1
|
Wang F, Fan J, An Y, Meng G, Ji B, Li Y, Dong C. Tracing the geographical origin of endangered fungus Ophiocordyceps sinensis, especially from Nagqu, using UPLC-Q-TOF-MS. Food Chem 2024; 440:138247. [PMID: 38154283 DOI: 10.1016/j.foodchem.2023.138247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Ophiocordyceps sinensis (OS), known as "soft gold", played an important role in local economic development. OS from different producing areas was difficult to be discriminated by the appearance. Nagqu OS, a distinguished and safeguarded geographical indication product, commands a premium price in market. The real claim of OS geographical origins is urgently required. Here, 81 OS samples were collected from Tibetan Plateau in China to explore markers for tracing origins. OS from Xigazê can be distinguished by dark color of head of caterpillar. Then 57 samples, a fully representative training-sample set, were used to set up OPLS-DA models by nontargeted metabolomics from UPLC-QTOF-MS. Certain markers were successfully identified and validation using 21 blind test samples confirmed that the markers can trace the geographical origin of OS, especially Nagqu samples. It was affirmed that UPLC-QTOF-MS-based untargeted metabolomics coupled with OPLS-DA was a reliable strategy to trace the geographical origins of OS.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junfeng Fan
- Nagqu City Inspection and Testing Center, Nagqu City, Tibet Autonomous Region 852000, China
| | - Yabin An
- Nagqu City Inspection and Testing Center, Nagqu City, Tibet Autonomous Region 852000, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bingyu Ji
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Wang S, Lu L, Song T, Xu X, Yu J, Liu T. Optimization of Cordyceps sinensis fermentation Marsdenia tenacissima process and the differences of metabolites before and after fermentation. Heliyon 2022; 8:e12586. [PMID: 36636205 PMCID: PMC9830164 DOI: 10.1016/j.heliyon.2022.e12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we explored the interaction of factors which influenced the Cordyceps sinensis fermentation Marsdenia tenacissima (Roxb.) Wight et Arn, a Dai (a national minority of China) medicine, and the optimal fermentation conditions. The differences of C. sinensis metabolites in normal state (CN) and products of two-way liquid fermentation of C. sinensis and Marsdenia tenacissima (CM) and Marsdenia tenacissima (MT). The interactive effect of factors was analyzed and the best conditions are obtained through the box-behnken design (BBD) in response surface methodology (RSM). All metabolites were determined by ultra high performance liquid chromatography quadrupole time of flight mass spectrometer (UHPLC-Q-TOF-MS), analyzed and identified by metabonomics technology. Results showed that the optimum fermentation conditions were the concentration of raw medicinal materials is 160 g/L, the fermentation time is 6 days, the inoculation volume is 9.5%, the rotating speed is 170 rpm. 197 metabolites were identified in both positive ion and negative ion. 119 metabolites were significantly different between CN and CM. 43 metabolites were significantly different between CM and MT. Differential metabolic pathways were enriched. In conclusion, this paper optimizes the bidirectional fermentation process of M. tenacissima and C. sinensis through response surface methodology, and analyzes the changes of components from the level of metabonomics, so as to provide reference for exploring medicinal fungi fermentation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Xinxin Xu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China,Corresponding author.
| |
Collapse
|
3
|
Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. STRESSES 2022. [DOI: 10.3390/stresses3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-based residues (SBRs) of Cordyceps militaris are often considered as waste after the cultivation of the fruiting body. To demonstrate the value of this by-product, different ratios of two favorable green solvents (EtOH and water) were employed to optimize the yields of cordycepin (Cor) and adenosine (Ado) and investigate relevant activities of plant growth inhibition (allelopathy), antioxidants, and xanthine oxidase. The SBR extracts of 60% EtOH-40% water (W4) and 40% EtOH-60% water (W6) exhibited the highest antioxidant activity as well as yielded the optimum content of Cor and Ado. The W4 and Wt (hot water) exhibited maximum inhibitory effects on the growth of Raphanus sativus (radish), Lactuca sativa (lettuce) and two noxious weeds, Echinochloa crus-galli (barnyard grass) and Bidens pilosa (beggarticks). Furthermore, GC-MS scan analysis revealed the presence of 14 major compounds in the SBRs. W4 is the best solvent to optimize yields of Cor and Ado, as well as having the strongest levels of antioxidant activity, xanthine oxidase, and growth-inhibitory activity. This study reveals that SBRs are a potential source of medicinal and agricultural utilization.
