1
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
2
|
Komatsu DE, Uddin SMZ, Gordon C, Kanjiya MP, Bogdan D, Achonu J, DiBua A, Iftikhar H, Ackermann A, Shah RJ, Shieh J, Bialkowska AB, Kaczocha M. Acute postoperative pain and dorsal root ganglia transcriptomic signatures following total knee arthroplasty (TKA) in rats: An experimental study. PLoS One 2022; 17:e0278632. [PMID: 36473007 PMCID: PMC9725137 DOI: 10.1371/journal.pone.0278632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Total knee arthroplasty (TKA) is the final treatment option for patients with advanced knee osteoarthritis (OA). Unfortunately, TKA surgery is accompanied by acute postoperative pain that is more severe than arthroplasty performed in other joints. Elucidating the molecular mechanisms specific to post-TKA pain necessitates an animal model that replicates clinical TKA procedures, induces acute postoperative pain, and leads to complete functional recovery. Here, we present a new preclinical TKA model in rats and report on functional and behavioral outcomes indicative of pain, analgesic efficacy, serum cytokine levels, and dorsal root ganglia (DRG) transcriptomes during the acute postoperative period. Following TKA, rats exhibited marked deficits in weight bearing that persisted for 28 days. Home cage locomotion, rearing, and gait were similarly impacted and recovered by day 14. Cytokine levels were elevated on postoperative days one and/or two. Treatment with morphine, ketorolac, or their combination improved weight bearing while gabapentin lacked efficacy. When TKA was performed in rats with OA, similar functional deficits and comparable recovery time courses were observed. Analysis of DRG transcriptomes revealed upregulation of transcripts linked to multiple molecular pathways including inflammation, MAPK signaling, and cytokine signaling and production. In summary, we developed a clinically relevant rat TKA model characterized by resolution of pain and functional recovery within five weeks and with pain-associated behavioral deficits that are partially alleviated by clinically administered analgesics, mirroring the postoperative experience of TKA patients.
Collapse
Affiliation(s)
- David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail: (DEK); (MK)
| | - Sardar M. Z. Uddin
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Martha P. Kanjiya
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Diane Bogdan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Justice Achonu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Adriana DiBua
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Hira Iftikhar
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Amanda Ackermann
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Rohan J. Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Stony Brook University Pain and Analgesia Research Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail: (DEK); (MK)
| |
Collapse
|
3
|
Mann KA, Miller MA, Rossow JK, Tatusko ME, Horton JA, Damron TA, Oest ME. Progressive loss of implant fixation in a preclinical rat model of cemented knee arthroplasty. J Orthop Res 2021; 39:2353-2362. [PMID: 33382095 PMCID: PMC8243390 DOI: 10.1002/jor.24977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of total knee arthroplasty continues to be a challenging clinical problem. The progression of the loosening process, from the initial well-fixed component, is not fully understood. In this study, loss of fixation of cemented hemiarthroplasty was explored using 9-month-old Sprague-Dawley rats with 0, 2, 6, 12, 26 week end points. Morphological and cellular changes of cement-bone fixation were determined for regions directly below the tibial tray (epiphysis) and distal to the tray (metaphysis). Loss of fixation, with a progressive increase in cement-bone gap volume was found in the epiphysis (0.162 mm3 /week), but did not progress appreciably in the metaphysis (0.007 mm3 /week). In the epiphysis, there was an early and sustained elevation of osteoclasts adjacent to the cement border and development of a fibrous tissue layer between the cement and bone. There was early formation of bone around the cement in the metaphysis, resulting in a condensed bone layer without osteoclastic bone resorption or development of a fibrous tissue layer. Implant positioning was also an important factor in the cement-bone gap formation, with greater gap formation for implants that were placed medially on the tibial articular surface. Loss of fixation in the rat model mimicked patterns found in human arthroplasty where cement-bone gaps initiate under the tibial tray, at the periphery of the implant. This preclinical model could be used to study early biological response to cemented fixation and associated contributions of mechanical instability, component alignment, and periprosthetic inflammation.
Collapse
Affiliation(s)
- Kenneth A. Mann
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Mark A. Miller
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Jeffrey K. Rossow
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Megan E. Tatusko
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Jason A. Horton
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Timothy A. Damron
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Megan E. Oest
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| |
Collapse
|
4
|
Matar HE, Porter PJ, Porter ML. Metal allergy in primary and revision total knee arthroplasty : a scoping review and evidence-based practical approach. Bone Jt Open 2021; 2:785-795. [PMID: 34587776 PMCID: PMC8558451 DOI: 10.1302/2633-1462.210.bjo-2021-0098.r1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIMS Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA). METHODS Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence. RESULTS We included 38 heterogeneous studies (two randomized controlled trials, six comparative studies, 19 case series, and 11 case reports). The evidence indicates that metal hypersensitivity is a rare complication with some histopathological features leading to pain and dissatisfaction with no reliable screening tests preoperatively. Hypoallergenic implants are viable alternatives for patients with self-reported/confirmed metal hypersensitivity if declared preoperatively; however, concerns remain over their long-term outcomes with ceramic implants outperforming titanium nitride-coated implants and informed consent is paramount. For patients presenting with painful TKA, metal hypersensitivity is a diagnosis of exclusion where patch skin testing, lymphocyte transformation test, and synovial biopsies are useful adjuncts before revision surgery is undertaken to hypoallergenic implants with shared decision-making and informed consent. CONCLUSION Using the limited available evidence in the literature, we provide a practical approach to metal hypersensitivity in TKA patients. Future national/registry-based studies are needed to identify the scale of metal hypersensitivity, agreed diagnostic criteria, and management strategies. Cite this article: Bone Jt Open 2021;2(10):785-795.
Collapse
Affiliation(s)
- Hosam E. Matar
- Wrightington Hospital, Wigan, UK
- Nottingham Elective Orthopaedic Services, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | | |
Collapse
|
5
|
Quinn J, McFadden R, Chan CW, Carson L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020; 23:101745. [PMID: 33235984 PMCID: PMC7670191 DOI: 10.1016/j.isci.2020.101745] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Titanium and its alloys have emerged as excellent candidates for use as orthopedic biomaterials. Nevertheless, there are often complications arising after implantation of orthopedic devices, most notably prosthetic joint infection and aseptic loosening. To ensure that implanted devices remain functional in situ, innovation in surface modification has attracted much attention in the effort to develop orthopedic materials with optimal characteristics at the biomaterial-tissue interface. This review will draw together metallurgy, surface engineering, biofilm microbiology, and biomaterial science. It will serve to appreciate why titanium and its alloys are frequently used orthopedic biomaterials and address some of the challenges facing these biomaterials currently, including the significant problem of device-associated infection. Finally, the authors shall consolidate and evaluate surface modification techniques employed to overcome some of these issues by offering a unique perspective as to the direction in which research is headed from a broad, interdisciplinary point of view.
