1
|
Torella L, Santana-Gonzalez N, Zabaleta N, Gonzalez Aseguinolaza G. Gene editing in liver diseases. FEBS Lett 2024; 598:2348-2371. [PMID: 39079936 DOI: 10.1002/1873-3468.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 10/16/2024]
Abstract
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Santana-Gonzalez
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
2
|
Henríquez R, Muñoz-Barroso I. Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon 2024; 10:e34927. [PMID: 39144987 PMCID: PMC11320483 DOI: 10.1016/j.heliyon.2024.e34927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
To overcome the limitations of conventional vaccines, new platforms for vaccine design have emerged such as those based on viral vectors and virus-like particles (VLPs). Viral vector vaccines are highly efficient and the onset of protection is quick. Many recombinant vaccine candidates for humans are based on viruses belonging to different families such as Adenoviridae, Retroviridae, Paramyxoviridae, Rhabdoviridae, and Parvoviridae. Also, the first viral vector vaccine licensed for human vaccination was the Japanese encephalitis virus vaccine. Since then, several viral vectors have been approved for vaccination against the viruses of Lassa fever, Ebola, hepatitis B, hepatitis E, SARS-CoV-2, and malaria. VLPs are nanoparticles that mimic viral particles formed from the self-assembly of structural proteins and VLP-based vaccines against hepatitis B and E viruses, human papillomavirus, and malaria have been commercialized. As evidenced by the accelerated production of vaccines against COVID-19, these new approaches are important tools for vaccinology and for generating rapid responses against pathogens and emerging pandemic threats.
Collapse
Affiliation(s)
- Ruth Henríquez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| |
Collapse
|
3
|
Nakahara T, Tabata H, Kato Y, Fuse R, Nakamura M, Yamaji M, Hattori N, Kiyono T, Saito I, Nakanishi T. Construction and Stability of All-in-One Adenovirus Vectors Simultaneously Expressing Four and Eight Multiplex Guide RNAs and Cas9 Nickase. Int J Mol Sci 2024; 25:8783. [PMID: 39201470 PMCID: PMC11354445 DOI: 10.3390/ijms25168783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
CRISPR/Cas9 technology is expected to offer novel genome editing-related therapies for various diseases. We previously showed that an adenovirus vector (AdV) possessing eight expression units of multiplex guide RNAs (gRNAs) was obtained with no deletion of these units. Here, we attempted to construct "all-in-one" AdVs possessing expression units of four and eight gRNAs with Cas9 nickase, although we expected obstacles to obtain complete all-in-one AdVs. The first expected obstacle was that extremely high copies of viral genomes during replication may cause severe off-target cleavages of host cells and induce homologous recombination. However, surprisingly, four units in the all-in-one AdV genome were maintained completely intact. Second, for the all-in-one AdV containing eight gRNA units, we enlarged the E3 deletion in the vector backbone and shortened the U6 promoter of the gRNA expression units to shorten the AdV genome within the adenovirus packaging limits. The final size of the all-in-one AdV genome containing eight gRNA units still slightly exceeded the reported upper limit. Nevertheless, approximately one-third of the eight units remained intact, even upon preparation for in vivo experiments. Third, the genome editing efficiency unexpectedly decreased upon enlarging the E3 deletion. Our results suggested that complete all-in-one AdVs containing four gRNA units could be obtained if the problem of the low genome editing efficiency is solved, and those containing even eight gRNA units could be obtained if the obstacle of the vector size is also removed.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Hirotaka Tabata
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Yuya Kato
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ryoko Fuse
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Mariko Nakamura
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (M.Y.); (T.N.)
| | - Megumi Yamaji
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (M.Y.); (T.N.)
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan;
| | - Izumu Saito
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoko Nakanishi
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (M.Y.); (T.N.)