Collapse
|
4
|
Nguyen TD, Vu MT, Nguyen MH, Duong HA, Mai TD, Pham HV. A Rapid and Simple Dual-Channeled Capillary Electrophoresis with Contactless Conductivity Detection Method for the Determination of Adenosine, Cordycepin, and Inosine in Ophiocordyceps sinensis-Based Products. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Das G, Shin HS, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Singh YD, Panda MK, Mishra AP, Nigam M, Saklani S, Chaturi PK, Martorell M, Cruz-Martins N, Sharma V, Garg N, Sharma R, Patra JK. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front Pharmacol 2021; 11:602364. [PMID: 33628175 PMCID: PMC7898063 DOI: 10.3389/fphar.2020.602364] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023] Open
Abstract
In recent decades, interest in the Cordyceps genus has amplified due to its immunostimulatory potential. Cordyceps species, its extracts, and bioactive constituents have been related with cytokine production such as interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor (TNF)-α, phagocytosis stimulation of immune cells, nitric oxide production by increasing inducible nitric oxide synthase activity, and stimulation of inflammatory response via mitogen-activated protein kinase pathway. Other pharmacological activities like antioxidant, anti-cancer, antihyperlipidemic, anti-diabetic, anti-fatigue, anti-aging, hypocholesterolemic, hypotensive, vasorelaxation, anti-depressant, aphrodisiac, and kidney protection, has been reported in pre-clinical studies. These biological activities are correlated with the bioactive compounds present in Cordyceps including nucleosides, sterols, flavonoids, cyclic peptides, phenolic, bioxanthracenes, polyketides, and alkaloids, being the cyclic peptides compounds the most studied. An organized review of the existing literature was executed by surveying several databanks like PubMed, Scopus, etc. using keywords like Cordyceps, cordycepin, immune system, immunostimulation, immunomodulatory, pharmacology, anti-cancer, anti-viral, clinical trials, ethnomedicine, pharmacology, phytochemical analysis, and different species names. This review collects and analyzes state-of-the-art about the properties of Cordyceps species along with ethnopharmacological properties, application in food, chemical compounds, extraction of bioactive compounds, and various pharmacological properties with a special focus on the stimulatory properties of immunity.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Sarla Saklani
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, Alameda Prof. Hernani Monteiro, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
6
|
Xu Z, Li S, Chen L, Zhu Y, Xuan L, Cheng Z. Effects of fungus–host associations on nucleoside differences among Ophiocordyceps sinensis populations on the Qinghai–Tibet Plateau of China. Arch Microbiol 2020; 202:2323-2328. [DOI: 10.1007/s00203-020-01919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/09/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
|
7
|
Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C, Chen L. Simultaneous voltammetric determination of guanine and adenine using MnO 2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Mikrochim Acta 2019; 186:450. [PMID: 31197566 DOI: 10.1007/s00604-019-3577-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
Guanine and adenine in blood samples can be detected by using an electrochemical sensor based on the use of manganese dioxide (MnO2) nanosheets and ionic liquid functionalized graphene (IL-GR) bound to a polydopamine (PDA) membrane. Both guanine and adenine undergo a redox reaction on the surface of the modified electrode. Cyclic voltammetry and differential pulse voltammetry were used to evaluate the electrochemical behavior of a glassy carbon electrode (GCE) modified with PDA/MnO2/IL-GR. The sensor allows for individual as well as simultaneous determination of guanine and adenine. The working voltage of differential pulse voltammetry at which data were acquired to establish the calibration plot: 0.6-1.2 V for guanine, 0.8-1.4 V for adenine, 0.4-1.4 V for mixture of guanine and adenine. A wide detection range (10-300 μM), low detection limits (guanine: 0.25 μM; adenine: 0.15 μM), selectivity and reproducibility are demonstrated. The modified GCE was successfully applied to the analysis of guanine and adenine in spiked fetal bovine serum and mouse whole blood samples. Graphical abstract An electrochemical sensor is presented for the determination of guanine (G) and adenine (A) based on MnO2 nanosheets, ionic liquid functionalized graphene (IL-graphene) and polydopamine membrane.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Dandan Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao He
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Lingxin Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China. .,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
8
|
Joshi R, Sharma A, Thakur K, Kumar D, Nadda G. Metabolite analysis and nucleoside determination using reproducible UHPLC-Q-ToF-IMS in Ophiocordyceps sinensis. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1541804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Aakriti Sharma
- Entomology Laboratory, Agrotechnology of Medicinal, Aromatic and Commercially Important Plants Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Krishana Thakur
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Dinesh Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology of Medicinal, Aromatic and Commercially Important Plants Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
9
|
Identification of Ophiocordyceps sinensis and Its Artificially Cultured Ophiocordyceps Mycelia by Ultra-Performance Liquid Chromatography/Orbitrap Fusion Mass Spectrometry and Chemometrics. Molecules 2018; 23:molecules23051013. [PMID: 29701667 PMCID: PMC6100002 DOI: 10.3390/molecules23051013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
Since the cost of Ophiocordyceps sinensis, an important fungal drug used in Chinese medicine, has increased dramatically, and the counterfeits may have adverse health effects, a rapid and precise marker using the peptide mass spectrometry identification system could significantly enhance the regulatory capacity. In this study, we determined the marker peptides in the digested mixtures of fungal proteins in wild O. sinensis fruiting bodies and various commercially available mycelium fermented powders using ultra-performance liquid chromatography/Orbitrap Fusion mass spectrometry coupled with chemometrics. The results indicated the following marker peptides: TLLEAIDSIEPPK (m/z 713.39) was identified in the wild O. sinensis fruiting body, AVLSDAITLVR (m/z 579.34) was detected in the fermented O. sinensis mycelium powder, FAELLEK (m/z 849.47) was found in the fermented Ophiocordyceps mycelium powder, LESVVTSFTK (m/z 555.80) was discovered in the artificial Ophiocordyceps mycelium powder, and VPSSAVLR (m/z 414.75) was observed in O. mortierella mycelium powder. In order to verify the specificity and applicability of the method, the five marker peptides were synthesized and tested on all samples. All in all, to the best of our knowledge, this is the first time that mass spectrometry has been employed to detect the marker peptides of O.sinensis and its related products.
