1
|
Pavani G, Klein JG, Nations CC, Sussman JH, Tan K, An HH, Abdulmalik O, Thom CS, Gearhart PA, Willett CM, Maguire JA, Chou ST, French DL, Gadue P. Modeling primitive and definitive erythropoiesis with induced pluripotent stem cells. Blood Adv 2024; 8:1449-1463. [PMID: 38290102 PMCID: PMC10955655 DOI: 10.1182/bloodadvances.2023011708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.
Collapse
Affiliation(s)
- Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joshua G. Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Catriana C. Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan H. Sussman
- Department of Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kai Tan
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hyun Hyung An
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christopher S. Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Peter A. Gearhart
- Department of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA
| | - Camryn M. Willett
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stella T. Chou
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
2
|
Thongsa-Ad U, Wongpan A, Wongkummool W, Chaiwijit P, Uppakara K, Chaiyakitpattana G, Singpant P, Tong-Ngam P, Chukhan A, Pabuprappap W, Wongniam S, Suksamrarn A, Hongeng S, Anurathapan U, Kulkeaw K, Tubsuwan A, Bhukhai K. Improving hematopoietic differentiation from human induced pluripotent stem cells by the modulation of Hippo signaling with a diarylheptanoid derivative. Stem Cell Res Ther 2024; 15:60. [PMID: 38433217 PMCID: PMC10910864 DOI: 10.1186/s13287-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.
Collapse
Affiliation(s)
- Umnuaychoke Thongsa-Ad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wasinee Wongkummool
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phaewa Chaiwijit
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | | | - Passanan Singpant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pirut Tong-Ngam
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Amnat Chukhan
- Prima Scientific, 147/170-171 Baromrajchonnee, Arunamarin, Bangkok, 10700, Thailand
| | - Wachirachai Pabuprappap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Sirapope Wongniam
- Center for Scientific Instrumentation and Platform Services Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alisa Tubsuwan
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Sugimoto N, Eto K. Ex Vivo Production of Platelets From iPSCs: The iPLAT1 Study and Beyond. Hemasphere 2023; 7:e884. [PMID: 37213327 PMCID: PMC10194644 DOI: 10.1097/hs9.0000000000000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
5
|
Koptyug A, Sukhovei Y, Kostolomova E, Unger I, Kozlov V. Novel Strategy in Searching for Natural Compounds with Anti-Aging and Rejuvenating Potential. Int J Mol Sci 2023; 24:ijms24098020. [PMID: 37175723 PMCID: PMC10178965 DOI: 10.3390/ijms24098020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
We suggest a novel approach for searching natural compounds with anti-aging and rejuvenation potential using cell cultures, with a high potential for the further in vivo applications. The present paper discusses ways of defining age for cell populations with large numbers of cells and suggests a method of assessing how young or old a cell population is based on a cell age profile approach. This approach uses experimental distributions of the cells over the cell cycle stages, acquired using flow cytometry. This paper discusses how such a profile should evolve under homeostatic maintenance of cell numbers in the proliferation niches. We describe promising results from experiments on a commercial substance claiming rejuvenating and anti-aging activity acting upon the cultures of human mononuclear cells and dermal fibroblasts. The chosen substance promotes a shift towards larger proportion of cells in synthesis and proliferation stages, and increases cell culture longevity. Further, we describe promising in vivo testing results of a selected food supplement. Based on the described concept of cell age profile and available test results, a strategy to search for natural compounds with regenerative, anti-aging and rejuvenation potential is suggested and proposed for wider and thorough testing. Proposed methodology of age assessment is rather generic and can be used for quantitative assessment of the anti-aging and rejuvenation potential of different interventions. Further research aimed at the tests of the suggested strategy using more substances and different interventions, and the thorough studies of molecular mechanisms related to the action of the substance used for testing the suggested search methodology, are needed.
Collapse
Affiliation(s)
- Andrey Koptyug
- SportsTech Research Center, Department of Engineering, Mathematics and Science Education, Mid Sweden University, Akademigatan 1, 831 25 Östersund, Sweden
| | - Yurij Sukhovei
- Institute of Fundamental and Clinical Immunology, Tyumen Branch, Kotovskogo Str. 5, 625027 Tyumen, Russia
| | - Elena Kostolomova
- Department of Microbiology, Tyumen State Medical University, Kotovskogo Str. 5/2, 625023 Tyumen, Russia
| | - Irina Unger
- Institute of Fundamental and Clinical Immunology, Tyumen Branch, Kotovskogo Str. 5, 625027 Tyumen, Russia
| | - Vladimir Kozlov
- Institute of Fundamental and Clinical Immunology, Department of Clinical Immunology, Yadrintcevskaya Str. 14, 630099 Novosibirsk, Russia
| |
Collapse
|
6
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
7
|
Cnossen MH, van Moort I, Reitsma SH, de Maat MPM, Schutgens REG, Urbanus RT, Lingsma HF, Mathot RAA, Gouw SC, Meijer K, Bredenoord AL, van der Graaf R, Fijnvandraat K, Meijer AB, van den Akker E, Bierings R, Eikenboom JCJ, van den Biggelaar M, de Haas M, Voorberg J, Leebeek FWG. SYMPHONY consortium: Orchestrating personalized treatment for patients with bleeding disorders. J Thromb Haemost 2022; 20:S1538-7836(22)02096-7. [PMID: 35652368 PMCID: PMC9545335 DOI: 10.1111/jth.15778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Treatment choices for individual patients with an inborn bleeding disorder are increasingly challenging due to increasing options and rising costs for society. We have initiated an integrated interdisciplinary national research programme. OBJECTIVES The SYMPHONY consortium strives to orchestrate personalized treatment in patients with an inborn bleeding disorder, by unravelling the mechanisms behind inter-individual variations of bleeding phenotype. PATIENTS The SYMPHONY consortium will investigate patients with an inborn bleeding disorder, both diagnosed and not yet diagnosed. RESULTS Research questions are categorized under the themes: 1) Diagnosis; 2) Treatment; and 3) Fundamental research and consist of workpackages addressing specific domains. Importantly, collaborations between patients and talented researchers from different areas of expertise promise to augment the impact of the SYMPHONY consortium, leading to unique interactions and intellectual property. CONCLUSIONS SYMPHONY will perform research on all aspects of care, treatment individualization in patients with inborn bleeding disorders as well as diagnostic innovations and results of molecular genetics and cellular model technology with regard to the hemostatic process. We believe that these research investments will lead to health care innovations with long-term clinical and societal impact. This consortium has been made possible by a governmental, competitive grant from the Netherlands Organization for Scientific Research (NWO) within the framework of the NWA-ORC Call grant agreement NWA.1160.18.038.