Collapse
Affiliation(s)
- James Quinn
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan McFadden
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Chi-Wai Chan
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
6
|
Total Knee Arthroplasty with a Ti6Al4V/PEEK Prosthesis on an Osteoarthritis Rat Model: Behavioral and Neurophysiological Analysis. Sci Rep 2020; 10:5277. [PMID: 32210280 PMCID: PMC7093407 DOI: 10.1038/s41598-020-62146-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
Arthroplasty is a surgical procedure to restore the function of the joint of patient suffering from knee osteoarthritis. However, postoperative functional deficits are reported even after a rehabilitation program. In order to determine the origin of functional deficits of patient suffering from knee osteoarthritis and total knee arthroplasty, we developed a rodent model including a chemically-induced-osteoarthritis and designed a knee prosthesis (Ti6Al4V/PEEK) biomechanically and anatomically adapted to rat knee joint. Dynamic Weight-Bearing, gait kinematics, H-reflex from vastus medialis muscle and activities from metabosensitive III and IV afferent fibers in femoral nerve were assessed at 1 and 3 months post-surgery. Results indicate that knee osteoarthritis altered considerably the responses of afferent fibers to their known activators (i.e., lactic acid and potassium chloride) and consequently their ability to modulate the spinal sensorimotor loop, although, paradoxically, motor deficits seemed relatively light. On the contrary, results indicate that, after the total knee arthroplasty, the afferent responses and the sensorimotor function were slightly altered but that motor deficits were more severe. We conclude that neural changes attested by the recovery of the metabosensitive afferent activity and the sensorimotor loop were induced when a total knee replacement was performed and that these changes may disrupt or delay the locomotor recovery.
Collapse
|
7
|
Mann KA, Miller MA, Amendola RL, Cyndari KI, Horton JA, Damron TA, Oest ME. Early Changes in Cement-Bone Fixation Using a Novel Rat Knee Replacement Model. J Orthop Res 2019; 37:2163-2171. [PMID: 31206747 PMCID: PMC6739174 DOI: 10.1002/jor.24390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Trabecular resorption from interdigitated regions between cement and bone has been found in postmortem-retrieved knee replacements, but the viability of interdigitated bone, and the mechanism responsible for this bone loss is not known. In this work, a Sprague-Dawley (age 12 weeks) rat knee replacement model with an interdigitated cement-bone interface was developed. Morphological and cellular changes in the interdigitated region of the knee replacement over time (0, 2, 6, or 12 weeks) were determined for ovariectomy (OVX) and Sham OVX treatment groups. Interdigitated bone volume fraction (BV/TV) increased with time for Sham OVX (0.022 BV/TV/wk) and OVX (0.015 BV/TV/wk) group, but the rate of increase was greater for the Sham OVX group (p = 0.0064). Tissue mineral density followed a similar increase with time in the interdigitated regions. Trabecular resorption, when it did occur, started at the cement border with medullary-adjacent bone in the presence of osteoclasts. There was substantial loss of viable bone (~80% empty osteocyte lacunae) in the interdigitated regions. Pre-surgical fluorochrome labels remained in the interdigitated regions, and did not diminish with time, indicating that the bone was not remodeling. There was also some evidence of continued surface mineralization in the interdigitated region after cementing of the knee, but this diminished over time. Statement of clinical significance: Interdigitated bone with cement provides mechanical stability for success of knee replacements. Improved understanding of the fate of the interdigitated bone over time could lead to a better understanding of the loosening process and interventions to prevent loss of fixation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2163-2171, 2019.
Collapse
Affiliation(s)
- Kenneth A. Mann
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Mark A. Miller
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Richard L. Amendola
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Karen I. Cyndari
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Jason A. Horton
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Timothy A. Damron
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Megan E. Oest
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| |
Collapse
|
8
|
Li D, Wang C, Li Z, Wang H, He J, Zhu J, Zhang Y, Shen C, Xiao F, Gao Y, Zhang X, Li Y, Wang P, Peng J, Cai G, Zuo B, Yang Y, Shen Y, Song W, Zhang X, Shen L, Chen X. Nano-sized Al 2O 3 particle-induced autophagy reduces osteolysis in aseptic loosening of total hip arthroplasty by negative feedback regulation of RANKL expression in fibroblasts. Cell Death Dis 2018; 9:840. [PMID: 30082761 PMCID: PMC6079072 DOI: 10.1038/s41419-018-0862-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022]
Abstract
Aseptic loosening is mainly caused by wear debris generated by friction that can increase the expression of receptor activation of nuclear factor (NF)-κB (RANKL). RANKL has been shown to support the differentiation and maturation of osteoclasts. Although autophagy is a key metabolic pathway for maintaining the metabolic homeostasis of cells, no study has determined whether autophagy induced by Al2O3 particles is involved in the pathogenesis of aseptic loosening. The aim of this study was to evaluate RANKL levels in patients experiencing aseptic loosening after total hip arthroplasty (THA) and hip osteoarthritis (hOA) and to consequently clarify the relationship between RANKL and LC3II expression. We determined the levels of RANKL and autophagy in fibroblasts treated with Al2O3 particles in vitro while using shBECN-1 interference lentivirus vectors to block the autophagy pathway and BECN-1 overexpression lentivirus vectors to promote autophagy. We established a novel rat model of femoral head replacement and analyzed the effects of Al2O3 particles on autophagy levels and RANKL expression in synovial tissues in vivo. The RANKL levels in the revision total hip arthroplasty (rTHA) group were higher than those in the hOA group. In patients with rTHA with a ceramic interface, LC3II expression was high, whereas RANKL expression was low. The in vitro results showed that Al2O3 particles promoted fibroblast autophagy in a time- and dose-dependent manner and that RANKL expression was negatively correlated with autophagy. The in vivo results further confirmed these findings. Al2O3 particles induced fibroblast autophagy, which reduced RANKL expression. Decreasing the autophagy level promoted osteolysis and aseptic prosthetic loosening, whereas increasing the autophagy level reversed this trend.