Collapse
|
10
|
Cheng W, Zhang X, Song Q, Lu W, Wu T, Zhang Q, Li C. Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes. Mycology 2017; 8:318-326. [PMID: 30123652 PMCID: PMC6059082 DOI: 10.1080/21501203.2017.1385546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022] Open
Abstract
Nucleosides and nucleobases are one of the most important indicators of quality control. A sensitive and reliable high performance liquid chromatography-ultraviolet method was applied to analyse 13 nucleosides and nucleobases simultaneously in 15 batches of nine Ophiocordyceps species and its allies in China. Principal component analysis (PCA) and cluster analysis were conducted by SPSS 22.0 software (IBM Corp., Armonk, NY, USA). The 15 samples of Cordyceps were differentiated successfully based on their nucleoside and nucleobase content. Total nucleosides content in mycelium was significantly higher than that in the natural fruiting bodies of Ophiocordyceps sinensis (NFOS). Five nucleosides or nucleobases - adenine (A), guanosine (Gu), uracil (U), uridine (Ur) and guanine (G) - were the major components contributed to the total variance according to PCA. The profiles of the 13 tested nucleosides and nucleobases (including adenosine, cytidine, guanosine, inosine, thymidine, uridine, cordycepin, adenine, cytosine, guanine, thymine, uracil and hypoxanthine) can discriminate different samples and can be candidate indicators applied for the quality control of Ophiocordyceps and its allies.
Collapse
Affiliation(s)
- Wenming Cheng
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Xun Zhang
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Qiang Song
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Weili Lu
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Tingni Wu
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Qunlin Zhang
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Chunru Li
- Zhejiang BioAsia Institute of Life Science, Pinghu, Zhejiang, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
11
|
Tian F, Jiang X, Dou X, Wu Q, Wang J, Song Y. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:194-200. [PMID: 28242449 DOI: 10.1016/j.saa.2017.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570nm as a function of adenine (Ad) concentration in the range of 0.00-5.00×10-5molL-1 was observed. The detection limit is about 4.70×10-7molL-1.
Collapse
Affiliation(s)
- Fengyun Tian
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xiaoqing Jiang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xuekai Dou
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Qiong Wu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
12
|
Chen YC, Chen YH, Pan BS, Chang MM, Huang BM. Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review. J Food Drug Anal 2016; 25:197-205. [PMID: 28911537 PMCID: PMC9333433 DOI: 10.1016/j.jfda.2016.10.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022] Open
Abstract
Cordyceps sinensis has various biological and pharmacological functions, and it has been claimed as a tonic supplement for sexual and reproductive dysfunctions for a long time in oriental society. In this article, the in vitro and in vivo effects of C. sinensis and cordycepin on mouse Leydig cell steroidogenesis are briefly described, the stimulatory mechanisms are summarized, and the recent findings related to the alternative substances regulating male reproductive functions are also discussed.
Collapse
Affiliation(s)
- Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Shi H, Cui Y, Gong Y, Feng S. Highly sensitive and selective fluorescent assay for guanine based on the Cu(2+)/eosin Y system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 161:150-154. [PMID: 26971024 DOI: 10.1016/j.saa.2016.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/04/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu(2+)/eosin Y. Cu(2+) interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu(2+)/eosin Y system, guanine reacted with Cu(2+) to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L(-1) and a linear range of 3.3-116 nmol L(-1). The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.
Collapse
Affiliation(s)
- Huimin Shi
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; Department of Basic Medical Sciences, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Yi Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yijun Gong
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Suling Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
14
|
Li H, Wang X, Wang Z. Simultaneous Determination of Dopamine, Uric Acid and Guanine at Polyadenine Film Modified Electrode. ANAL SCI 2015; 31:1225-31. [PMID: 26656810 DOI: 10.2116/analsci.31.1225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A polyadenine film (PAE) modified glassy carbon electrode (GCE) was employed for the simultaneous determination of dopamine (DA), uric acid (UA) and guanine (GA). Experimental results showed that this modified electrode had good electrocatalytic properties for the oxidation of DA, UA and GA. Under optimal conditions, DA, UA and GA reflected their electrochemical response into three separated and well-defined oxidation peaks, whose currents increased 47-, 12-, and 7-fold, respectively, compared with those at bare electrode. Moreover, their oxidation peak currents were linear proportional to their concentrations within the ranges of 2.5 - 75, 10 - 750, and 7.5 - 75 μmol L(-1), respectively, and the limits of detection (LOD) (S/N = 3) were 0.075, 0.35, and 0.025 μmol L(-1), respectively. Compared with a variety of modified electrodes, this designed sensor had a wider linear range and lower LOD. Furthermore, the sensor exhibited good stability and reproducibility.
Collapse
Affiliation(s)
- Hongying Li
- Department of Chemistry and Chemical Engineering, Heze University
| | | | | |
Collapse
|
15
|
Zong SY, Han H, Wang B, Li N, Dong TTX, Zhang T, Tsim KWK. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps sinensis by UHPLC-ESI-MS/MS. Molecules 2015; 20:21816-25. [PMID: 26690105 PMCID: PMC6332315 DOI: 10.3390/molecules201219807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 12/02/2022] Open
Abstract
A reliable ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS) method for the fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis (C. sinensis) with 2-chloroadenosine as internal standard was developed and validated. Samples were ultrasonically extracted in an ice bath thrice, and the optimum analyte separation was performed on an ACQUITY UPLCTM HSS C18 column (100 mm × 2.1 mm, 1.8 μm) with gradient elution. All targeted analytes were separated in 5.5 min. Furthermore, all calibration curves showed good linear regression (r > 0.9970) within the test ranges, and the limits of quantitation and detection of the 13 analytes were less than 150 and 75 ng/mL, respectively. The relative standard deviations (RSDs) of intra- and inter-day precisions were <6.23%. Recoveries of the quantified analytes ranged within 85.3%–117.3%, with RSD < 6.18%. The developed UHPLC–ESI–MS/MS method was successfully applied to determine nucleosides and nucleobases in 11 batches of C. sinensis samples from different regions in China. The range for the total content in the analyzed samples was 1329–2057 µg/g.