Collapse
Affiliation(s)
- Marjon H. Cnossen
- Department of Pediatric Hematology and OncologyErasmus University Medical Center, Erasmus MC Sophia Children’s HospitalRotterdamthe Netherlands
| | - Iris van Moort
- Department of HematologyErasmus University Medical Center, Erasmus MC RotterdamRotterdamthe Netherlands
| | - Simone H. Reitsma
- Department of Pediatric Hematology and OncologyErasmus University Medical Center, Erasmus MC Sophia Children’s HospitalRotterdamthe Netherlands
| | - Moniek P. M. de Maat
- Department of HematologyErasmus University Medical Center, Erasmus MC RotterdamRotterdamthe Netherlands
| | - Roger E. G. Schutgens
- Center for Benign Hematology, Thrombosis and Hemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Rolf T. Urbanus
- Center for Benign Hematology, Thrombosis and Hemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Hester F. Lingsma
- Department of Public HealthErasmus University Medical Center, Erasmus MC RotterdamRotterdamthe Netherlands
| | - Ron A. A. Mathot
- Department of Hospital Pharmacy‐Clinical PharmacologyAmsterdam University Medical CentersAmsterdamthe Netherlands
| | - Samantha C. Gouw
- Department of Pediatric HematologyEmma Children’s Hospital, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Karina Meijer
- Department of HematologyUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | | | - Rieke van der Graaf
- Julius Center for Health Sciences and Primary CareDepartment of Medical HumanitiesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Karin Fijnvandraat
- Department of Pediatric HematologyEmma Children’s Hospital, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Sanquin Research, Department of Molecular HematologyAmsterdamthe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Alexander B. Meijer
- Sanquin Research, Department of Molecular HematologyAmsterdamthe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Emile van den Akker
- Sanquin Research, Department of HematopoiesisAmsterdamthe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Ruben Bierings
- Department of HematologyErasmus University Medical Center, Erasmus MC RotterdamRotterdamthe Netherlands
| | - Jeroen C. J. Eikenboom
- Department of Internal Medicine, Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Maartje van den Biggelaar
- Sanquin Research, Department of Molecular HematologyAmsterdamthe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services and Center for Clinical Transfusion ResearchAmsterdamthe Netherlands
- Department of HematologyLeiden University Medical CenterLeidenthe Netherlands
| | - Jan Voorberg
- Sanquin Research, Department of Molecular HematologyAmsterdamthe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Frank W. G. Leebeek
- Department of HematologyErasmus University Medical Center, Erasmus MC RotterdamRotterdamthe Netherlands
| | | |
Collapse
|
8
|
Rao I, Crisafulli L, Paulis M, Ficara F. Hematopoietic Cells from Pluripotent Stem Cells: Hope and Promise for the Treatment of Inherited Blood Disorders. Cells 2022; 11:cells11030557. [PMID: 35159366 PMCID: PMC8834203 DOI: 10.3390/cells11030557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Inherited blood disorders comprise a large spectrum of diseases due to germline mutations in genes with key function in the hematopoietic system; they include immunodeficiencies, anemia or metabolic diseases. For most of them the only curative treatment is bone marrow transplantation, a procedure associated to severe complications; other therapies include red blood cell and platelet transfusions, which are dependent on donor availability. An alternative option is gene therapy, in which the wild-type form of the mutated gene is delivered into autologous hematopoietic stem cells using viral vectors. A more recent therapeutic perspective is gene correction through CRISPR/Cas9-mediated gene editing, that overcomes safety concerns due to insertional mutagenesis and allows correction of base substitutions in large size genes difficult to incorporate into vectors. However, applying this technique to genomic disorders caused by large gene deletions is challenging. Chromosomal transplantation has been proposed as a solution, using a universal source of wild-type chromosomes as donor, and induced pluripotent stem cells (iPSCs) as acceptor. One of the obstacles to be addressed for translating PSC research into clinical practice is the still unsatisfactory differentiation into transplantable hematopoietic stem or mature cells. We provide an overview of the recent progresses in this field and discuss challenges and potential of iPSC-based therapies for the treatment of inherited blood disorders.