| |
Collapse
|
4
|
Garza Treviño EN, Quiroz Reyes AG, Delgado Gonzalez P, Rojas Murillo JA, Islas JF, Alonso SS, Gonzalez Villarreal CA. Applications of Modified Mesenchymal Stem Cells as Targeted Systems against Tumor Cells. Int J Mol Sci 2024; 25:7791. [PMID: 39063032 PMCID: PMC11276748 DOI: 10.3390/ijms25147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Combined gene and cell therapy are promising strategies for cancer treatment. Given the complexity of cancer, several approaches are actively studied to fight this disease. Using mesenchymal stem cells (MSCs) has demonstrated dual antitumor and protumor effects as they exert massive immune/regulatory effects on the tissue microenvironment. MSCs have been widely investigated to exploit their antitumor target delivery system. They can be genetically modified to overexpress genes and selectively or more efficiently eliminate tumor cells. Current approaches tend to produce more effective and safer therapies using MSCs or derivatives; however, the effect achieved by engineered MSCs in solid tumors is still limited and depends on several factors such as the cell source, transgene, and tumor target. This review describes the progress of gene and cell therapy focused on MSCs as a cornerstone against solid tumors, addressing the different MSC-engineering methods that have been approached over decades of research. Furthermore, we summarize the main objectives of engineered MSCs against the most common cancers and discuss the challenges, limitations, risks, and advantages of targeted treatments combined with conventional ones.
Collapse
Affiliation(s)
- Elsa N. Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Adriana G. Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Jose Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Santiago Saavedra Alonso
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A. Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
5
|
Thalmann L, Martin-Gonzalez N, Brücher D, Plückthun A, de Pablo PJ, Suomalainen M, Greber UF. Gutless Helper-Dependent and First-Generation HAdV5 Vectors Have Similar Mechanical Properties and Common Transduction Mechanisms. Hum Gene Ther 2024; 35:163-176. [PMID: 38386500 DOI: 10.1089/hum.2023.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Delivering vectorized information into cells with the help of viruses has been of high interest to fundamental and applied science, and bears significant therapeutic promise. Human adenoviruses (HAdVs) have been at the forefront of gene delivery for many years, and the subject of intensive development resulting in several generations of agents, including replication-competent, -defective or retargeted vectors, and recently also helper-dependent (HD), so-called gutless vectors lacking any viral protein coding information. While it is possible to produce HD-AdVs in significant amounts, physical properties of these virus-like particles and their efficiency of transduction have not been addressed. Here, we used single-cell and single virus particle assays to probe the effect of genome length on HAdV-C5 vector transduction. Our results demonstrate that first-generation C5 vectors lacking the E1/E3 regions of the viral genome as well as HD-AdV-C5 particles with a wild type (wt) ∼36 kbp or an undersized double-strand DNA genome are similar to human adenovirus C5 (HAdV-C5) wt regarding attachment to human lung epithelial cells, endocytic uptake, endosome penetration and dependency on the E3 RING ubiquitin ligase Mind Bomb 1 for DNA uncoating at the nuclear pore complex. Atomic force microscopy measurements of single virus particles indicated that small changes in the genome length from 94% to 103% of HAdV-C5 have no major impact on physical and mechanical features of AdV vectors. In contrast, an HD-AdV-C5 with ∼30 kbp genome was slightly stiffer and less heat-resistant than the other particles, despite comparable entry and transduction efficiencies in tissue culture cell lines, including murine alveolar macrophage-like Max-Planck-Institute (MPI)-2 cells. Together, our in vitro studies reinforce the use of HD-AdV vectors for effective single round gene delivery. The results illustrate how physical properties and cell entry behavior of single virus particles can provide functional information for anticipated therapeutic vector applications.
Collapse
Affiliation(s)
- Lars Thalmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Dominik Brücher
- Department of Condensed Matter Physics and IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andreas Plückthun
- Department of Condensed Matter Physics and IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro J de Pablo
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
7
|
Slomka S, Zieba P, Rosiak O, Piekarska A. Comparison of Post-Vaccination Response between mRNA and Vector Vaccines against SARS-CoV-2 in Terms of Humoral Response after Six Months of Observation. Vaccines (Basel) 2023; 11:1625. [PMID: 37897027 PMCID: PMC10611196 DOI: 10.3390/vaccines11101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The emergence of the SARS-CoV-2 (COVID-19) pandemic has accelerated work on the creation of effective vaccines, both in terms of previously known vector vaccines and new-generation (mRNA) vaccines. The scientific research on vaccination against COVID-19 infection is limited; therefore, understanding how the immune system responds to vaccines is critical. In our study, we conducted a long-term analysis of the presence and persistence of the immune response via chemiluminescence, analyzing the level of IgG antibodies and neutralizing