Collapse
Affiliation(s)
- Shi-Yu Zong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Han Han
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Ning Li
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| | - Tina Ting-Xia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
16
|
Rezaei B, Khosropour H, Ensafi AA, Dinari M, Nabiyan A. A new electrochemical sensor for the simultaneous determination of guanine and adenine: using a NiAl-layered double hydroxide/graphene oxide-multi wall carbon nanotube modified glassy carbon electrode. RSC Adv 2015. [DOI: 10.1039/c5ra15845a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An electrochemical sensor was developed for guanine and adenine detection using multiwall carbon nanotubes with the hybrid NiAl-layered double hydroxide/graphene oxide (NiAl-LDH/GO) on a glassy carbon electrode.
Collapse
Affiliation(s)
- Behzad Rezaei
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
| | - Hossein Khosropour
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
| | - Ali Asghar Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
| | - Afshin Nabiyan
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
| |
Collapse
|
17
|
Effects of heat on the biological activity of wild Cordyceps sinensis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2015. [DOI: 10.1016/j.jtcms.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Nyirimigabo E, Xu Y, Li Y, Wang Y, Agyemang K, Zhang Y. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J Pharm Pharmacol 2014; 67:1-19. [DOI: 10.1111/jphp.12310] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
A number of species belonging to herbal genus Aconitum are well-known and popular for their medicinal benefits in Indian, Vietnamese, Korean, Japanese, Tibetan and Chinese systems of medicine. It is a valuable drug as well as an unpredictable toxic material. It is therefore imperative to understand and control the toxic potential of herbs from this genus. In this review, the ethnomedicinal, phytochemistry, pharmacology, structure activity relationship and toxicology studies of Aconitum were presented to add to knowledge for their safe application.
Key findings
A total of about 76 of all aconite species growing in China and surrounding far-east and Asian countries are used for various medical purposes. The main ingredients of aconite species are alkaloids, flavonoids, free fatty acids and polysaccharides. The tuberous roots of genus Aconitum are commonly applied for various diseases such as rheumatic fever, painful joints and some endocrinal disorders. It stimulates the tip of sensory nerve fibres. These tubers of Aconitum are used in the herbal medicines only after processing. There remain high toxicological risks of the improper medicinal applications of Aconitum. The cardio and neurotoxicities of this herb are potentially lethal. Many analytical methods have been reported for quantitatively and qualitatively characterization of Aconitum.
Summary
Aconitum is a plant of great importance both in traditional medicine in general and in TCM in particular. Much attention should be put on Aconitum because of its narrow therapeutic range. However, Aconitum's toxicity can be reduced using different techniques and then benefit from its pharmacological activities. New methods, approaches and techniques should be developed for chemical and toxicological analysis to improve its quality and safety.
Collapse
Affiliation(s)
- Eric Nyirimigabo
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Rwanda Standards Board, Kigali, Republic of Rwanda
| | - Yanyan Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kojo Agyemang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2564-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Synthesis of ionic liquids coated nanocrystalline zeolite materials and their application in the simultaneous determination of adenine, cytosine, guanine, and thymine. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Regulatory Mechanisms ofCordyceps sinensison Steroidogenesis in MA-10 Mouse Leydig Tumor Cells. Biosci Biotechnol Biochem 2014; 74:1855-9. [DOI: 10.1271/bbb.100262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Zeng WB, Yu H, Ge F, Yang JY, Chen ZH, Wang YB, Dai YD, Adams A. Distribution of nucleosides in populations of Cordyceps cicadae. Molecules 2014; 19:6123-41. [PMID: 24830714 PMCID: PMC6271799 DOI: 10.3390/molecules19056123] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 01/28/2023] Open
Abstract
A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed in the sampled populations of C. cicadae, O. sinensis and C. militaris, using descriptive statistical analysis, nested analysis and Q cluster analysis. The total amount of the 10 nucleosides in coremium was 1,463.89–5,678.21 µg/g in 10 populations of C. cicadae, 1,369.80–3,941.64 µg/g in sclerotium. The average contents of the 10 analytes were 4,392.37 µg/g and 3,016.06 µg/g in coremium and sclerotium, respectively. The coefficient of variation (CV) of nucleosides ranged from 8.36% to 112.36% in coremium of C. cicadae, and from 10.77% to 155.87% in sclerotium of C. cicadae. The CV of the nucleosides was wide within C. cicadae populations. The nested variation analysis by the nine nucleosides’ distribution indicated that about 42.29% of the nucleoside variability in coremium was attributable to the differentiation among populations, and the remaining 57.71% resided in the populations. It was also shown that about 28.94% of the variation in sclerotium was expressed between populations, while most of the variation (71.06%) corresponded to the populations.
Collapse
Affiliation(s)
- Wen-Bo Zeng
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China.
| | - Hong Yu
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China.
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Jun-Yuan Yang
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zi-Hong Chen
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China.