Collapse
Affiliation(s)
- Ilaria Rao
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- Correspondence:
| |
Collapse
|
9
|
von Lindern M, Egée S, Bianchi P, Kaestner L. The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Front Physiol 2022; 13:824478. [PMID: 35177994 PMCID: PMC8844196 DOI: 10.3389/fphys.2022.824478] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
Erythrocytes represent at least 60% of all cells in the human body. During circulation, they experience a huge variety of physical and chemical stimulations, such as pressure, shear stress, hormones or osmolarity changes. These signals are translated into cellular responses through ion channels that modulate erythrocyte function. Ion channels in erythrocytes are only recently recognized as utmost important players in physiology and pathophysiology. Despite this awareness, their signaling, interactions and concerted regulation, such as the generation and effects of “pseudo action potentials”, remain elusive. We propose a systematic, conjoined approach using molecular biology, in vitro erythropoiesis, state-of-the-art electrophysiological techniques, and channelopathy patient samples to decipher the role of ion channel functions in health and disease. We need to overcome challenges such as the heterogeneity of the cell population (120 days lifespan without protein renewal) or the access to large cohorts of patients. Thereto we will use genetic manipulation of progenitors, cell differentiation into erythrocytes, and statistically efficient electrophysiological recordings of ion channel activity.
Collapse
Affiliation(s)
- Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stéphane Egée
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, UMR 8227, Sorbonne Université, Roscoff Cedex, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Paola Bianchi
- Pathophysiology of Anemia Unit, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, Milan, Italy
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- *Correspondence: Lars Kaestner,
| |
Collapse
|
10
|
Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. Cells 2021; 10:cells10113250. [PMID: 34831472 PMCID: PMC8623953 DOI: 10.3390/cells10113250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The breakthrough in human induced pluripotent stem cells (hiPSCs) has revolutionized the field of biomedical and pharmaceutical research and opened up vast opportunities for drug discovery and regenerative medicine, especially when combined with gene-editing technology. Numerous healthy and patient-derived hiPSCs for human disease modeling have been established, enabling mechanistic studies of pathogenesis, platforms for preclinical drug screening, and the development of novel therapeutic targets/approaches. Additionally, hiPSCs hold great promise for cell-based therapy, serving as an attractive cell source for generating stem/progenitor cells or functional differentiated cells for degenerative diseases, due to their unlimited proliferative capacity, pluripotency, and ethical acceptability. In this review, we provide an overview of hiPSCs and their utility in the study of hematologic disorders through hematopoietic differentiation. We highlight recent hereditary and acquired genetic hematologic disease modeling with patient-specific iPSCs, and discuss their applications as instrumental drug screening tools. The clinical applications of hiPSCs in cell-based therapy, including the next-generation cancer immunotherapy, are provided. Lastly, we discuss the current challenges that need to be addressed to fulfill the validity of hiPSC-based disease modeling and future perspectives of hiPSCs in the field of hematology.
Collapse
|
11
|
Yuzuriha A, Eto K. Revised "hPSC-Sac Method" for Simple and Efficient Differentiation of Human Pluripotent Stem Cells to Hematopoietic Progenitor Cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:411-422. [PMID: 34724185 DOI: 10.1007/7651_2021_443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human hematopoietic differentiation in vitro of human pluripotent stem cells (hPSCs) has provided new tools to elucidate the mechanisms of related genetic abnormalities, such as congenital diseases and acquired hematopoietic malignancies, and to discover new treatments. The differentiation can also be applied to developing a stable source of blood products for transfusion with minimal risk of several blood-borne infections. We previously proposed a method for hematopoietic progenitor cell (HPC) differentiation, the "hPSC-sac method", in which hPSCs are cocultured with C3H10T1/2 mouse stromal cells and mixed with a single cytokine, VEGF. The hPSC-sac method can differentiate hPSCs to multiple blood lineages. Here we describe improvements in the method by adding bFGF, TGFβ inhibitor and heparin to the culture, which increases the yield of CD34+CD43+ HPCs 50-fold compared with the original protocol. This revised hPSC-sac method is expected to contribute to the development of disease models and regenerative medicine using hematopoietic lineage cells.
Collapse
Affiliation(s)
- Akinori Yuzuriha
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan. .,Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
12
|
Xie X, Yao H, Han X, Yue W, Pei X. Therapeutic use of red blood cells and platelets derived from human cord blood stem cells. Stem Cells Transl Med 2021; 10 Suppl 2:S48-S53. [PMID: 34724719 PMCID: PMC8560193 DOI: 10.1002/sctm.20-0517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 12/19/2022] Open
Abstract
Red blood cells (RBCs) and platelets derived from stem cells are possible solutions to the increasing demand for blood transfusion. Based on the availability of stem cells, their relatively defined differentiation mechanisms, and the massive exploration of induction systems, the generation of RBCs or platelets in vitro from cord blood hematopoietic stem/progenitor cells (CB-HSPCs) has potential for clinical applications. However, information on the clinical translation of stem cell-derived RBCs and platelets in the literature and at the ClinicalTrials.gov website is very limited. The only clinical trial on cultured RBCs, which aimed to assess the lifespan of RBCs cultured in vivo, was reported by Luc Douay and colleagues. Of note, the cultured RBCs they used were derived from autologous peripheral blood HSPCs, and no cultured platelets have been applied clinically to date. However, CB-HSPC-derived megakaryocytes, platelet precursors, have been used in the treatment of thrombocytopenia. A successful phase I trial was reported, followed by phase II and III clinical trials conducted in China. In this review, the gap between the many basic studies and limited clinical trials on stem cell-derived RBCs and platelets is summarized. The possible reasons and solutions for this gap are discussed. Further technological improvements for blood cell expansion and maturation ex vivo and the establishment of biological standards for stem cell derivatives might help to facilitate the therapeutic applications of cultured RBCs and platelets derived from CB-HSPCs in the near future.
