1
|
Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Nitazoxanide and COVID-19: A review. Mol Biol Rep 2022; 49:11169-11176. [PMID: 36094778 PMCID: PMC9465141 DOI: 10.1007/s11033-022-07822-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a current global illness triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) leading to acute viral pneumonia, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and cytokine storm in severe cases. In the COVID-19 era, different unexpected old drugs are repurposed to find out effective and cheap therapies against SARS-CoV-2. One of these elected drugs is nitazoxanide (NTZ) which is an anti-parasitic drug with potent antiviral activity. It is effectively used in the treatment of protozoa and various types of helminths in addition to various viral infections. Thus, we aimed to elucidate the probable effect of NTZ on SARS-CoV-2 infections. Findings of the present study illustrated that NTZ can reduce SARS-CoV-2-induced inflammatory reactions through activation of interferon (IFN), restoration of innate immunity, inhibition of the release of pro-inflammatory cytokines, suppression of the mammalian target of rapamycin (mTOR), and induction of autophagic cell death. Moreover, it can inhibit the induction of oxidative stress which causes cytokine storm and is associated with ALI, ARDS, and multi-organ damage (MOD). This study concluded that NTZ has important anti-inflammatory and immunological properties that may mitigate SARS-CoV-2 infection-induced inflammatory disorders. Despite broad-spectrum antiviral properties of NTZ, the direct anti-SARS-CoV-2 effect was not evident and documented in recent studies. Then, in silico and in vitro studies in addition to clinical trials and prospective studies are needed to confirm the beneficial impact of NTZ on the pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
2
|
Human Astroviruses: A Tale of Two Strains. Viruses 2021; 13:v13030376. [PMID: 33673521 PMCID: PMC7997325 DOI: 10.3390/v13030376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability.
Collapse
|
3
|
Hanafy AS, Abd-Elsalam S. Challenges in COVID-19 drug treatment in patients with advanced liver diseases: A hepatology perspective. World J Gastroenterol 2020; 26:7272-7286. [PMID: 33362383 PMCID: PMC7739155 DOI: 10.3748/wjg.v26.i46.7272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
The global incidence of coronavirus disease 2019 (COVID-19) continues to increase despite health care efforts. The disease is caused by coronavirus 2 with high transmission and mortality rates. Little is known about the management of COVID-19 in advanced liver disease. The aim of work was to propose a plan for management of this drastic disease in case of this specific population with review of medications that could be suitable for advanced liver disease. All the guidelines and medications available for treatment of COVID-19 were reviewed with selection of the less toxic medications that could be used in advanced liver disease. Drugs suitable to manage COVID-19 in patients with liver disease might include remdesivir intravenously, nitazoxanide + sofosbuvir, ivermectin, tocilizumab, convalescent plasma, and low molecular weight heparin in certain situations. Advanced liver disease is associated with portal hypertension and splenomegaly with reduction of blood elements and immune dysfunction and impaired T cell function. Thus, when confronted by cytokine storm as an immune response to COVID-19, there may be an increase in the mortality rate of these patients. Through this review, a plan to treat COVID-19 in this special group of patients with advanced cirrhosis is proposed.
Collapse
|
4
|
de Souza AAA, Torres LR, Lima LRP, de Paula V, Barros JJ, Bonecini-Almeida MDG, Waghabi MC, Gardel MA, Meuser-Batista M, de Souza EM. Inhibition of Brazilian ZIKV strain replication in primary human placental chorionic cells and cervical cells treated with nitazoxanide. Braz J Infect Dis 2020; 24:505-516. [PMID: 33010209 PMCID: PMC7526660 DOI: 10.1016/j.bjid.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 01/26/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy is associated with a congenital syndrome. Although the virus can be detected in human placental tissue and sexual transmission has been verified, it is not clear how the virus reaches the fetus. Despite the emerging severity caused by ZIKV infection, no specific prophylactic and/or therapeutic treatment is available. The aim of the present study was to evaluate the effectiveness antiviral of nitazoxanide (NTZ) in two important congenital transmission targets: (i) a primary culture of human placental chorionic cells, and (ii) human cervical epithelial cells (C33-A) infected with Brazilian ZIKV strain. Initially, NTZ activity was screened in ZIKV infected Vero cells under different treatment regimens with non-toxic drug concentrations for 48 h. Antiviral effect was found only when the treatment was carried out after the viral inoculum. A strong effect against the dengue virus serotype 2 (DENV-2) was also observed suggesting the possibility of treating other Flaviviruses. Additionally, it was shown that the treatment did not reduce the production of infectious viruses in insect cells (C6/36) infected with ZIKV, indicating that the activity of this drug is also related to host factors. Importantly, we demonstrated that NTZ treatment in chorionic and cervical cells caused a reduction of infected cells in a dose-dependent manner and decreased viral loads in up to 2 logs. Pre-clinical in vitro testing evidenced excellent therapeutic response of infected chorionic and cervical cells and point to future NTZ activity investigation in ZIKV congenital transmission models with the perspective of possible repurposing of NTZ to treat Zika fever, especially in pregnant women.