antibodies in subjects vaccinated with two types of mRNA (Comirnaty) and vector (Vaxzevria) vaccines. MATERIALS AND METHODS Healthcare workers and a group of teachers were recruited for this study according to the 2021 government-launched vaccination calendar. They received two doses of the Comirnaty or Vaxzevria vaccine. SRBD (spike-receptor binding domain) IgG antibody levels were measured monthly for 6 consecutive months with a chemiluminescent assay (CLIA) and neutralizing antibodies for two periods-1 and 5 months from the completion of the vaccination course. RESULTS 168 people were recruited for this study: 135 people for the mRNA vaccine group and 33 people for the vector vaccine group. Comparing the serum IgG levels between the two types of vaccines, a significant difference in median values can be noted at all time points. In consecutive months, the mRNA-vaccinated group exhibited significantly higher SRBD levels compared to the vector group, with peak concentrations at one month after the complete vaccination cycle (745 AU/mL vs. 15.44 AU/mL; p < 0.001). Peak antibody concentration for the vector vaccine was observed one month later, at the third follow-up visit; however, the median IgG concentration was almost 7.7 times higher for the Comirnaty group. Both products were effective in stimulating neutralizing antibody production after vaccination. Higher median values were observed for the mRNA vaccines in both evaluations. At first evaluation, the median value for NA concentration in the Comirnaty group was 6 times higher than in the Vaxzevria group (median value 12.23 [IQR 27.3] vs. 1.7 [IQR 3.3]; p < 0.001. CONCLUSIONS People vaccinated with the mRNA vaccine (Comirnaty) showed a stronger immune response to the vaccination than the group of people administered the vector vaccine (Vaxzevria). The Comirnaty group showed higher levels of IgG, including neutralizing antibodies, at all time points during the follow-up period, and this was independent of having had a SARS-CoV-2 infection. A natural decrease in antibody levels was seen within 6 months. A booster vaccination may be required. No serious side effects were observed in either group.
Collapse
Affiliation(s)
- Sebastian Slomka
- Department of Internal Medicine and Geriatrics, Biegański Regional Specialist Hospital, 91-347 Lodz, Poland; (S.S.); (P.Z.)
| | - Patrycja Zieba
- Department of Internal Medicine and Geriatrics, Biegański Regional Specialist Hospital, 91-347 Lodz, Poland; (S.S.); (P.Z.)
| | - Oskar Rosiak
- Department of Otolaryngology, Polish Mother’s Memorial Hospital, Research Institute, 98-338 Lodz, Poland;
| | - Anna Piekarska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
8
|
Elahi SM, Nazemi-Moghaddam N, Gilbert R. Protease-deleted adenovirus as an alternative for replication-competent adenovirus vector. Virology 2023; 586:67-75. [PMID: 37487327 DOI: 10.1016/j.virol.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
For cancer therapy and vaccination an amplified expression of the therapeutic gene is desired. Previously, we have developed a single-cycle adenovirus vector (SC-AdV) by deleting the adenovirus protease (PS) gene. In order to keep the E1 region intact within the PS-deleted adenoviruses, we examined the insertion of two transgenes under the control of a constitutive or inducible promoters. These were inserted between E4 and the right inverted terminal repeat in a wide variety of backbones with various combinations of PS, E3 and E4 deletion. Our data showed that PS-deleted adenoviruses, expressed transgenes as strongly as replication-competent AdVs in HEK293A and a variant of HeLa cells. In a head-to-head comparison in four human cell lines, we demonstrated that SC-AdV, was comparable for transgene expression efficacy with its replication-competent counterpart. However, the SC-AdV expresses its transgene 10 to 16,000 times higher than its replication-defective counterpart.
Collapse
Affiliation(s)
- S Mehdy Elahi
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada; Department of Bioengineering McGill University, Montréal, Canada.
| |
Collapse
|
9
|
Gryciuk A, Rogalska M, Baran J, Kuryk L, Staniszewska M. Oncolytic Adenoviruses Armed with Co-Stimulatory Molecules for Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071947. [PMID: 37046608 PMCID: PMC10093006 DOI: 10.3390/cancers15071947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
In clinical trials, adenovirus vectors (AdVs) are commonly used platforms for human gene delivery therapy. High genome capacity and flexibility in gene organization make HAdVs suitable for cloning. Recent advancements in molecular techniques have influenced the development of genetically engineered adenovirus vectors showing therapeutic potential. Increased molecular understanding of the benefits and limitations of HAdVs in preclinical research and clinical studies is a crucial point in the engineering of refined oncolytic vectors. This review presents HAdV species (A-G) used in oncotherapy. We describe the adenovirus genome organizations and modifications, the possibilities oncolytic viruses offer, and their current limitations. Ongoing and ended clinical trials based on oncolytic adenoviruses are presented. This review provides a broad overview of the current knowledge of oncolytic therapy. HAdV-based strategies targeting tumors by employing variable immune modifiers or delivering immune stimulatory factors are of great promise in the field of immune oncologyy This approach can change the face of the fight against cancer, supplying the medical tools to defeat tumors more selectively and safely.