Collapse
Affiliation(s)
- Xiaoyan Xie
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| | - Hailei Yao
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| | - Xiaoyan Han
- National Institutes for Food and Drug ControlBeijingPeople's Republic of China
| | - Wen Yue
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| | - Xuetao Pei
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| |
Collapse
|
13
|
Rattananon P, Anurathapan U, Bhukhai K, Hongeng S. The Future of Gene Therapy for Transfusion-Dependent Beta-Thalassemia: The Power of the Lentiviral Vector for Genetically Modified Hematopoietic Stem Cells. Front Pharmacol 2021; 12:730873. [PMID: 34658870 PMCID: PMC8517149 DOI: 10.3389/fphar.2021.730873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.
Collapse
Affiliation(s)
- Parin Rattananon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| |
Collapse
|
14
|
Pandey P, Zhang N, Curtis BR, Newman PJ, Denomme GA. Generation of 'designer erythroblasts' lacking one or more blood group systems from CRISPR/Cas9 gene-edited human-induced pluripotent stem cells. J Cell Mol Med 2021; 25:9340-9349. [PMID: 34547166 PMCID: PMC8500969 DOI: 10.1111/jcmm.16872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the recent advancements in transfusion medicine, red blood cell (RBC) alloimmunization remains a challenge for multiparous women and chronically transfused patients. At times, diagnostic laboratories depend on difficult-to-procure rare reagent RBCs for the identification of different alloantibodies in such subjects. We have addressed this issue by developing erythroblasts with custom phenotypes (Rh null, GPB null and Kx null/Kell low) using CRISPR/Cas9 gene-editing of a human induced pluripotent stem cell (hiPSC) parent line (OT1-1) for the blood group system genes: RHAG, GYPB and XK. Guide RNAs were cloned into Cas9-puromycin expression vector and transfected into OT1-1. Genotyping was performed to select puromycin-resistant hiPSC KOs. CRISPR/Cas9 gene-editing resulted in the successful generation of three KO lines, RHAG KO, GYPB KO and XK KO. The OT1-1 cell line, as well as the three KO hiPSC lines, were differentiated into CD34+ CD41+ CD235ab+ hematopoietic progenitor cells (HPCs) and subsequently to erythroblasts. Native OT1-1 erythroblasts were positive for the expression of Rh, MNS, Kell and H blood group systems. Differentiation of RHAG KO, GYPB KO and XK KO resulted in the formation of Rh null, GPB null and Kx null/Kell low erythroblasts, respectively. OT1-1 as well as the three KO erythroblasts remained positive for RBC markers-CD71 and BAND3. Erythroblasts were mostly at the polychromatic/ orthochromatic stage of differentiation. Up to ~400-fold increase in erythroblasts derived from HPCs was observed. The availability of custom erythroblasts generated from CRISPR/Cas9 gene-edited hiPSC should be a useful addition to the tools currently used for the detection of clinically important red cell alloantibodies.
Collapse
Affiliation(s)
| | | | - Brian R. Curtis
- Versiti Blood Research InstituteMilwaukeeWIUSA
- Diagnostic LaboratoriesVersiti Blood Center of WisconsinMilwaukeeWIUSA
| | - Peter J. Newman
- Versiti Blood Research InstituteMilwaukeeWIUSA
- Departments of Pharmacology and Cellular BiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Gregory A. Denomme
- Versiti Blood Research InstituteMilwaukeeWIUSA
- Diagnostic LaboratoriesVersiti Blood Center of WisconsinMilwaukeeWIUSA
| |
Collapse
|
15
|
Shen J, Xu Y, Zhang S, Lyu S, Huo Y, Zhu Y, Tang K, Mou J, Li X, Hoyle DL, Wang M, Wang J, Li X, Wang ZZ, Cheng T. Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs. SCIENCE ADVANCES 2021; 7:eabi9787. [PMID: 34516916 PMCID: PMC8442917 DOI: 10.1126/sciadv.abi9787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Hematopoietic differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic cell and gene regulatory networks but often generates blood cells that lack natural function. Here, we performed extensive single-cell transcriptomic analyses to map fate choices and gene expression patterns during hematopoietic differentiation of hPSCs and showed that oxidative metabolism was dysregulated during in vitro directed differentiation. Applying hypoxic conditions at the stage of endothelial-to-hematopoietic transition in vitro effectively promoted the development of arterial specification programs that governed the generation of hematopoietic progenitor cells (HPCs) with functional T cell potential. Following engineered expression of the anti-CD19 chimeric antigen receptor, the T cells generated from arterial endothelium-primed HPCs inhibited tumor growth both in vitro and in vivo. Collectively, our study provides benchmark datasets as a resource to further understand the origins of human hematopoiesis and represents an advance in guiding in vitro generation of functional T cells for clinical applications.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingying Huo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xinjie Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China
| | - Xin Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
16
|