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China.
| | - Yong-Dong Dai
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China.
| | - Alison Adams
- Department of Biological Sciences, College of Engineering, Forestry and Natural Science, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| |
Collapse
|
23
|
Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-UPLC–TQ-MS/MS) in multiple-reaction monitoring (MRM) for the determination of nucleobases and nucleosides in ginkgo seeds. Food Chem 2014; 150:260-6. [DOI: 10.1016/j.foodchem.2013.10.143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/15/2013] [Accepted: 10/26/2013] [Indexed: 11/22/2022]
|
24
|
Yao X, Zhou G, Tang Y, Guo S, Qian D, Duan JA. HILIC-UPLC-MS/MS combined with hierarchical clustering analysis to rapidly analyze and evaluate nucleobases and nucleosides inGinkgo bilobaleaves. Drug Test Anal 2014; 7:150-7. [DOI: 10.1002/dta.1634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/15/2014] [Accepted: 02/10/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing University of Chinese Medicine; Nanjing 210046 China
- Department of Pharmacy; First Affiliated Hospital of Soochow University; Suzhou 215006 China
| | - Guisheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing University of Chinese Medicine; Nanjing 210046 China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing University of Chinese Medicine; Nanjing 210046 China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing University of Chinese Medicine; Nanjing 210046 China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing University of Chinese Medicine; Nanjing 210046 China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing University of Chinese Medicine; Nanjing 210046 China
| |
Collapse
|
25
|
Kaur B, Srivastava R. Ionic liquids coated Fe3O4 based inorganic-organic hybrid materials and their application in the simultaneous determination of DNA bases. Colloids Surf B Biointerfaces 2014; 118:179-87. [PMID: 24703634 DOI: 10.1016/j.colsurfb.2014.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 11/17/2022]
Abstract
Ionic liquids (ILs) coated Fe3O4 based inorganic-organic hybrid materials (represented as Fe3O4/ILs) were synthesized. ILs such as methylimidazolium chloride ([Hmim][Cl]) and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) were investigated. For comparative study, quaternary ammonium salts such as choline chloride, cetyltrimethylammonium bromide [C16H33N(CH3)3][Br], and trimethylstearylammonium chloride [C18H37N(CH3)3][Cl] were also investigated. Materials were characterized by X-ray diffraction, nitrogen sorption, Fourier transform infrared and scanning/transmission electron microscopy. Electrochemical sensors based on Fe3O4/ILs modified glassy carbon electrodes were fabricated for the simultaneous determination of all four DNA bases. The electrochemical behavior of DNA bases was investigated in detail. Various reaction parameters such as effect of scan rate, number of electrons involved in the rate determining step, electron transfer coefficient, surface adsorbed concentration, and the electrode reaction standard rate constant were investigated. Catalytic activity obtained at various Fe3O4/ILs modified electrodes was explained using DFT calculation. The analytical performance of the sensor was demonstrated in the simultaneous determination of guanine, adenine, thymine, and cytosine in calf thymus DNA sample.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India.
| |
Collapse
|
26
|
Li F, Yang FQ, Xia ZN. Simultaneous Determination of Ten Nucleosides and Related Compounds by MEEKC with [BMIM]PF6 as Oil Phase. Chromatographia 2013. [DOI: 10.1007/s10337-013-2507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Shashidhar M, Giridhar P, Udaya Sankar K, Manohar B. Bioactive principles from Cordyceps sinensis: A potent food supplement - A review. J Funct Foods 2013; 5:1013-1030. [PMID: 32288795 PMCID: PMC7104994 DOI: 10.1016/j.jff.2013.04.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022] Open
Abstract
Introducing the importance of Cordyceps sinensis (CS) and its economics. Alternative artificial cultivation methods for large scale production to meet the world demand for CS. Chemical characterization of compounds in different extracts of CS. Potential health benefits and mechanism of action of compounds in CS. Possible application of whole fungus or its extracts in food and pharmaceutical industries.
Cordyceps sinensis (CS) is a well-known entamophagus fungus, naturally distributed in the Tibetan Plateau of Asia and Himalayas. Recently this synonym is transferred to Ophiocordyceps by both scientific and non-scientific communities. It is widely used as a tonic and medicinal food in traditional Chinese medicine (TCM), as it possess wonderful health benefits. To support its functional attributes, various investigations have been carried out to find out its adaptogenic, aphrodisiac, anti-oxidant, anti-aging, neuroprotective, nootropic, immunomodulatory, anti-cancer and hepatoprotective role. Its fruiting portion as well as the larvae possesses potent bio-active fractions and their composition almost found to be similar in both. The bioactive principles are nucleosides, exo-polysaccharides, sterols and, proteins, among others. Among nucleosides, adenosine and cordycepin are the major biochemical markers. Further, different types of solvent extracts and their mixtures exhibit wide range of pharmacological activities, while the water and methanol extracts with the richest sources of nucleosides and polysaccharides also show wide range of pharmacological activities. This review gives a panoramic view of potential health benefits of various classes of bio-active fractions along with the need for sustainable management of CS for human wellness.