Collapse
Affiliation(s)
- De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuokai Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiye He
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehui Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiquan Cai
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Yang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Song
- Department of Orthopedic Surgery, Sun Yat-Sen memorial hospital affiliated to Sun Yat-Sen university, Guangzhou, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Schindeler A, Mills RJ, Bobyn JD, Little DG. Preclinical models for orthopedic research and bone tissue engineering. J Orthop Res 2018; 36:832-840. [PMID: 29205478 DOI: 10.1002/jor.23824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
In this review, we broadly define and discuss the preclinical rodent models that are used for orthopedics and bone tissue engineering. These range from implantation models typically used for biocompatibility testing and high-throughput drug screening, through to fracture and critical defect models used to model bone healing and severe orthopedic injuries. As well as highlighting the key methods papers describing these techniques, we provide additional commentary based on our substantive practical experience with animal surgery and in vivo experimental design. This review also briefly touches upon the descriptive and functional outcome measures and power calculations that are necessary for an informative study. Obtaining informative and relevant research outcomes can be very dependent on the model used, and we hope this evaluation of common models will serve as a primer for new researchers looking to undertake preclinical bone studies. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:832-840, 2018.
Collapse
Affiliation(s)
- Aaron Schindeler
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Rebecca J Mills
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia
| | - Justin D Bobyn
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Micrometer-Sized Titanium Particles Induce Aseptic Loosening in Rabbit Knee. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5410875. [PMID: 29651439 PMCID: PMC5831897 DOI: 10.1155/2018/5410875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/06/2018] [Accepted: 01/14/2018] [Indexed: 11/26/2022]
Abstract
Wear debris induced aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure. The complex mechanism of aseptic loosening has been a major issue for introducing effective prevention and treatment methods, so a simplified yet efficient rabbit model was established to address this concern with the use of micrometer-sized titanium particles. 20 New Zealand white rabbits were selected and divided into two groups (control = 10, study = 10). A TKA surgery was then performed for each of them, with implantation of a titanium rod prosthesis which was coated evenly with micrometer-sized titanium in the study group and nothing in the control group, into right femoral medullary cavity. After 12 weeks, all the animals were euthanized and X-ray analyses, H&E staining, Goldner Masson trichrome staining, Von Kossa staining, PCR, and Western blotting of some specific mRNAs and proteins in the interface membrane tissues around the prosthesis were carried out. The implantation of a titanium rod prosthesis coated with 20 μm titanium particles into the femoral medullary cavity of rabbits caused continuous titanium particle stimulation around the prosthesis, effectively inducing osteolysis and aseptic loosening. Titanium particle-induced macrophages produce multiple inflammatory factors able to activate osteoclast differentiation through the OPG/RANKL/RANK signaling pathway, resulting in osteolysis while suppressing the function of osteoblasts and reducing bone ingrowth around the prosthesis. This model simulated the implantation and loosening process of an artificial prosthesis, which is an ideal etiological model to study the aseptic prosthetic loosening.
Collapse
|
11
|
Moran MM, Wilson BM, Ross RD, Virdi AS, Sumner DR. Arthrotomy-based preclinical models of particle-induced osteolysis: A systematic review. J Orthop Res 2017; 35:2595-2605. [PMID: 28548682 PMCID: PMC5702596 DOI: 10.1002/jor.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/24/2017] [Indexed: 02/04/2023]
Abstract
We completed a systematic literature review of in vivo animal models that use arthrotomy-based methods to study particle-induced peri-implant osteolysis. The purpose of the review was to characterize the models developed to date, to determine the questions addressed, to assess scientific rigor and transparency, and to identify gaps in knowledge. We probed three literature databases (Medline, Embase, and Scopus) and found 77 manuscripts that fit the search parameters. In the most recent 10 years, researchers mainly used rat and mouse models, whereas in the previous 20 years, large animal, canine, and rabbit models were more common. The studies have demonstrated several pathophysiology pathways, including macrophage migration, particle phagocytosis, increased local production of cytokines and lysosomal enzymes, elevated bone resorption, and suppressed bone formation. The effect of variation in particle characteristics and concentration received limited attention with somewhat mixed findings. Particle contamination by endotoxin was shown to exacerbate peri-implant osteolysis. The possibility of early diagnosis was demonstrated through imaging and biomarker approaches. Several studies showed that both local and systemic delivery of bisphosphonates inhibits the development of particle-induced osteolysis. Other methods of inhibiting osteolysis include the use of anabolic agents and altering the implant design. Few studies examined non-surgical rescue of loosened implants, with conflicting results with alendronate. We found that the manuscripts often lacked the methodological detail now advocated by the ARRIVE guidelines, suggesting that improvement in reporting would be useful to maximize rigor and transparency. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2595-2605, 2017.
Collapse
Affiliation(s)
- Meghan M. Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | | - Ryan D. Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Amarjit S. Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | |
Collapse
|
12
|
Singh G, Deutloff N, Maertens N, Meyer H, Awiszus F, Feuerstein B, Roessner A, Lohmann CH. Articulating polymethylmethacrylate (PMMA) spacers may have an immunomodulating effect on synovial tissue. Bone Joint J 2017; 98-B:1062-8. [PMID: 27482018 DOI: 10.1302/0301-620x.98b8.36663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 04/01/2016] [Indexed: 11/05/2022]
Abstract
AIMS Tissue responses to debris formed by abrasion of polymethylmethacrylate (PMMA) spacers at two-stage revision arthroplasty for prosthetic joint infection are not well described. We hypothesised that PMMA debris induces immunomodulation in periprosthetic tissues. PATIENTS AND METHODS Samples of tissue were taken during 35 two-stage revision arthroplasties (nine total hip and 26 total knee arthroplasties) in patients whose mean age was 67 years (44 to 85). Fourier transform infrared microscopy was used to confirm the presence of PMMA particles. Histomorphometry was performed using Sudan Red and Haematoxylin-Eosin staining. CD-68, CD-20, CD-11(c), CD-3 and IL-17 antibodies were used to immunophenotype the inflammatory cells. All slides were scored semi-quantitatively using the modified Willert scoring system. RESULTS The mean CD-68 scores did not show any significant change during the six weeks between the stages. Perivascular and diffuse scores showed significant difference in CD-3, CD-20, CD-11(c) and IL-17. At the time of re-implantation, a shift in the pattern of the expression of dendritic cells towards a perivascular arrangement and towards the periphery of PMMA particles was observed. Positive microbiological cultures were found at the time of re-implantation in three patients. Five further revisions were required for other reasons. CONCLUSION Our results represent a biological reaction of the synovial tissues to spacers with a less diffuse expression of dendritic cells and an increased expression of perivascular lymphocytes. The use of spacers in two-stage revision for infection probably induces an immunomodulation of synovial tissues. Cite this article: Bone Joint J 2016;98-B:1062-8.