Blom T, Meinsma R, di Summa F, van den Akker E, van Kuilenburg ABP, Hansen M, Tytgat GAM. Thrombocytopenia after meta-iodobenzylguanidine (MIBG) therapy in neuroblastoma patients may be caused by selective MIBG uptake via the serotonin transporter located on megakaryocytes. EJNMMI Res 2021; 11:81. [PMID: 34424429 PMCID: PMC8382772 DOI: 10.1186/s13550-021-00823-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, primarily consisting of severe and persistent thrombocytopenia. We hypothesize that this is caused by selective uptake of MIBG via the serotonin transporter (SERT) located on platelets and megakaryocytes. In this study, we have investigated whether in vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG and whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent this radiotoxic MIBG uptake. Methods Peripheral blood CD34+ cells were differentiated to human megakaryocytic cells using a standardized culture protocol. Prior to [3H]serotonin and [125I]MIBG uptake experiments, the differentiation status of megakaryocyte cultures was assessed by flow cytometry. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess SERT and NET (norepinephrine transporter) mRNA expression. On day 10 of differentiation, [3H]serotonin and [125I]MIBG uptake assays were conducted. Part of the samples were co-incubated with the SSRI citalopram to assess SERT-specific uptake. HEK293 cells transfected with SERT, NET, and empty vector served as controls. Results In vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG. After 10 days of differentiation, megakaryocytic cell culture batches from three different hematopoietic stem and progenitor cell donors showed on average 9.2 ± 2.4 nmol of MIBG uptake per milligram protein per hour after incubation with 10–7 M MIBG (range: 6.6 ± 1.0 to 11.2 ± 1.0 nmol/mg/h). Co-incubation with the SSRI citalopram led to a significant reduction (30.1%—41.5%) in MIBG uptake, implying SERT-specific uptake of MIBG. A strong correlation between the number of mature megakaryocytes and SERT-specific MIBG uptake was observed. Conclusion Our study demonstrates that human megakaryocytes cultured in vitro are capable of MIBG uptake. Moreover, the SSRI citalopram selectively inhibits MIBG uptake via the serotonin transporter. The concomitant administration of citalopram to neuroblastoma patients during [131I]MIBG therapy might be a promising strategy to prevent the onset of thrombocytopenia. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00823-5.
Collapse
Affiliation(s)
- Thomas Blom
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rutger Meinsma
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Franca di Summa
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marten Hansen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
17
|
Kronstein-Wiedemann R, Thiel J, Tonn T. Blood Pharming – eine realistische Option? TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1342-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Jessica Thiel
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Torsten Tonn
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| |
Collapse
|
18
|
Zhang B, Wu X, Zi G, He L, Wang S, Chen L, Fan Z, Nan X, Xi J, Yue W, Wang L, Wang L, Hao J, Pei X, Li Y. Large-scale generation of megakaryocytes from human embryonic stem cells using transgene-free and stepwise defined suspension culture conditions. Cell Prolif 2021; 54:e13002. [PMID: 33615584 PMCID: PMC8016648 DOI: 10.1111/cpr.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Ex vivo engineered production of megakaryocytes (MKs) and platelets (PLTs) from human pluripotent stem cells is an alternative approach to solve shortage of donor-donated PLTs in clinics and to provide induced PLTs for transfusion. However, low production yields are observed and the generation of clinically applicable MKs and PLTs from human pluripotent stem cells without genetic modifications still needs to be improved. MATERIALS AND METHODS We defined an optimal, stepwise and completely xeno-free culture protocol for the generation of MKs from human embryonic stem cells (hESCs). To generate MKs from hESCs on a large scale, we improved the monolayer induction manner to define three-dimensional (3D) and sphere-like differentiation systems for MKs by using a special polystyrene CellSTACK culture chamber. RESULTS The 3D manufacturing system could efficiently generate large numbers of MKs from hESCs within 16-18 days of continuous culturing. Each CellSTACK culture chamber could collect on an average 3.4 × 108 CD41+ MKs after a three-stage orderly induction process. MKs obtained from hESCs via 3D induction showed significant secretion of IL-8, thrombospondin-1 and MMP9. The induced cells derived from hESCs in our culture system were shown to have the characteristics of MKs as well as the function to form proPLTs and release PLTs. Furthermore, we generated clinically applicable MKs from clinical-grade hESC lines and confirmed the biosafety of these cells. CONCLUSIONS We developed a simple, stepwise, 3D and completely xeno-free/feeder-free/transgene-free induction system for the generation of MKs from hESCs. hESC-derived MKs were shown to have typical MK characteristics and PLT formation ability. This study further enhances the clinical applications of MKs or PLTs derived from pluripotent stem cells.