Collapse
Affiliation(s)
- M.G. Shashidhar
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial research, New Delhi, India
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - P. Giridhar
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - K. Udaya Sankar
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - B. Manohar
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial research, New Delhi, India
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
- Corresponding author at: Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India. Fax: +91 821 2517233.
| |
Collapse
|
28
|
Wei X, Xu N, Wu D, He Y. Determination of Branched-Amino Acid Content in Fermented Cordyceps sinensis Mycelium by Using FT-NIR Spectroscopy Technique. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1053-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Abstract
The potential of near-infrared spectroscopy (NIRS) was investigated for its ability to rapidly discriminate the various brands of fermented Cordyceps mycelium powder. Relationship between mycelium powder varieties and the absorbance spectra was well established with the spectra region of 12500-4000 cm-1. Spectra preprocessing was performed using 1st derivative. Principal component analysis (PCA) was adopted for the clustering analysis and re-expressing of the hyper spectral data, and then, the obtained principal components (PCs) were used as the input of back-propagation artificial neural network (BPANN) to build PCA-BPANN model for the variety discrimination. The unknown samples in prediction set were precisely identified with the correlation coefficient R of 0.9959 and root-mean-square error of prediction (RMSEP) of 0.1007, which suggests that the NIR spectroscopy, if coupled with appropriate pattern recognition method, is very promising for rapid and nondestructive discrimination of fermented Cordyceps mycelium powder.
Collapse
|
30
|
Cathodic electrochemiluminescence of Eosin Y–peroxydisulfate system and its analytical application for determination of guanine. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Supramolecular Polymeric Chemosensor for Biomedical Applications: Design and Synthesis of a Luminescent Zinc Metallopolymer as a Chemosensor for Adenine Detection. J Fluoresc 2012; 22:1539-46. [DOI: 10.1007/s10895-012-1092-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/20/2012] [Indexed: 01/23/2023]
|
32
|
Chen Y, Bicker W, Wu J, Xie M, Lindner W. Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4243-4252. [PMID: 22500559 DOI: 10.1021/jf300076j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In order to develop a simple, efficient, and sensitive method for comprehensive analysis of the nucleosides and nucleobases in natural products, a zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) method for the simultaneous determination of 16 nucleosides and nucleobases has been studied. A mechanistic study confirmed that ZIC-HILIC separation showed a mixed-mode effect of both hydrophilic and electrostatic interactions. This method was validated to be precise, accurate, and sensitive with overall precision (intra- and interday) less than 1.8% (RSD), and LOD and LOQ was in the range of 0.005-0.029 μg/mL and 0.018-0.096 μg/mL, respectively. With this method, the nucleosides and nucleobases in Ganoderma of different species (G. atrum, G. lucidum, and G. sinense) and origins were quantified. The results showed that the contents varied with the species and origins. With the aid of hierarchical cluster analysis (HCA), cultivated Ganoderma from different origins and species were successfully discriminated. It is for the first time that the content of nucleosides and nucleobases in G. atrum is reported and compared. Our data showed that HILIC had advantages as a useful and potential tool for the study of the bioactive components in Ganoderma as well as their quality control, and could therefore be used for the determination of the analytes in other natural products.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. of China
| | | | | | | | | |
Collapse
|
33
|
Chen P, Li W, Li Q, Wang Y, Li Z, Ni Y, Koike K. Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography. Talanta 2011; 85:1634-41. [DOI: 10.1016/j.talanta.2011.06.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
|
34
|
Zhao H, Chen J, Shi Q, Li X, Zhou W, Zhang D, Zheng L, Cao W, Wang X, Sen-Chun Lee F. Simultaneous determination nucleosides in marine organisms using ultrasound-assisted extraction followed by hydrophilic interaction liquid chromatography-electrospray ionization time-of-flight mass spectrometry. J Sep Sci 2011; 34:2594-601. [DOI: 10.1002/jssc.201100421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 01/10/2023]
|
35
|
Khajehsharifi H, Eskandari Z. Potentiality of partial least-squares multivariate calibration in the spectrophotometric analysis of binary mixtures of purine bases. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
The in vivo and in vitro stimulatory effects of cordycepin on mouse leydig cell steroidogenesis. Biosci Biotechnol Biochem 2011; 75:723-31. [PMID: 21512251 DOI: 10.1271/bbb.100853] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cordycepin, a pure compound of Cordyceps sinensis (CS), is known as an adenosine analog. We have found that CS stimulated Leydig cell steroidogenesis. Here we investigated the in vivo and in vitro effects of cordycepin in primary mouse Leydig cell steroidogenesis. The results indicate that cordycepin increased the plasma testosterone concentration. Cordycepin also stimulated in vitro mouse Leydig cell testosterone production in dose- and time-dependent manners. We further observed that cordycepin regulated the mRNA expression of the A1, A2a, A2b, and A3 adenosine receptors in the mouse Leydig cells, and that antagonists of A1, A2a, and A3 suppressed testosterone production 20-50% testosterone production. Furthermore, Rp-cAMPS (cAMP antagonist) and Protein Kinase A (PKA) inhibitors (H89 and PKI) significantly decreased cordycepin-induced testosterone production, indicating that the PKA-cAMP signal pathway was activated by cordycepin through adenosine receptors. Moreover, cordycepin induced StAR protein expression, and H89 suppressed cordycepin-induced steroidogenic acute regulatory (StAR) protein expression. Conclusively, cordycepin associated with adenosine receptors to activate cAMP-PKA-StAR pathway and steroidogenesis in the mouse Leydig cells.