Collapse
Affiliation(s)
- Audrien A A de Souza
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lauana R Torres
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lyana R P Lima
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Vanessa de Paula
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil
| | - José J Barros
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Instituto Nacional de Infectologia Evandro Chagas/FIOCRUZ, Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Rio de Janeiro, RJ, Brazil
| | - Mariana Caldas Waghabi
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brazil
| | - Marcelo A Gardel
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira/FIOCRUZ, Coordenação Diagnóstica de Anatomia Patológica e Citopatologia, Rio de Janeiro, RJ, Brazil
| | - Marcelo Meuser-Batista
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira/FIOCRUZ, Coordenação Diagnóstica de Anatomia Patológica e Citopatologia, Rio de Janeiro, RJ, Brazil
| | - Elen M de Souza
- Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil; Instituto Oswaldo Cruz/FIOCRUZ, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Antony F, Vashi Y, Morla S, Vandna, Mohan H, Kumar S. Therapeutic potential of Nitazoxanide against Newcastle disease virus: A possible modulation of host cytokines. Cytokine 2020; 131:155115. [PMID: 32403005 PMCID: PMC7196422 DOI: 10.1016/j.cyto.2020.155115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Newcastle disease (ND) is prevalent among the domesticated and the wild birds and is caused by the avian paramyxovirus serotype-I (APMV-I). It is commonly known to affect chicken, pheasant, ostrich, pigeon and waterfowl. Depending on the virulence, the velogenic NDV strains cause severe respiratory and nervous disorders with a high mortality rate. The live and killed vaccines are available for the prevention of infection in the market, but the drug for the treatment is not available. Nitazoxanide (NTZ), a member of thiazolides, is an antiparasitic drug. In the present study, the effect of NTZ on the NDV replication was explored. The experiments were conducted in chicken fibroblast cells (DF-1), PBMC, embryonated chicken eggs, and two-week old chickens. The inhibition of the NDV was observed upon post-treatment of NTZ at a concentration of ~12.5 μM. Cytokine profiling of the DF-1, PBMC, and chicken embryonic tissue treated with NTZ revealed significant upregulation in all the cytokines studied except for IL-1β in DF-1 cells. It is plausible that NTZ is involved in causing immune-modulatory effects in poultry. NTZ treatment in two weeks old chicken showed significant reduction in NDV replication in trachea, and lungs, respectively, at 72 h post-infection. Encouraging results from the present study warrants repurposing NTZ as a drug for the treatment of viral infection in poultry. It will also pave the way towards understanding of similar effect against other animal pathogens.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Yoya Vashi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vandna
- Center for Medical Biotechnology, M.D. University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Center for Medical Biotechnology, M.D. University, Rohtak 124001, Haryana, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
6
|
Hickson SE, Margineantu D, Hockenbery DM, Simon JA, Geballe AP. Inhibition of vaccinia virus replication by nitazoxanide. Virology 2018; 518:398-405. [PMID: 29625403 DOI: 10.1016/j.virol.2018.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/27/2022]
Abstract
Nitazoxanide (NTZ) is an FDA-approved anti-protozoal drug that inhibits several bacteria and viruses as well. However, its effect on poxviruses is unknown. Therefore, we investigated the impact of NTZ on vaccinia virus (VACV). We found that NTZ inhibits VACV production with an EC50 of ~2 μM, a potency comparable to that reported for several other viruses. The inhibitory block occurs early during the viral life cycle, prior to viral DNA replication. The mechanism of viral inhibition is likely not due to activation of intracellular innate immune pathways, such as protein kinase R (PKR) or interferon signaling, contrary to what has been suggested to mediate the effects of NTZ against some other viruses. Rather, our finding that addition of exogenous palmitate partially rescues VACV production from the inhibitory effect of NTZ suggests that NTZ impedes adaptations in cellular metabolism that are needed for efficient completion of the VACV replication cycle.
Collapse
Affiliation(s)
- Sarah E Hickson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Microbiology, University of Washington, Seattle, WA 98115, United States
| | - Daciana Margineantu
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - David M Hockenbery
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States
| | - Julian A Simon
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Adam P Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Microbiology, University of Washington, Seattle, WA 98115, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States.
| |
Collapse
|
7
|
Abstract
Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Guangdi Li
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Gurusamy KS, Toon CD, Thorburn D, Tsochatzis E, Davidson BR. Pharmacological treatments for chronic hepatitis C liver disease: a network meta-analysis. Hippokratia 2015. [DOI: 10.1002/14651858.cd011641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Clare D Toon
- West Sussex County Council; Public Health Research Unit; The Grange, County Hall Campus Tower Street Chichester West Sussex UK PO19 1QT
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| |
Collapse
|
9
|
Kim G, Baik SK. Overview and recent trends of systematic reviews and meta-analyses in hepatology. Clin Mol Hepatol 2014; 20:137-50. [PMID: 25032179 PMCID: PMC4099328 DOI: 10.3350/cmh.2014.20.2.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022] Open
Abstract
A systematic review (SR) is a research methodology that involves a comprehensive search for and analysis of relevant studies on a specific topic. A strict and objective research process is conducted that comprises a systematic and comprehensive literature search in accordance with predetermined inclusion/exclusion criteria, and an assessment of the risk of bias of the selected literature. SRs require a multidisciplinary approach that necessitates cooperation with clinical experts, methodologists, other experts, and statisticians. A meta-analysis (MA) is a statistical method of quantitatively synthesizing data, where possible, from the primary literature selected for the SR. Review articles differ from SRs in that they lack a systematic methodology such as a literature search, selection of studies according to strict criteria, assessment of risk bias, and synthesis of the study results. The importance of evidence-based medicine (EBM) in the decision-making for public policy has recently been increasing thanks to the realization that it should be based on scientific research data. SRs and MAs are essential for EBM strategy and evidence-based clinical practice guidelines. This review addresses the current trends in SRs and MAs in the field of hepatology via a search of recently published articles in the Cochrane Library and Ovid-MEDLINE.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Nursing, Keimyung University College of Nursing, Daegu, Korea
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|