Collapse
Affiliation(s)
- Bowen Zhang
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| | - Xumin Wu
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| | - Guicheng Zi
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Sihan Wang
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Lin Chen
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Zeng Fan
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Xue Nan
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Jiafei Xi
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Wen Yue
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Lei Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
- University of Chinese Academy of ScienceBeijingChina
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
| | - Xuetao Pei
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Yanhua Li
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| |
Collapse
|
19
|
Yuzuriha A, Nakamura S, Sugimoto N, Kihara S, Nakagawa M, Yamamoto T, Sekiguchi K, Eto K. Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin β1-ILK-β-catenin-JUN axis. Stem Cell Res 2021; 53:102287. [PMID: 33813173 DOI: 10.1016/j.scr.2021.102287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Recombinant matrices have enabled feeder cell-free maintenance cultures of human pluripotent stem cells (hPSCs), with laminin 511-E8 fragment (LM511-E8) being widely used. However, we herein report that hPSCs maintained on LM511-E8 resist differentiating to multipotent hematopoietic progenitor cells (HPCs), unlike hPSCs maintained on LM421-E8 or LM121-E8. The latter two LM-E8s bound weakly to hPSCs compared with LM511-E8 and activated the canonical Wnt/β-catenin signaling pathway. Moreover, the extracellular LM-E8-dependent preferential hematopoiesis was associated with a higher expression of integrin β1 (ITGB1) and downstream integrin-linked protein kinase (ILK), β-catenin and phosphorylated JUN. Accordingly, the lower coating concentration of LM511-E8 or addition of a Wnt/β-catenin signaling activator, CHIR99021, facilitated higher HPC yield. In contrast, the inhibition of ILK, Wnt or JNK by inhibitors or mRNA knockdown suppressed the HPC yield. These findings suggest that extracellular laminin scaffolds modulate the hematopoietic differentiation potential of hPSCs by activating the ITGB1-ILK-β-catenin-JUN axis at the undifferentiated stage. Finally, the combination of low-concentrated LM511-E8 and a revised hPSC-sac method, which adds bFGF, SB431542 and heparin to the conventional method, enabled a higher yield of HPCs and higher rate for definitive hematopoiesis, suggesting a useful protocol for obtaining differentiated hematopoietic cells from hPSCs in general.
Collapse
Affiliation(s)
- Akinori Yuzuriha
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan
| | - Shunsuke Kihara
- Department of Fundamental Cell Technology, CiRA, Kyoto University, Kyoto, Japan
| | - Masato Nakagawa
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Japan
| | - Koji Eto
- Department of Clinical Application, CiRA, Kyoto University, Kyoto, Japan; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
20
|
Ono‐Uruga Y, Ikeda Y, Matsubara Y. Platelet production using adipose-derived mesenchymal stem cells: Mechanistic studies and clinical application. J Thromb Haemost 2021; 19:342-350. [PMID: 33217130 PMCID: PMC7898515 DOI: 10.1111/jth.15181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Megakaryocytes (MKs) are platelet progenitor stem cells found in the bone marrow. Platelets obtained from blood draws can be used for therapeutic applications, especially platelet transfusion. The needs for platelet transfusions for clinical situation is increasing, due in part to the growing number of patients undergoing chemotherapy. Platelets obtained from donors, however, have the disadvantages of a limited storage lifespan and the risk of donor-related infection. Extensive effort has therefore been directed at manufacturing platelets ex vivo. Here, we review ex vivo technologies for MK development, focusing on human adipose tissue-derived mesenchymal stem/stromal cell line (ASCL)-based strategies and their potential clinical application. Bone marrow and adipose tissues contain mesenchymal stem/stromal cells that have an ability to differentiate into MKs, which release platelets. Taking advantage of this mechanism, we developed a donor-independent system for manufacturing platelets for clinical application using ASCL established from adipose-derived mesenchymal stem/stromal cells (ASCs). Culture of ASCs with endogenous thrombopoietin and its receptor c-MPL, and endogenous genes such as p45NF-E2 leads to MK differentiation and subsequent platelet production. ASCs compose heterogeneous cells, however, and are not suitable for clinical application. Thus, we established ASCLs, which expand into a more homogeneous population, and fulfill the criteria for mesenchymal stem cells set by the International Society for Cellular Therapy. Using our ASCL culture system with MK lineage induction medium without recombinant thrombopoietin led to peak production of platelets within 12 days, which may be sufficient for clinical application.
Collapse
Affiliation(s)
- Yukako Ono‐Uruga
- Clinical and Translational Research CenterKeio University School of MedicineTokyoJapan
| | - Yasuo Ikeda
- Department of HematologyKeio University School of MedicineTokyoJapan
- Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Yumiko Matsubara
- Clinical and Translational Research CenterKeio University School of MedicineTokyoJapan
- Department of Laboratory MedicineKeio University School of MedicineTokyoJapan
| |
Collapse
|
21
|
Kim J, Koh H, Zhen X, Lee DS, Ha HY, Lee JH. Establishment of iPSC (KRIBBi001-A) from CD34 + group O D-negative bone marrow blood. Stem Cell Res 2021; 51:102199. [PMID: 33529979 DOI: 10.1016/j.scr.2021.102199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 01/26/2023] Open
Abstract
Human induced pluripotent stem cells with indefinite propagation in vitro provide a potential donor source of cells including erythroid cells for human therapy. Since group O D-negative (RhD-) blood cells are considered as universal donors for transfusion, it is compelling to derive iPSC line from group O/RhD- sample as a new cellular source to generate universal RBCs. The resulting iPSC line derived from group O/RhD- somatic source showed typical features of pluripotent stem cells and could provide an unprecedented cellular tool to develop universal therapeutics for blood transfusion.