Collapse
|
37
|
Strategies for quality control of Chinese medicines. J Pharm Biomed Anal 2010; 55:802-9. [PMID: 21215546 DOI: 10.1016/j.jpba.2010.12.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022]
Abstract
Chinese medicines (CM) have been attracting interest and acceptance in many countries. Quality control is vital for ensuring the safety and efficacy of CM. Usually, CM are used as whole plant and/or combination of several herbs, and multiple constituents are responsible for the therapeutic effects. Therefore, quality control of CM is very difficult. To date, the valid method for quantitatively evaluating the quality of CM is poor. In this article, the strategies for quantification, related to the markers, reference compounds and approaches, in quality control of CM were reviewed and discussed.
Collapse
|
38
|
Comparison and characterization of polysaccharides from natural and cultured Cordyceps using saccharide mapping. Anal Bioanal Chem 2010; 399:3465-74. [DOI: 10.1007/s00216-010-4396-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/26/2023]
|
39
|
Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 2010; 82:543-9. [PMID: 21050729 DOI: 10.1016/j.colsurfb.2010.10.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 09/14/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability.
Collapse
Affiliation(s)
- Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Chen XJ, Yang FQ, Wang YT, Li SP. CE and CEC of nucleosides and nucleotides in food materials. Electrophoresis 2010; 31:2092-105. [PMID: 20593386 DOI: 10.1002/elps.201000048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary nucleosides and nucleotides play an important role in the maintenance of functions of bone marrow hematopoietic cells, intestinal mucosa, and brain. Therefore, analysis of those compounds in food is very important for improving and assuring food quality. This review summarized the application of CE and CEC in the analysis of nucleosides and nucleotides in food. The sample preparation and detection are also discussed.
Collapse
Affiliation(s)
- Xiao-Jia Chen
- Institute of Chinese Medical Sciences, University of Macau, Macao SAR, PR China
| | | | | | | |
Collapse
|
41
|
Lu Y, Wu H, Tian Y, Cheng Y, Qi R, Wu Y, Zhang S. Development and Validation of Nonaqueous Capillary Electrophoresis Method for Simultaneous Estimation of Icariin, Icariside II, and Epimedin K in Epimedium Leaves. ANAL LETT 2010. [DOI: 10.1080/00032711003725565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 2010; 81:961-8. [PMID: 20650308 DOI: 10.1016/j.fitote.2010.07.010] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 12/25/2022]
Abstract
Cordyceps militaris is a potential harbour of bio-metabolites for herbal drugs and evidences are available about its applications for revitalization of various systems of the body from ancient times. Amongst all the species, C. militaris is considered as the oldest source of some useful chemical constituents. Besides their popular applications for tonic medicine by the all stairs of the community, the constituents of C. militaris are now used extensively in modern systems of medicine. The current survey records the mysterious potentials of C. militaris are boosting up the present herbal treatments, as well as gearing up the green pharmacy revolution, in order to create a friendly environment with reasonable safety. Evidence showed that the active principles of C. militaris are beneficial to act as pro-sexual, anti-inflammatory, anti-oxidant/anti-aging, anti-tumour/anti-cancer/anti-leukemic, anti-proliferative, anti-metastatic, immunomodulatory, anti-microbial, anti-bacterial, anti-viral, anti-fungal, anti-protozoal, insecticidal, larvicidal, anti-fibrotic, steroidogenic, hypoglacaemic, hypolipidaemic, anti-angiogenetic, anti-diabetic, anti-HIV, anti-malarial, anti-fatigue, neuroprotective, liver-protective, reno-protective as well as pneumo-protective, let alone their other synergistic activities, which let it be marketable in the western countries as over-the-counter medicine. A number of culture techniques for this mushroom have been noticed, for example, storage/stock culture, pre-culture, popular/indigenous culture (spawn culture, husked rice culture and saw dust culture) and, special/laboratory culture (shaking culture, submerged culture, surface liquid culture and continuous/repeated batch culture). The prospects for herbal biotechnology regarding drug discovery using C. militaris delivering what it has promised are high, as the technology is now extremely more powerful than before. This study chiefly highlights the medicinal uses of the mushroom C. militaris including its culture techniques, also aiming to draw sufficient attention of the researchers to the frontier research needs in this context.
Collapse
Affiliation(s)
- Shonkor Kumar Das
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| | | | | | | |
Collapse
|
43
|
Zhang S, Feng H, Li X, Jin Y, Dong W. Genome research profile of two Cordyceps sinensis cDNA libraries. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-0113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
Abstract
Cordyceps species, including C. sinensis, C. militaris, C. pruinosa and C. ophioglossoides, are prized traditional medicinal materials. The aim of this article is to review the chemical constituents and pharmacological actions of Cordyceps species. The chemical constituents include cordycepin (3′-deoxyadenosine) and its derivatives, ergosterol, polysaccharides, a glycoprotein and peptides containing α-aminoisobutyric acid. They include anti-tumour, anti-metastatic, immunomodulatory, antioxidant, anti-inflammatory, insecticidal, antimicrobial, hypolipidaemic, hypoglycaemic, anti-ageing, neuroprotective and renoprotective effects. Polysaccharide accounts for the anti-inflammatory, antioxidant, anti-tumour, anti-metastatic, immunomodulatory, hypoglycaemic, steroidogenic and hypolipidaemic effects. Cordycepin contributes to the anti-tumour, insecticidal and antibacterial activity. Ergosterol exhibits anti-tumour and immunomodulatory activity. A DNase has been characterized.