Collapse
Affiliation(s)
- Aleksander Gryciuk
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Marta Rogalska
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Joanna Baran
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-NRI, 00-791 Warsaw, Poland
- Valo Therapeutics, 00790 Helsinki, Finland
| | - Monika Staniszewska
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| |
Collapse
|
10
|
Tasca F, Brescia M, Liu J, Janssen JM, Mamchaoui K, Gonçalves MA. High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:746-762. [PMID: 36937620 PMCID: PMC10020486 DOI: 10.1016/j.omtn.2023.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Genome editing based on dual CRISPR-Cas9 complexes (multiplexes) permits removing specific genomic sequences in living cells leveraging research on functional genomics and genetic therapies. Delivering the required large and multicomponent reagents in a synchronous and stoichiometric manner remains, however, challenging. Moreover, uncoordinated activity of independently acting CRISPR-Cas9 multiplexes increases the complexity of genome editing outcomes. Here, we investigate the potential of fostering precise multiplexing genome editing using high-capacity adenovector particles (AdVPs) for the delivery of Cas9 ortholog fusion constructs alone (forced Cas9 heterodimers) or together with their cognate guide RNAs (forced CRISPR-Cas9 heterodimers). We demonstrate that the efficiency and accuracy of targeted chromosomal DNA deletions achieved by single AdVPs encoding forced CRISPR-Cas9 heterodimers is superior to that obtained when the various components are delivered separately. Finally, all-in-one AdVP delivery of forced CRISPR-Cas9 heterodimers triggers robust DMD exon 51 splice site excision resulting in reading frame restoration and selection-free detection of dystrophin in muscle cells derived from Duchenne muscular dystrophy patients. In conclusion, AdVPs promote precise multiplexing genome editing through the integrated delivery of forced CRISPR-Cas9 heterodimer components, which, in comparison with split conventional CRISPR-Cas9 multiplexes, engage target sequences in a more coordinated fashion.
Collapse
Affiliation(s)
- Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Marcella Brescia
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Josephine M. Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
- Corresponding author: Manuel A.F.V. Gonçalves, Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
11
|
Adenovirus Vaccine Containing Truncated SARS-CoV-2 Spike Protein S1 Subunit Leads to a Specific Immune Response in Mice. Vaccines (Basel) 2023; 11:vaccines11020429. [PMID: 36851306 PMCID: PMC9968167 DOI: 10.3390/vaccines11020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The development of an efficient and safe coronavirus disease 2019 (COVID-19) vaccine is a crucial approach for managing the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) pandemic in light of current conditions. In this study, we produced a shortened segment of the optimized SARS-CoV-2 spike gene (2043 bp, termed S1) that was able to encode a truncated S1 protein. The protein was tested to determine if it could elicit efficient immunization in mice against SARS-CoV-2. The presence of the S1 protein was confirmed with immunofluorescence and Western blotting. An adenovirus vaccine bearing the S1 gene fragment (Ad-S1) was administered intramuscularly to mice four times over 4 weeks. SARS-CoV-2 S1 protein humoral immunity was demonstrated in all immunized mice. The serum from immunized mice demonstrated excellent anti-infection activity in vitro. A robust humoral immune response against SARS-CoV-2 was observed in the mice after vaccination with Ad-S1, suggesting that the adenovirus vaccine may aid the development of vaccines against SARS-CoV-2 and other genetically distinct viruses.