Collapse
Affiliation(s)
- Jieun Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyebin Koh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Xing Zhen
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Yeong Ha
- Division of Intractable Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
| |
Collapse
|
22
|
Salah A, Li Y, Wang H, Qi N, Wu Y. Macrophages as a Double-Edged Weapon: The Use of Macrophages in Cancer Immunotherapy and Understanding the Cross-Talk Between Macrophages and Cancer. DNA Cell Biol 2021; 40:429-440. [PMID: 33481665 DOI: 10.1089/dna.2020.6087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages (Mϕs) play an essential role in maintaining body homeostasis. They perform dual functions produced by different subtypes. Mϕs not only fight against pathogens and foreign bodies such as bacteria or cancer cells but also participate in healing and repairing damaged tissue since they maintain both proinflammatory and anti-inflammatory effects sequentially. Tumors possess the ability to polarize Mϕs from proinflammatory M1 subtype to anti-inflammatory M2-like Mϕs called tumor-associated macrophages, which, in turn, help the tumors to acquire cancer hallmarks. Consequently, this polarization allows tumors to grow and spread. In this light, Mϕs have been a subject of intense study, and researchers have developed protocols to derive different Mϕs subtypes either as a new state-of-the-art therapeutic approach or to understand the cross-talk between cancer and Mϕs. In this review, we present the use of primary Mϕs in adoptive immunotherapy for cancer, illustrate the reciprocating interplay between cancer and Mϕs, and the resulting structural and functional change on both cell types. Furthermore, we summarize the recent cutting-edge approaches of using Mϕs in cancer immunotherapy.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yanqin Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hao Wang
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, P.R. China.,Asia Stem Cell Therapies Co., Limited, Shanghai, P.R. China
| | - Nianmin Qi
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, P.R. China.,Asia Stem Cell Therapies Co., Limited, Shanghai, P.R. China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
23
|
Liu S, Wu M, Lancelot M, Deng J, Gao Y, Roback JD, Chen T, Cheng L. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells. Mol Ther 2021; 29:1918-1932. [PMID: 33484967 PMCID: PMC8116606 DOI: 10.1016/j.ymthe.2021.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transfusion of red blood cells (RBCs) from ABO-matched but genetically unrelated donors is commonly used for treating anemia and acute blood loss. Increasing demand and insufficient supply for donor RBCs, especially those of universal blood types or free of known and unknown pathogens, has called for ex vivo generation of functional RBCs by large-scale cell culture. However, generating physiological numbers of transfusable cultured RBCs (cRBCs) ex vivo remains challenging, due to our inability to either extensively expand primary RBC precursors (erythroblasts) or achieve efficient enucleation once erythroblasts have been expanded and induced to differentiation and maturation. Here, we report that ectopic expression of the human BMI1 gene confers extensive expansion of human erythroblasts, which can be derived readily from adult peripheral blood mononuclear cells of either healthy donors or sickle cell patients. These extensively expanded erythroblasts (E3s) are able to proliferate exponentially (>1 trillion-fold in 2 months) in a defined culture medium. Expanded E3 cells are karyotypically normal and capable of terminal maturation with approximately 50% enucleation. Additionally, E3-derived cRBCs can circulate in a mouse model following transfusion similar to primary human RBCs. Therefore, we provide a facile approach of generating physiological numbers of human functional erythroblasts ex vivo.
Collapse
Affiliation(s)
- Senquan Liu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mengyao Wu
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Moira Lancelot
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiusheng Deng
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongxing Gao
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Tong Chen
- Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Linzhao Cheng
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. On the Quest for In Vitro Platelet Production by Re-Tailoring the Concepts of Megakaryocyte Differentiation. ACTA ACUST UNITED AC 2020; 56:medicina56120671. [PMID: 33287459 PMCID: PMC7761839 DOI: 10.3390/medicina56120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The demand of platelet transfusions is steadily growing worldwide, inter-donor variation, donor dependency, or storability/viability being the main contributing factors to the current global, donor-dependent platelet concentrate shortage concern. In vitro platelet production has been proposed as a plausible alternative to cover, at least partially, the increasing demand. However, in practice, such a logical production strategy does not lack complexity, and hence, efforts are focused internationally on developing large scale industrial methods and technologies to provide efficient, viable, and functional platelet production. This would allow obtaining not only sufficient numbers of platelets but also functional ones fit for all clinical purposes and civil scenarios. In this review, we cover the evolution around the in vitro culture and differentiation of megakaryocytes into platelets, the progress made thus far to bring the culture concept from basic research towards good manufacturing practices certified production, and subsequent clinical trial studies. However, little is known about how these in vitro products should be stored or whether any safety measure should be implemented (e.g., pathogen reduction technology), as well as their quality assessment (how to isolate platelets from the rest of the culture cells, debris, microvesicles, or what their molecular and functional profile is). Importantly, we highlight how the scientific community has overcome the old dogmas and how the new perspectives influence the future of platelet-based therapy for transfusion purposes.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London NW3 3AA, UK;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|
25
|
Demirci S, Leonard A, Tisdale JF. Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Transl Med 2020; 9:1549-1557. [PMID: 32725882 PMCID: PMC7695636 DOI: 10.1002/sctm.20-0247] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) is an active and promising area of research; however, generating engraftable HSCs remains a major obstacle. Ex vivo HSC derivation from renewable sources such as iPSCs offers an experimental tool for studying developmental hematopoiesis, disease modeling, and drug discovery, and yields tremendous therapeutic potential for malignant and nonmalignant hematological disorders. Although initial attempts mostly recapitulated yolk sac primitive/definitive hematopoiesis with inability to engraft, recent advances suggest the feasibility of engraftable HSC derivation from iPSCs utilizing ectopic transcription factor expression. Strategic development for de novo HSC generation includes further investigations of HSC ontogeny, and elucidation of critical signaling pathways, epigenetic modulations, HSC and iPSC microenvironment, and cell-cell interactions that contribute to stem cell biology and function.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