Collapse
Affiliation(s)
- G Singh
- University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Health System, 1E Kent Ridge Road, 119228, Singapore
| | - N Deutloff
- Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - N Maertens
- Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - H Meyer
- Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - F Awiszus
- Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - B Feuerstein
- Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, D-39114 Magdeburg, Germany
| | - A Roessner
- Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - C H Lohmann
- Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| |
Collapse
|
13
|
Sukur E, Akman YE, Ozturkmen Y, Kucukdurmaz F. Particle Disease: A Current Review of the Biological Mechanisms in Periprosthetic Osteolysis After Hip Arthroplasty. Open Orthop J 2016; 10:241-51. [PMID: 27499822 PMCID: PMC4951796 DOI: 10.2174/1874325001610010241] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023] Open
Abstract
Background: Inflammatory responses to wear debris cause osteolysis that leads to aseptic prosthesis loosening and hip arthroplasty failure. Although osteolysis is usually associated with aseptic loosening, it is rarely seen around stable implants. Aseptic implant loosening is a simple radiologic phenomenon, but a complex immunological process. Particulate debris produced by implants most commonly causes osteolysis, and this is called particle-associated periprosthetic osteolysis (PPO). Objective: The objective of this review is to outline the features of particle-associated periprosthetic osteolysis to allow the physician to recognise this condition and commence early treatment, thereby optimizing patient outcome. Methods: A thorough literature search was performed using available databases, including Pubmed, to cover important research published covering particle-associated PPO. Results: Although osteolysis causes bone resorption, clinical, animal, and in vitro studies of particle bioreactivity suggest that particle-associated PPO represents the culmination of several biological reactions of many cell types, rather than being caused solely by the osteoclasts. The biological activity is highly dependent on the characteristics and quantity of the wear particles. Conclusion: Despite advances in total hip arthroplasty (THA), particle-associated PPO and aseptic loosening continue to be major factors that affect prosthetic joint longevity. Biomarkers could be exploited as easy and objective diagnostic and prognostic targets that would enable testing for osteolysis after THA. Further research is needed to identify new biomarkers in PPO. A comprehensive understanding of the underlying biological mechanisms is crucial for developing new therapeutic interventions to reverse or suppress biological responses to wear particles.
Collapse
Affiliation(s)
- Erhan Sukur
- Sakarya Education and Research Hospital, 54100, Sakarya, Turkey
| | - Yunus Emre Akman
- Metin Sabancı Baltalimanı Bone Diseases Training and Research Hospital, 34470, Istanbul, Turkey
| | - Yusuf Ozturkmen
- Istanbul Education and Research Hospital, 34100, Istanbul, Turkey
| | | |
Collapse
|
14
|
|
15
|
Hu B, Cai XZ, Shi ZL, Chen YL, Zhao X, Zhu HX, Yan SG. Microbubble injection enhances inhibition of low-intensity pulsed ultrasound on debris-induced periprosthetic osteolysis in rabbit model. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:177-186. [PMID: 25438844 DOI: 10.1016/j.ultrasmedbio.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
We determined whether the addition of microbubbles enhances the effect of low-intensity pulsed ultrasound (LIPUS) on bone-implant integration in an early-stage osteolysis model. The bone canals were injected with titanium particles before implantation to establish the periprosthetic osteolysis model. Before ultrasonic therapy, the microbubble-enhanced LIPUS group (GTi-Us-Mb) received an intra-articular injection of microbubbles. Biomechanical testing revealed that GTi-Us-Mb had significantly greater fixation strength than the LIPUS group (GTi-Us). Distal periprosthetic bone mineral density was also higher in GTi-Us than in the Ti group (GTi), but no significant increase was detected after administration of microbubbles. Histomorphometric analyses revealed that bone formation around the implant in GTi-Us was enhanced by the addition of microbubbles in GTi-Us-Mb. Taken together, our data indicate that microbubble injection enhances the inhibitory effect of LIPUS on debris-induced osteolysis and further strengthens the mechanical fixation of implants in an early-stage osteolysis model in vivo.
Collapse
Affiliation(s)
- Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun-Zi Cai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Orthopedic Research, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong-Li Shi
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Orthopedic Research, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun-Lin Chen
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Zhao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han-Xiao Zhu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shi-Gui Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Orthopedic Research, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Revised histopathological consensus classification of joint implant related pathology. Pathol Res Pract 2014; 210:779-86. [DOI: 10.1016/j.prp.2014.09.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/18/2014] [Indexed: 11/17/2022]
|
17
|
Krenn V, Morawietz L, Kienapfel H, Ascherl R, Matziolis G, Hassenpflug J, Thomsen M, Thomas P, Huber M, Schuh C, Kendoff D, Baumhoer D, Krukemeyer MG, Perino G, Zustin J, Berger I, Rüther W, Poremba C, Gehrke T. [Revised consensus classification. Histopathological classification of diseases associated with joint endoprostheses]. Z Rheumatol 2014; 72:383-92. [PMID: 23446461 DOI: 10.1007/s00393-012-1099-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The revised classification of the periprosthetic membrane (synovial-like interface membrane SLIM) encompasses all pathological alterations which can occur as a result of endoprosthetic replacement of major joints and lead to a reduction in durability of prostheses. This also includes the established consensus classification of SLIM by which aseptic and septic prosthetic loosening can be subdivided into four histological types and histopathological criteria for additional pathologies: endoprosthesis-associated arthrofibrosis, immunological/allergic alterations and osseous pathologies. This revision represents the foundation for the histopathological diagnostics of the total spectrum of diseases associated with joint prostheses, is a suitable basis for a standardized diagnostic procedure and etiological clarification of endoprosthesis failure and also as a data standard for endprosthesis registers, in particular for registers based on routine data (e.g. German endoprosthesis register).