Collapse
|
12
|
Klann PJ, Wang X, Elfert A, Zhang W, Köhler C, Güttsches AK, Jacobsen F, Weyen U, Roos A, Ehrke-Schulz E, Ehrhardt A, Vorgerd M, Bayer W. Seroprevalence of Binding and Neutralizing Antibodies against 39 Human Adenovirus Types in Patients with Neuromuscular Disorders. Viruses 2022; 15:79. [PMID: 36680119 PMCID: PMC9866721 DOI: 10.3390/v15010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
High pre-existing antibodies against viral vectors reduce their functionality and may lead to adverse complications. To circumvent this problem in future gene therapy approaches, we tested the seroprevalence of a large range of human adenovirus types in patients with neuromuscular disorders (NMDs) to find appropriate viral vector candidates for gene replacement therapy for NMDs. Binding and neutralizing antibodies against 39 human adenovirus types were tested in the sera of 133 patients with NMDs and 76 healthy controls aged 17-92 years. The influence of age, sex, and NMDs on antibody levels was analyzed. The seroprevalence of different adenoviruses in the cohort varied widely. The highest levels of binding antibodies were detected against HAdV-D27, -C1, -D24, -D70, -B14, -C6, -D13, -B34, and -E4, whereas the lowest reactivity was detected against HAdV-F41, -A31, -B11, -D75, -D8, -D65, -D26, -D80, and -D17. The highest neutralizing reactivity was observed against HAdV-B3, -C2, -E4, -C1, -G52, -C5, and -F41, whereas the lowest neutralizing reactivity was observed against HAdV-D74, -B34, -D73, -B37, -D48, -D13, -D75, -D8, -B35, and -B16. We detected no influence of sex and only minor differences between different age groups. Importantly, there were no significant differences between healthy controls and patients with NMDs. Our data show that patients with NMDs have very similar levels of binding and neutralizing antibodies against HAdV compared to healthy individuals, and we identified HAdV-A31, -B16, -B34, -B35, -D8, -D37, -D48, -D73, -D74, -D75, and -D80 as promising candidates for future vector development due to their low binding and neutralizing antibody prevalence.
Collapse
Affiliation(s)
- Patrick Julian Klann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Anna Elfert
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Cornelia Köhler
- Clinics for Pediatrics and Adolescent Medicine, University Hospital Sankt Josef, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anne-Katrin Güttsches
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ute Weyen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Matthias Vorgerd
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
13
|
García M, Bonafont J, Martínez-Palacios J, Xu R, Turchiano G, Svensson S, Thrasher AJ, Larcher F, Del Rio M, Hernández-Alcoceba R, Garín MI, Mencía Á, Murillas R. Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors. Mol Ther Methods Clin Dev 2022; 27:96-108. [PMID: 36212909 PMCID: PMC9531050 DOI: 10.1016/j.omtm.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients' cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.
Collapse
Affiliation(s)
- Marta García
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Jose Bonafont
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Jesús Martínez-Palacios
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Rudan Xu
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stina Svensson
- Infection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Adrian J. Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fernando Larcher
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Marcela Del Rio
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Rubén Hernández-Alcoceba
- Universidad de Navarra, CIMA, Programa de Terapia Génica y Regulación de la Expresión Génica, Pamplona, Spain
| | - Marina I. Garín
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Ángeles Mencía
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Rodolfo Murillas
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
14
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
15
|
Interplays of liver fibrosis-associated microRNAs: Molecular mechanisms and implications in diagnosis and therapy. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Tasca F, Brescia M, Wang Q, Liu J, Janssen JM, Szuhai K, Gonçalves MAFV. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells. Nucleic Acids Res 2022; 50:7761-7782. [PMID: 35776127 PMCID: PMC9303392 DOI: 10.1093/nar/gkac567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Targeted chromosomal insertion of large genetic payloads in human cells leverages and broadens synthetic biology and genetic therapy efforts. Yet, obtaining large-scale gene knock-ins remains particularly challenging especially in hard-to-transfect stem and progenitor cells. Here, fully viral gene-deleted adenovector particles (AdVPs) are investigated as sources of optimized high-specificity CRISPR-Cas9 nucleases and donor DNA constructs tailored for targeted insertion of full-length dystrophin expression units (up to 14.8-kb) through homologous recombination (HR) or homology-mediated end joining (HMEJ). In muscle progenitor cells, donors prone to HMEJ yielded higher CRISPR-Cas9-dependent genome editing frequencies than HR donors, with values ranging between 6% and 34%. In contrast, AdVP transduction of HR and HMEJ substrates in induced pluripotent stem cells (iPSCs) resulted in similar CRISPR-Cas9-dependent genome editing levels. Notably, when compared to regular iPSCs, in p53 knockdown iPSCs, CRISPR-Cas9-dependent genome editing frequencies increased up to 6.7-fold specifically when transducing HMEJ donor constructs. Finally, single DNA molecule analysis by molecular combing confirmed that AdVP-based genome editing achieves long-term complementation of DMD-causing mutations through the site-specific insertion of full-length dystrophin expression units. In conclusion, AdVPs are a robust and flexible platform for installing large genomic edits in human cells and p53 inhibition fosters HMEJ-based genome editing in iPSCs.