26
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
27
|
Direct Comparison of Four Hematopoietic Differentiation Methods from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2020; 15:735-748. [PMID: 32763163 PMCID: PMC7486192 DOI: 10.1016/j.stemcr.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are an invaluable resource for the study of human disease. However, there are no standardized methods for differentiation into hematopoietic cells, and there is a lack of robust, direct comparisons of different methodologies. In the current study we improved a feeder-free, serum-free method for generation of hematopoietic cells from iPSCs, and directly compared this with three other commonly used strategies with respect to efficiency, repeatability, hands-on time, and cost. We also investigated their capability and sensitivity to model genetic hematopoietic disorders in cells derived from Down syndrome and β-thalassemia patients. Of these methods, a multistep monolayer-based method incorporating aryl hydrocarbon receptor hyperactivation (“2D-multistep”) was the most efficient, generating significantly higher numbers of CD34+ progenitor cells and functional hematopoietic progenitors, while being the most time- and cost-effective and most accurately recapitulating phenotypes of Down syndrome and β-thalassemia. Direct comparison of 4 serum & feeder-free iPSC hematopoietic differentiation methods Comparison: cost-benefit efficiency, sensitivity to model genetic blood diseases Presents an improved iPSC hematopoietic differentiation: 7× efficiency at 50% cost Improved method = most live cells, CD34+, CFU; lowest cost; greatest sensitivity
Collapse
|
28
|
Bogdanova A, Kaestner L. Early Career Scientists' Guide to the Red Blood Cell - Don't Panic! Front Physiol 2020; 11:588. [PMID: 32903637 PMCID: PMC7438720 DOI: 10.3389/fphys.2020.00588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Why should we take interest in studying red blood cells? This mini review attempts to answer this question and highlights the problems that authors find most appealing in this dynamic research area. It addresses the early career scientists who are just starting their independent journey and facing tough times. Despite unlimited access to information, the exponential development of computational and intellectual powers, and the seemingly endless possibilities open to talented and ambitious early career researchers, they soon realize that the pressure of imminent competition for financial support is hard. They have to hit deadlines, produce data, publish, report, teach, manage, lead groups, and remain loving family members at the same time. Are these countless hardships worth it? We think they are. Despite centuries of research, red blood cells remain a mysterious and fascinating study objects. These cells bring together experts within the family of the European Red Cell Society and beyond. We all share our joy for the unknown and excitement in understanding how red cells function and what they tell us about the microenvironments and macroenvironments they live in. This review is an invitation to our colleagues to join us on our quest.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
29
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. In vitro platelet production for transfusion purposes: Where are we now? Transfus Apher Sci 2020; 59:102864. [PMID: 32646795 DOI: 10.1016/j.transci.2020.102864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade there has been a worldwide increase in the demand of platelet concentrates (PCs) for transfusion. This is, to a great extent, due to a growing and aging population with the concomitant increase in the incidence of onco-hematological diseases, which require frequent platelet (PLT) transfusions. Currently, PLTs are sourced uniquely from donations, and their storage time is limited only to a few days. The necessity to store PCs at room temperature (to minimize loss of PLT functional integrity), poses a major risk for bacterial contamination. While the implementation of pathogen reduction treatments (PRTs) and new-generation PLT additive solutions have allowed the extension of the shelf life and a safer PLT transfusion product, the concern of PCs shortage still pressures the scientific community to find alternative solutions with the aim of meeting the PLT transfusion increasing demand. In this concise report, we will focus on the efforts made to produce, in in vitro culture, high yields of viable and functional PLTs for transfusion purposes in a cost-effective manner, meeting not only current Good Manufacturing Practices (cGMPs), but also transfusion safety standards.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit / Inspection, London, England, UK
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain.
| |
Collapse
|
30
|
Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The Challenge of Bringing iPSCs to the Patient. Int J Mol Sci 2019; 20:E6305. [PMID: 31847153 PMCID: PMC6940848 DOI: 10.3390/ijms20246305] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
The implementation of induced pluripotent stem cells (iPSCs) in biomedical research more than a decade ago, resulted in a huge leap forward in the highly promising area of personalized medicine. Nowadays, we are even closer to the patient than ever. To date, there are multiple examples of iPSCs applications in clinical trials and drug screening. However, there are still many obstacles to overcome. In this review, we will focus our attention on the advantages of implementing induced pluripotent stem cells technology into the clinics but also commenting on all the current drawbacks that could hinder this promising path towards the patient.
Collapse
Affiliation(s)
- María del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain. Instituto de Investigaciones Biomédicas “Alberto Sols”, (UAM-CSIC), 28029 Madrid, Spain;
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Victoria Cerrada
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Marta García-López
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - M. Esther Gallardo
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
- Centro de Investigación Biomédica en Red (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
31
|
Robin C, Jaffredo T, Zaehres H. Stem cell reprogramming: blood, neurons, and beyond. FEBS Lett 2019; 593:3241-3243. [PMID: 31814136 DOI: 10.1002/1873-3468.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Catherine Robin
- Hubrecht Institute-KNAW, University Medical Center Utrecht, The Netherlands.,Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement, CNRS UMR7622, Paris Cedex 05, France.,UMR7622, Laboratoire de Biologie du Développement, Sorbonne Universités, UPMC Univ Paris 06, Paris Cedex 05, France
| | - Holm Zaehres
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Institute of Anatomy, Ruhr University Bochum, Medical Faculty, Germany
| |
Collapse
|