Collapse
Affiliation(s)
- T B Ng
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
45
|
Cheung JKH, Li J, Cheung AWH, Zhu Y, Zheng KYZ, Bi CWC, Duan R, Choi RCY, Lau DTW, Dong TTX, Lau BWC, Tsim KWK. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:61-8. [PMID: 19446414 DOI: 10.1016/j.jep.2009.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 02/19/2009] [Accepted: 04/06/2009] [Indexed: 05/22/2023]
Abstract
Cordyceps sinensis, a well-known traditional Chinese medicine, possesses activities in anti-tumor, anti-oxidation and stimulating the immune response; however, the identity of active component(s) is not determined. A strain of Cordyceps sinensis, namely UST 2000, has been isolated. By using activity-guided purification, a novel polysaccharide of molecular weight approximately 82 kDa was isolated from the conditioned medium of cultured Cordyceps. The isolated exo-polysaccharide, namely cordysinocan, contains glucose, mannose, galactose in a ratio of 2.4:2:1. In cultured T-lymphocytes, application of cordysinocan induced the cell proliferation and the secretion of interleukin-2, interleukin-6 and interleukin-8. In addition, the phosphorylation of extracellular signal-regulated kinases (ERK) was induced transiently by the treatment of cordysinocan. Moreover, application of cordysinocan in cultured macrophages increased the phagocytosis activity and the enzymatic activity of acid phosphatase. These results therefore verify the important role of Cordyceps polysaccharide in triggering such immune responses.
Collapse
Affiliation(s)
- Jerry K H Cheung
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun W, Li Y, Duan Y, Jiao K. Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.02.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Determination of nucleosides and nucleobases in different species of Cordyceps by capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal 2009; 50:307-14. [PMID: 19497699 DOI: 10.1016/j.jpba.2009.04.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 11/21/2022]
Abstract
In present study, a capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the simultaneous analysis of 12 nucleosides and nucleobases including cytosine, adenine, guanine, cytidine, cordycepin, adenosine, hypoxanthine, guanosine, inosine, 2'-deoxyuridine, uridine and thymidine in natural and cultured Cordyceps using 5-chlorocytosine arabinoside as an internal standard (IS). The CE separation conditions and MS parameters were optimized systematically for achieving good CE resolution and MS response of the investigated compounds. The optimum CE electrolyte was 100 mM formic acid containing 10% (v/v) methanol. The optimum MS parameters were as follows: 75% (v/v) methanol containing 0.3% formic acid with a flow rate of 3 microL/min was selected as the sheath liquid; the flow rate and temperature of drying gas were 6 L/min and 350 degrees C, respectively. The optimized CE-MS method was successfully applied for the simultaneous determination of 12 nucleosides and nucleobases in natural and cultured Cordyceps. On the basis of quantitative results, the total content of nucleosides is much higher in cultured Cordyceps (9138+/-4823 microg/g for cultured C. sinensis; 3722+/-1446 microg/g for C. militaris) than in natural ones (2167+/-412 microg/g). However, the hypoxanthine (131+/-47 microg/g) and inosine (335+/-90 microg/g) are much higher in natural C. sinensis. Cordycepin, which is abundant in cultured C. militaris (2276.5+/-842.6 microg/g), is only found in natural C. sinensis with very low content and cannot be detected in the cultured ones.
Collapse
|
48
|
Characterization of hydrophobic ionic liquid-carbon nanotubes–gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.05.053] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Yoon TJ, Yu KW, Shin KS, Suh HJ. Innate immune stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl Microbiol Biotechnol 2008; 80:1087-93. [PMID: 18690428 DOI: 10.1007/s00253-008-1607-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/02/2008] [Accepted: 07/07/2008] [Indexed: 11/27/2022]
Abstract
After we prepared exo-polymers (EPS) from Cordyceps sinensis by submerged culture, prophylactic intravenous administration (i.v.) of EPS significantly inhibited metastasis in experimental lung metastasis of colon 26-M3.1 carcinoma. Cytotoxicity against Yac-1 tumor cells of natural killer (NK) cell, which was prepared by i.v. of EPS (100 mug/mouse), significantly augmented 2 days after EPS treatment. When NK cells were depleted by rabbit anti-asialo GM1 serum, even the EPS group totally abolished the inhibitory effect on lung metastasis of colon 26-M3.1 cells. EPS can stimulate innate immune system to inhibit tumor metastasis, and its anti-tumor metastasis is associated with macrophage and NK cell activation.
Collapse
Affiliation(s)
- Taek Joon Yoon
- Department of Food and Nutrition, Yuhan College, Bucheon, South Korea
| | | | | | | |
Collapse
|
50
|
Liang XM, Jin Y, Wang YP, Jin GW, Fu Q, Xiao YS. Qualitative and quantitative analysis in quality control of traditional Chinese medicines. J Chromatogr A 2008; 1216:2033-44. [PMID: 18656880 DOI: 10.1016/j.chroma.2008.07.026] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/31/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
Separation techniques with high efficiency and sensitive detection have been widely used for quality control of traditional Chinese medicines (TCMs). High-performance liquid chromatography, gas chromatography, and capillary electrophoresis are commonly used to separate various components in TCMs. Ultraviolet detection, fluorescence detection, evaporative light-scattering detection, mass spectrometry and nuclear magnetic resonance can be applied to separation techniques for qualitative and quantitative analysis of TCMs. The development of quality control for TCMs based on quantitative and qualitative analysis from 2000 to 2007 are reviewed; the fingerprint technique is also discussed due to its broad application in the quality control of TCMs. Prospects for further research based on our primary results are also discussed.
Collapse
Affiliation(s)
- Xin-miao Liang
- Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | | | | | | | | | | |
Collapse
|