Collapse
Affiliation(s)
- V Krenn
- MVZ-Zentrum für Histologie, Zytologie und Molekulare Diagnostik, Max-Planck-Str. 5, 54296 Trier.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
[Joint endoprosthesis pathology. Histopathological diagnostics and classification]. DER PATHOLOGE 2011; 32:210-9. [PMID: 21526399 DOI: 10.1007/s00292-011-1418-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prosthesis durability has steadily increased with high 10-year rates of 88-95%. However, four pathogenetic groups of diseases can decrease prosthesis durability: (1) periprosthetic wear particle disease (aseptic loosening) (2) bacterial infection (septic loosening) (3) periprosthetic ossification, and (4) arthrofibrosis. The histopathological "extended consensus classification of periprosthetic membranes" includes four types of membranes, arthrofibrosis, and osseous diseases of endoprosthetics: The four types of neosynovia are: wear particle-induced type (type I), mean prosthesis durability (MPD) in years 12.0; infectious type (type II), MPD 2.5; combined type (type III) MPD 4.2; and indeterminate type (type IV), MPD 5.5. Arthrofibrosis can be determined in three grades: grade 1 needs clinical information to be differentiated from a type IV membrane, and grades 2 & 3 can be diagnosed histopathologically. Periprosthetic ossification, osteopenia-induced fractures, and aseptic osteonecrosis can be histopathologically diagnosed safely with clinical information. The extended consensus classification of periprosthetic membranes may be a diagnostic groundwork for a future national endoprosthesis register.
Collapse
|
20
|
Yang F, Wu W, Cao L, Huang Y, Zhu Z, Tang T, Dai K. Pathways of macrophage apoptosis within the interface membrane in aseptic loosening of prostheses. Biomaterials 2011; 32:9159-67. [PMID: 21872327 DOI: 10.1016/j.biomaterials.2011.08.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 08/14/2011] [Indexed: 11/25/2022]
Abstract
Aseptic loosening is a major cause of failure of total hip arthroplasty (THA). Macrophage apoptosis in interface membrane has been proved to play an important role in the pathogenesis of aseptic loosening. The purpose of current study was to identify the apoptotic mechanism of macrophages in the interface membrane of aseptic loosening. We collected periprosthetic interface membrane from 23 patients undergoing the revision operations for aseptic loosening of hip joint prostheses. To serve as the control group, samples of capsule were collected from 18 patients undergoing the primary hip arthroplasties for osteoarthritis (OA). The ultrastructure of interface membrane was examined by transmission electron microscopy (TEM), and in situ apoptotic macrophage identification was performed by TUNEL staining. Furthermore, using immunohistochemical methods we investigated the expression of some apoptosis-related markers such as inducible nitric oxide synthase (iNOS), peroxynitrite (ONOO(-)), cleaved caspase-3/4/8/9, cytochrome c, glucose regulated protein 78 (GRP78), and growth arrest and DNA damage-inducible gene 153 (GADD153) in macrophages. These markers were regarded as apoptotic inducers or specific indicators of different apoptotic pathways such as death receptor pathway, mitochondrial pathway and endoplasmic reticulum (ER) stress pathway. TEM showed that a great deal of wear debris was phagocytosed by macrophages, which displayed morphological changes characteristic of apoptosis. The results of TUNEL staining demonstrated that there were more apoptotic macrophages in interface membrane. The expression levels of iNOS, ONOO(-), cleaved caspase-3/4/8/9, cytochrome c, GRP78 and GADD153 in macrophages in interface membrane were significantly higher than those in the control samples (p < 0.05). Our results suggest that death receptor pathway, mitochondria/cytochrosome c caspase-dependent pathway and ER stress pathway are involved in the process of macrophage apoptosis. A therapeutic target to modulate the apoptotic pathways in macrophages may be a strategy to prevent and treat aseptic loosening.
Collapse
Affiliation(s)
- Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Langlois J, Hamadouche M. New animal models of wear-particle osteolysis. INTERNATIONAL ORTHOPAEDICS 2010; 35:245-51. [PMID: 21069525 DOI: 10.1007/s00264-010-1143-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Particle debris resulting from in vivo degradation of total joint replacement components are recognised as the major factor limiting the longevity of joint reconstruction and the overall success of the procedure. Better understanding the complex cellular and tissue mechanisms and interactions resulting in wear-particle osteolysis requires a number of experimental approaches, including radiological monitoring and analysis of retrieved tissues from clinical cases, in vitro experiments, and also animal-model investigations. In consideration of both their advantages and drawbacks, this paper provides an historical overview of numerous animal models that have been developed over the last three decades to investigate the pathogenesis of wear-particle osteolysis and to facilitate the preclinical testing of new treatment options. The authors also focus on recent studies in order to provide a better understanding of the current state of the art on this subject and propose some perspectives regarding technical and fundamental questions.
Collapse
Affiliation(s)
- Jean Langlois
- Department of Orthopaedic and Reconstructive Surgery Service A, Centre Hospitalo-Universitaire Cochin-Port Royal, 27 Rue du Faubourg St Jacques, 75014 Paris, France.
| | | |
Collapse
|
22
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Viateau V, Bensidhoum M, Guillemin G, Petite H, Hannouche D, Anagnostou F, Pélissier P. Use of the induced membrane technique for bone tissue engineering purposes: animal studies. Orthop Clin North Am 2010; 41:49-56; table of contents. [PMID: 19931052 DOI: 10.1016/j.ocl.2009.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Animal experiments using the induced membrane procedure for bone tissue engineering purposes have provided evidence that the membrane has structural characteristics and biologic properties that may be used for bone tissue engineering purposes. Clinically relevant animal models have demonstrated that standardized particulate bone constructs can be used to repair large bone defects using the procedure and that the osteogenic ability of these constructs partially approaches that of bone autografts.
