticosteroids were compared with either placebo or no placebo. The primary outcomes for the infants were serious outcome, use of respiratory support, and birth weight z-scores; for the children, they were death or any neurosensory disability; and for the women, maternal sepsis. Studies were identified using the Cochrane Pregnancy and Childbirth search strategy. Date of last search was 20 January 2015. IPD were sought from investigators with eligible trials. Risk of bias was assessed using criteria from the Cochrane Collaboration. IPD were analysed using a one-stage approach. Eleven trials, conducted between 2002 and 2010, were identified as eligible, with five trials being from the United States, two from Canada, and one each from Australia and New Zealand, Finland, India, and the United Kingdom. All 11 trials were included, with 4,857 women and 5,915 infants contributing data. The mean gestational age at trial entry for the trials was between 27.4 weeks and 30.2 weeks. There was no significant difference in the proportion of infants with a serious outcome (relative risk [RR] 0.92, 95% confidence interval [CI] 0.82 to 1.04, 5,893 infants, 11 trials, p = 0.33 for heterogeneity). There was a reduction in the use of respiratory support in infants exposed to repeat prenatal corticosteroids compared with infants not exposed (RR 0.91, 95% CI 0.85 to 0.97, 5,791 infants, 10 trials, p = 0.64 for heterogeneity). The number needed to treat (NNT) to benefit was 21 (95% CI 14 to 41) women/fetus to prevent one infant from needing respiratory support. Birth weight z-scores were lower in the repeat corticosteroid group (mean difference -0.12, 95%CI -0.18 to -0.06, 5,902 infants, 11 trials, p = 0.80 for heterogeneity). No statistically significant differences were seen for any of the primary outcomes for the child (death or any neurosensory disability) or for the woman (maternal sepsis). The treatment effect varied little by reason the woman was considered to be at risk of preterm birth, the number of fetuses in utero, the gestational age when first trial treatment course was given, or the time prior to birth that the last dose was given. Infants exposed to between 2-5 courses of repeat corticosteroids showed a reduction in both serious outcome and the use of respiratory support compared with infants exposed to only a single repeat course. However, increasing numbers of repeat courses of corticosteroids were associated with larger reductions in birth z-scores for weight, length, and head circumference. Not all trials could provide data for all of the prespecified subgroups, so this limited the power to detect differences because event rates are low for some important maternal, infant, and childhood outcomes. CONCLUSIONS In this study, we found that repeat prenatal corticosteroids given to women at ongoing risk of preterm birth after an initial course reduced the likelihood of their infant needing respiratory support after birth and led to neonatal benefits. Body size measures at birth were lower in infants exposed to repeat prenatal corticosteroids. Our findings suggest that to provide clinical benefit with the least effect on growth, the number of repeat treatment courses should be limited to a maximum of three and the total dose to between 24 mg and 48 mg.
Collapse
Affiliation(s)
- Caroline A. Crowther
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, Adelaide, Australia
- * E-mail:
| | - Philippa F. Middleton
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, Adelaide, Australia
- Healthy Mothers Babies and Children, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Merryn Voysey
- Nuffield Department of Primary Care Health Sciences and Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Lisa Askie
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Sasha Zhang
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Tanya K. Martlow
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Fariba Aghajafari
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth V. Asztalos
- Department of Paediatrics and Obstetrics/Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Brocklehurst
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Sourabh Dutta
- Division of Neonatology, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Debra A. Guinn
- Kalispell Regional Health Care, Kalispell, Montana, United States of America
| | - Mikko Hallman
- Department of Paediatrics, University of Oulu, Oulu, Finland
| | - Pollyanna Hardy
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Men-Jean Lee
- John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | | | - Premasish Mazumder
- Division of Neonatology, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Cindy McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kellie E. Murphy
- Department of Paediatrics and Obstetrics/Gynecology, University of Toronto, Toronto, Ontario, Canada
| | | | - Elizabeth A. Thom
- The Biostatistics Center, George Washington University, Washington, DC, United States of America
| | - Ronald J. Wapner
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Lex W. Doyle
- Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, University of Melbourne, Melbourne, Australia
- Clinical Sciences, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
50
|
Kemmotsu T, Yokoyama U, Saito J, Ito S, Uozumi A, Nishimaki S, Iwasaki S, Seki K, Ito S, Ishikawa Y. Antenatal Administration of Betamethasone Contributes to Intimal Thickening of the Rat Ductus Arteriosus. Circ J 2019; 83:654-661. [PMID: 30726804 DOI: 10.1253/circj.cj-18-1033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antenatal betamethasone (BMZ) is a standard therapy for reducing respiratory distress syndrome in preterm infants. Recently, some reports have indicated that BMZ promotes ductus arteriosus (DA) closure. DA closure requires morphological remodeling; that is, intimal thickening (IT) formation; however, the role of BMZ in IT formation has not yet been reported. METHODS AND RESULTS First, DNA microarray analysis using smooth muscle cells (SMCs) of rat preterm DA on gestational day 20 (pDASMCs) stimulated with BMZ was performed. Among 58,717 probe sets, ADP-ribosyltransferase 3 (Art3) was markedly increased by BMZ stimulation. Quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed the BMZ-induced increase of Art3 in pDASMCs, but not in aortic SMCs. Immunocytochemistry showed that BMZ stimulation increased lamellipodia formation. BMZ significantly increased total paxillin protein expression and the ratio of phosphorylated to total paxillin. A scratch assay demonstrated that BMZ stimulation promoted pDASMC migration, which was attenuated byArt3-targeted siRNAs transfection. pDASMC proliferation was not promoted by BMZ, which was analyzed by a 5'-bromo-2'-deoxyuridine (BrdU) assay. Whether BMZ increased IT formation in vivo was examined. BMZ or saline was administered intravenously to maternal rats on gestational days 18 and 19, and DA tissues were obtained on gestational day 20. The ratio of IT to tunica media was significantly higher in the BMZ-treated group. CONCLUSIONS These data suggest that antenatal BMZ administration promotes DA IT through Art3-mediated DASMC migration.
Collapse
Affiliation(s)
- Takahiro Kemmotsu
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
- Cardiovascular Research Institute, Yokohama City University
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University
| | - Junichi Saito
- Cardiovascular Research Institute, Yokohama City University
| | - Satoko Ito
- Cardiovascular Research Institute, Yokohama City University
| | - Azusa Uozumi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shigeru Nishimaki
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shiho Iwasaki
- Perinatal Center, Yokohama City University Medical Center
| | - Kazuo Seki
- Perinatal Center, Yokohama City University Medical Center
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | | |
Collapse
|