Collapse
Affiliation(s)
- Véronique Viateau
- Unité Pédagogique de Pathologie Chirurgicale, Ecole vétérinaire d'Alfort, 94700 Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Meinecke I, Pap G, Mendoza H, Drange S, Ender S, Strietholt S, Gay RE, Seyfert C, Ink B, Gay S, Pap T, Peters MA. Small ubiquitin-like modifier 1 [corrected] mediates the resistance of prosthesis-loosening fibroblast-like synoviocytes against Fas-induced apoptosis. ACTA ACUST UNITED AC 2009; 60:2065-70. [PMID: 19565496 DOI: 10.1002/art.24633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To study the expression of small ubiquitin-like modifier 1 (SUMO-1) in aseptic loosening of prosthesis implants and to investigate its role in regulating the susceptibility of prosthesis-loosening fibroblast-like synoviocytes (FLS) to Fas-induced apoptosis. METHODS Specimens of aseptically loosened tissue were obtained at revision surgery, and the expression of SUMO-1 was analyzed by in situ hybridization. SUMO-1 levels in FLS were determined by quantitative polymerase chain reaction and Western blot analysis. Immunohistochemistry and confocal microscopy were used to study the subcellular localization of SUMO-1. The functional role of SUMO-1 in Fas-induced apoptosis of prosthesis-loosening FLS was investigated by small interfering RNA-mediated knockdown of SUMO-1 and by gene transfer of the nuclear SUMO-specific protease SENP1. RESULTS SUMO-1 was expressed strongly in aseptically loosened tissue and was found prominently at sites adjacent to bone. Prosthesis-loosening FLS expressed levels of SUMO-1 similar to the levels expressed by rheumatoid arthritis (RA) FLS, with SUMO-1 being found mainly in promyelocytic leukemia protein nuclear bodies. Knockdown of SUMO-1 had no effect on spontaneous apoptosis but significantly increased the susceptibility of prosthesis-loosening FLS to Fas-induced apoptosis. Gene transfer of the nuclear SUMO-specific protease SENP1 reverted the apoptosis-inhibiting effects of SUMO-1. CONCLUSION These data suggest that SUMO-1 is involved in the activation of both RA FLS and prosthesis-loosening FLS by preventing these cells from undergoing apoptosis. Modification of nuclear proteins by SUMO-1 contributes to the antiapoptotic effects of SUMO-1 in prosthesis-loosening FLS, providing evidence for the specific activation of sumoylation during their differentiation. Therefore, SUMO-1 may be an interesting target for novel strategies to prevent aseptic prosthesis loosening.
Collapse
|
25
|
[Histopathologic diagnostics in endoprosthetics: periprosthetic neosynovialitis, hypersensitivity reaction, and arthrofibrosis]. DER ORTHOPADE 2009; 38:520-30. [PMID: 19448983 DOI: 10.1007/s00132-008-1400-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The durability of endoprosthetic implants of the large joints has increased over the last decades. North American studies have shown a 10-year durability of 94% for prosthetic hip implants, and European studies have shown 10-year durabilities of 88-95%. Pathologists differentiate three etiological disease patterns for the"pathology of endoprosthetics" that lead to reduction of implant durability: 1) periprosthetic particle disease (aseptic loosening), 2) infection, and 3) arthrofibrosis. Four types of neosynovitis/periprosthetic membrane have been determined in a consensus classification: particle-induced type (type I), with a mean prosthesis durability (MPD) of 12 years; infectious type (type II), MPD 2.5 years; combined type (type III), MPD 4.2 years; and indeterminate type (type IV), MPD 5.5 years. There are three histopathologic degrees of arthrofibrosis; grade 1 always needs clinical information for diagnosis, whereas grades 2 and 3 are distinct histopathologic entities.
Collapse
|
26
|
[Classification of prosthetic loosening and determination of wear particles]. DER PATHOLOGE 2009; 29 Suppl 2:232-9. [PMID: 18820921 DOI: 10.1007/s00292-008-1070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nowaday, loosening of orthopaedic implants implies important medical and socioeconomic problems. Implant loosening is caused by implant infections as well as aseptic loosening, due to particle disease and mechanical alterations. Clinically we divide the implant infection into early and late infections. Morphologically it is possible to reliably detect the infection by quantification of neutrophil granulocytes. Additionally molecular methods are suitable to detect micro-organisms which are responsible for the prosthetic joint infection including their resistance to antibiotics. Particle disease may be reproducibly classified by the detection of different types of wear particles, particularly polyethylene, metal, ceramic and cement. The aetiology of the indeterminate type of the periprosthetic membrane is obscure, but may be associated with osteopathies. This classification of the periprosthetic membrane morphology provides clinically significant information concerning clinical management of implant loosening.
Collapse
|
27
|
Abstract
The aseptic prosthetic loosening of hip and knee prosthesis is the most important cause of implant insufficiency. Bone loss as a result of the biological effect of wear particles is the main cause of such loosening. Wear particles develop their biological activity along different cellular pathways, above all via macrophages, foreign body giant cells as well as fibroblasts of the periprosthetic membrane. These cells induce particle-dependent bone resorption by means of proinflammatory cytokines, such as IL-1beta, TNF-alpha, IL-6 and PGE2. These factors induce the activation of osteoclasts as well as the suppression of osteoblasts. Neutrophil granulocytes and lymphocytes do not play an important role in the process of aseptic loosening. The different wear particles, such as ultra-high molecular weight polyethylene, metal particles, ceramic particles and polymethylmethacrylate can be morphologically recognized very easily. From the clinical point of view, the differentiation between acute or chronic implant infection and particle induced prosthetic loosening is very important, with the histomorphological differential diagnosis between septic and aseptic loosening and their combination being the key clinicopathological factor.
Collapse
Affiliation(s)
- M Otto
- Institut für Pathologie Trier und Referenzzentrum für Implantatpathologie/Biomaterialien.
| | | | | | | |
Collapse
|
28
|
Morawietz L, Classen RA, Schröder JH, Dynybil C, Perka C, Skwara A, Neidel J, Gehrke T, Frommelt L, Hansen T, Otto M, Barden B, Aigner T, Stiehl P, Schubert T, Meyer-Scholten C, König A, Ströbel P, Rader CP, Kirschner S, Lintner F, Rüther W, Bos I, Hendrich C, Kriegsmann J, Krenn V. Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J Clin Pathol 2006; 59:591-7. [PMID: 16731601 PMCID: PMC1860400 DOI: 10.1136/jcp.2005.027458] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS The introduction of clearly defined histopathological criteria for a standardised evaluation of the periprosthetic membrane, which can appear in cases of total joint arthroplasty revision surgery. METHODS Based on histomorphological criteria, four types of periprosthetic membrane were defined: wear particle induced type (detection of foreign body particles; macrophages and multinucleated giant cells occupy at least 20% of the area; type I); infectious type (granulation tissue with neutrophilic granulocytes, plasma cells and few, if any, wear particles; type II); combined type (aspects of type I and type II occur simultaneously; type III); and indeterminate type (neither criteria for type I nor type II are fulfilled; type IV). The periprosthetic membranes of 370 patients (217 women, 153 men; mean age 67.6 years, mean period until revision surgery 7.4 years) were analysed according to the defined criteria. RESULTS Frequency of histopathological membrane types was: type I 54.3%, type II 19.7%, type III 5.4%, type IV 15.4%, and not assessable 5.1%. The mean period between primary arthroplasty and revision surgery was 10.1 years for type I, 3.2 years for type II, 4.5 years for type III and 5.4 years for type IV. The correlation between histopathological and microbiological diagnosis was high (89.7%), and the inter-observer reproducibility sufficient (85%). CONCLUSION The classification proposed enables standardised typing of periprosthetic membranes and may serve as a tool for further research on the pathogenesis of the loosening of total joint replacement. The study highlights the importance of non-infectious, non-particle induced loosening of prosthetic devices in orthopaedic surgery (membrane type IV), which was observed in 15.4% of patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Arthroplasty, Replacement, Hip/adverse effects
- Arthroplasty, Replacement, Hip/methods
- Arthroplasty, Replacement, Knee/adverse effects
- Arthroplasty, Replacement, Knee/methods
- Female
- Foreign-Body Reaction/classification
- Foreign-Body Reaction/etiology
- Foreign-Body Reaction/pathology
- Giant Cells, Foreign-Body/pathology
- Granulation Tissue/pathology
- Hip Joint/pathology
- Humans
- Knee Joint/pathology
- Male
- Middle Aged
- Prosthesis Failure
- Prosthesis-Related Infections/complications
- Prosthesis-Related Infections/pathology
- Reoperation
Collapse
Affiliation(s)
- L Morawietz
- Institute für Pathologie, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Viateau V, Guillemin G, Calando Y, Logeart D, Oudina K, Sedel L, Hannouche D, Bousson V, Petite H. Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 2006; 35:445-52. [PMID: 16842289 DOI: 10.1111/j.1532-950x.2006.00173.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To report an ovine model that can be used to evaluate the efficacy of bone substitutes for repair of segmental diaphyseal bone defects. STUDY DESIGN Experimental study. ANIMALS Eleven 2-year-old Pré-Alpes Sheep. METHODS Mid-diaphyseal metatarsal bone defects (25 mm long) were stabilized by a dynamic compression plate over a polymethylmethacrylate (PMMA) cement spacer, and by external coaptation. The PMMA spacer was removed at 6 weeks by incising the encapsulating membrane. The defect remained unfilled (Group 1; n=5) or was filled with morselized autologous corticocancellous graft (Group 2; n=6), the membrane sutured closed, and external coaptation applied for 6 months, when healing was evaluated. RESULTS Radiographic, computed tomographic, and histologic examinations at 6 months after the 2nd surgery revealed non-union in ungrafted defects whereas grafted defects showed bone healing. The induced membrane had blood vessels, CBFA1+ cells, and very few macrophages entrapped in a collagenous tissue positive for type I collagen. CONCLUSION This ovine metatarsal defect model resulted in a critical-size defect (non-union) that healed when grafted. The PMMA-induced membrane constrained the graft, was well vascularized, and may have osteogenic properties. CLINICAL RELEVANCE This model may be useful to evaluate new strategies in bone tissue engineering because the PMMA-induced membrane may help confine bone morphogenetic proteins, skeletal stem cells, or other agents to the defect cavity where they could be useful to enhance bone formation.
Collapse
Affiliation(s)
- Véronique Viateau
- Unité Pédagogique de Pathologie Chirurgicale, Ecole Nationale Vétérinaire d'Alfort, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Inflammation-induced osteolysis is a problem in both inflammatory arthritis and total joint arthroplasty. New drug therapies have been shown to slow, halt, or even reverse the osteolysis associated with inflammatory arthritis. Unfortunately, similar advances in the medical treatment of periprosthetic osteolysis have not occurred. This review will update the state of periprosthetic osteolysis. RECENT FINDINGS Preliminary results with phase I and II clinical trials with AMG-162, a human IgG2 that binds receptor activator of nuclear factor kappaB (RANK) ligand, have been reported. Based on these results AMG-162 appears to be safe and to have a potent effect on osteoclast function. Based on animal studies, it is expected that regents such as AMG-162 that block RANK-ligand/RANK interaction will have activity in inflammation-induced osteolysis. Volumetric three-dimensional and magnetic resonance imaging scans for detecting and quantifying periprosthetic osteolysis have been validated in cadaver studies. Lymphocytic infiltrates and positive skin tests to cobalt have been found in patients with periprosthetic osteolysis after second generation metal-on-metal prostheses. These findings again raise the question of whether metal allergy may contribute to implant failure in these patients. A new subset of T helper cells that are neither Th1 nor Th2, but secrete a unique pattern of cytokines including IL-17, has recently been discovered. The importance of these cells in modifying particle-induced osteolysis remains to be determined. SUMMARY There have been significant advances in our understanding of periprosthetic osteolysis, imaging technology to quantify osteolysis, and drug development. The time now seems ripe to translate these advances in clinical trials.
Collapse
Affiliation(s)
- R John Looney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, NY 1442, USA.
| | | | | | | |
Collapse
|
31
|
Morawietz L, Gehrke T, Classen RA, Barden B, Otto M, Hansen T, Aigner T, Stiehl P, Neidel J, Schröder JH, Frommelt L, Schubert T, Meyer-Scholten C, König A, Ströbel P, Rader CP, Kirschner S, Lintner F, Rüther W, Skwara A, Bos I, Kriegsmann J, Krenn V. [Proposal for the classification of the periprosthetic membrane from loosened hip and knee endoprostheses]. DER PATHOLOGE 2005; 25:375-84. [PMID: 15257415 DOI: 10.1007/s00292-004-0710-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After 10 years, loosening of total joint endoprostheses occurs in about 3 to 10 percent of all patients, requiring elaborate revision surgery. A periprosthetic membrane is routinely found between bone and loosened prosthesis. Further histomorphological examination allows determination of the etiology of the loosening process. Aim of this study is the introduction of clearly defined histopathological criteria for a standardized evaluation of the periprosthetic membrane. Based on histomorphological criteria and polarized light microscopy, four types of the periprosthetic membrane were defined: periprosthetic membrane of wear particle type (type I), periprosthetic membrane of infectious type (type II), periprosthetic membrane of combined type (type III), periprosthetic membrane of indifferent type (type IV). Periprosthetic membranes of 268 patients were analyzed according to the defined criteria. The correlation between histopathological and microbiological diagnosis was high (89%, p<0,001), the inter-observer reproducibility was sufficient (95%). This classification system enables a standardized diagnostic procedure and therefore is a basis for further studies concerning the etiology of and pathogenesis of prosthesis loosening.
Collapse
Affiliation(s)
- L Morawietz
- Institut für Pathologie, Universitätsklinikum Charité, Berlin
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
El-Warrak AO, Olmstead M, Schneider R, Meinel L, Bettschart-Wolfisberger R, Akens MK, Auer J, von Rechenberg B. An experimental animal model of aseptic loosening of hip prostheses in sheep to study early biochemical changes at the interface membrane. BMC Musculoskelet Disord 2004; 5:7. [PMID: 15113432 PMCID: PMC404466 DOI: 10.1186/1471-2474-5-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 03/03/2004] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Aseptic loosening of hip prosthesis as it occurs in clinical cases in human patients was attributed to wear particles of the implants, the response of the tissue dominated by macrophages and the production of inflammatory mediators and matrix degrading enzymes; however, the cascade of events initiating the process and their interaction regarding the time course is still open and discussed controversially. Therefore, the goal of this study was to establish an experimental animal model in sheep allowing to follow the cascade of early mechanical and biochemical events within the interface membrane and study the sequence of how they contribute to the pathological bone resorption necessary for aseptic loosening of the implant. METHODS A cemented modular system (Biomedtrix) was used as a hip replacement in 24 adult Swiss Alpine sheep, with one group receiving a complete cement mantle as controls (n = 12), and the other group a cement mantle with a standardized, lateral, primary defect in the cement mantle (n = 12). Animals were followed over time for 2 and 8.5 months (n = 6 each). After sacrifice, samples from the interface membranes were harvested from five different regions of the femur and joint capsule. Explant cell cultures were performed and supernatant of cultures were tested and assayed for nitric oxide, prostaglandin E2, caseinolytic and collagenolytic activity. RNA extraction and quantification were performed for inducible nitric oxide synthase, cyclooxygenase-2, interleukin 1, and interleukin 6. Overall differences between groups and time periods and interactions thereof were calculated using a factorial analysis of variance (ANOVA). RESULTS The development of an interface membrane was noticed in both groups at both time points. However, in the controls the interface membrane regressed in thickness and biological activity, while both variables increased in the experimental group with the primary cement mantle defect over time. Nitric oxide (NO) and PGE2 concentrations were higher in the 8.5 months group (P < 0.0001) compared to the 2 months group with a tendency for the unstable group to have higher concentrations. The same was true for collagenolytic activity (P = 0.05), but not for caseinolytic activity that decreased over time (P < 0.0001). CONCLUSION In this study, a primary cement mantle defect of the femoral shaft elicited biomechanical instability and biochemical changes over time in an experimental animal study in sheep, that resembled the changes described at the bone cement-interface in aseptic loosening of total hip prosthesis in humans. The early biochemical changes may well explain the pathologic bone resorption and formation of an interface membrane as is observed in clinical cases. This animal model may aid in future studies aiming at prevention of aseptic loosening of hip prosthesis and reflect some aspects of the pathogenesis involved.
Collapse
Affiliation(s)
- Alexander O El-Warrak
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
- CNPq, Brasilia, Brazil
| | - Marvin Olmstead
- Department of Veterinary Clinical Sciences, The Ohio State University, College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Rebecca Schneider
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Lorenz Meinel
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Regula Bettschart-Wolfisberger
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Margarete K Akens
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Joerg Auer
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Dept. of Veterinary Surgery, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Abstract
Although total joint replacement surgery is one of the most successful clinical procedures performed today, bone loss around knee and hip implants (osteolysis), resulting in aseptic loosening of the prosthesis, remains a major problem for many patients. Over the last decade much has been learned about this process, which is caused by wear debris particles that simulate a local inflammatory response and osteoclastic bone resorption. Aseptic loosening cannot be prevented or treated by existing nonsurgical methods. Gene transfer, however, offers novel possibilities. Here, we review the current state of the field and the experimental gene therapy approaches that have been investigated toward a solution to aseptic loosening of prosthetic implants.
Collapse
Affiliation(s)
- P H Wooley
- Department of Orthopaedic Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
34
|
Pap T, Claus A, Ohtsu S, Hummel KM, Schwartz P, Drynda S, Pap G, Machner A, Stein B, George M, Gay RE, Neumann W, Gay S, Aicher WK. Osteoclast-independent bone resorption by fibroblast-like cells. Arthritis Res Ther 2003; 5:R163-73. [PMID: 12723988 PMCID: PMC165048 DOI: 10.1186/ar752] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 01/14/2003] [Accepted: 02/25/2003] [Indexed: 01/15/2023] Open
Abstract
To date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under pathological conditions, may not only enhance but also actively contribute to bone resorption. These cells should therefore be considered novel therapeutic targets in the treatment of bone destructive disorders.
Collapse
Affiliation(s)
- Thomas Pap
- Division of Experimental Rheumatology, Otto-von-Guericke University, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Looney RJ, Boyd A, Totterman S, Seo GS, Tamez-Pena J, Campbell D, Novotny L, Olcott C, Martell J, Hayes FA, O'Keefe RJ, Schwarz EM. Volumetric computerized tomography as a measurement of periprosthetic acetabular osteolysis and its correlation with wear. ARTHRITIS RESEARCH 2002; 4:59-63. [PMID: 11879538 PMCID: PMC64853 DOI: 10.1186/ar384] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Revised: 09/05/2001] [Accepted: 09/06/2001] [Indexed: 11/10/2022]
Abstract
Osteolysis, which is considered to be a major source of morbidity following total hip joint replacement, has been notoriously difficult to measure accurately, particularly in the acetabular area. In order to study periacetabular osteolysis, specialized software for computerized tomography (CT) scan image analysis has been developed. This software (3D-CT) eliminates metal artifacts, allows three-dimensional segmentation of the CT image, and reconstructs the segmented image to provide an accurate representation and measurement of volume for osteolytic lesions. In the present study, 20 patients underwent periacetabular osteolytic volume determination using 3D-CT, functional assessment (using the Harris Hip Scale, the Western Ontario and McMaster University Osteoarthritis Index, and the short form 36 questionnaire), and two-dimensional analysis of volumetic polyethylene wear using digitalized plain films. Periacetabular osteolysis correlated directly with the polyethylene wear rate (relative risk [RR] = 0.494, P = 0.027). If one patient with an acetabular revision, one patient with recurrent dislocation, and one patient with a Biomet prosthesis are excluded, then the correlation between wear and osteolysis is improved (RR = 0.685, P = 0.002). In summary, the current study demonstrates both the feasibility of CT imaging of periacetabular osteolysis and the correlation between polyethylene wear and osteolytic volume, providing a potential outcome measure for clinical trials that are designed to examine interventions in this complex disease process.
Collapse
Affiliation(s)
- R John Looney
- Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|