Collapse
Affiliation(s)
- Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Marcella Brescia
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Qian Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
17
|
Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 2022; 153:113324. [PMID: 35779421 DOI: 10.1016/j.biopha.2022.113324] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
There have been many ups and downs since the introduction of gene therapy as a therapeutic modality for diseases. However, the journey of gene therapy has reached a fundamental milestone, as evidenced by the increasing number of gene therapy products on the market. Looking at the currently approved and under-approval products, as well as the numerous clinical trials in this field, gene therapy has a promising future. Trend of changes in gene therapy strategies, vectors, and targets could be insightful for pharmaceutical companies, policymakers, and researchers. In this paper, following a brief history of gene therapy, we reviewed current gene therapy products as well as gene therapies that may be approved in the near future. We also looked at ten-year changes in gene therapy clinical trials strategies, such as the use of vectors, target cells, transferred genes, and ex-vivo/in-vivo methods, as well as the major fields that gene therapy has entered. Although gene therapy was initially used to treat genetic diseases, cancer now has the greatest number of gene therapy clinical trials. Changes in gene therapy strategies, particularly in pioneering countries in this field, may point to the direction of future clinical products.
Collapse
Affiliation(s)
- Fatemeh Arabi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran.
| |
Collapse
|
18
|
Preparation and identification of a single domain antibody specific for adenovirus vectors and its application to the immunoaffinity purification of adenoviruses. AMB Express 2022; 12:80. [PMID: 35723787 PMCID: PMC9207862 DOI: 10.1186/s13568-022-01422-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Adenovirus belongs to the family of Adenoviridae. As a vaccine carrier, it has high safety and stimulates the body to produce cellular immunity and humoral immunity. This study prepared an adenoviral vector-specific single-domain antibody for use in adenovirus identification and purification. We successfully constructed a single domain antibody phage display library with a capacity of 1.8 × 109 by immunizing and cloning the VHH gene from Bactrian camel. After the second round of biopanning, clones specific for adenovirus were screened using phage ELISA. Twenty-two positive clones were obtained, and two clones with the highest binding affinity from ELISA were selected and named sdAb 5 and sdAb 31 for further application. The recombinant single-domain antibody was solublely expressed in E. coli and specifically bound to adenoviruses rAd26, ChAd63 and HAd5 in ELISA and live cell immunofluorescence assays. We established an effective method for immunoaffinity purification of adenovirus by immobilizing the single domain antibody to Sepharose beads, and it may be used to selectively capture adenoviruses from cell culture medium. The preparation of the adenovirus-specific single-domain antibody lays a foundation for the one-step immunoaffinity purification and identification of adenoviruses.
Collapse
|
19
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Garbuglia AR, Minosse C, Del Porto P. mRNA- and Adenovirus-Based Vaccines against SARS-CoV-2 in HIV-Positive People. Viruses 2022; 14:v14040748. [PMID: 35458478 PMCID: PMC9031858 DOI: 10.3390/v14040748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
About two years have passed since the identification of SARS-CoV-2 in China. The rapid spread of this virus all over the world and its high transmissibility and pathogenicity in humans have resulted in a global pandemic. The negative impact of COVID-19 on health, society and the economy at the global level has pushed researchers and pharmaceutical companies to develop effective vaccines to fight SARS-CoV-2. Thanks to this collaborative effort, the first COVID-19 vaccine was developed in less than a year. Since then, several COVID-19 vaccines have been validated for use by the World Health Organization. Among these, mRNA- (BNT162b2 and mRNA1273) and adenovirus-based (ChAdOx1) vaccines were developed through the use of novel technologies. While all three of these vaccines have shown effectiveness against the COVID-19 disease and their immunogenicity was characterized in clinical trials in the general population, data on their efficacy and immunogenicity in people living with HIV (PLWH) are limited. In this review, we provide a description of the characteristics of mRNA- and adenovirus-based vaccines and of the immune response elicited in the general population by vaccination. Then we describe the use of these vaccines and their efficacy and immunogenicity in people living with HIV and we conclude with a discussion regarding some open questions concerning the use of mRNA- and adenovirus-based COVID-19 vaccines in PLWH.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy;
- Correspondence:
| | - Claudia Minosse
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy;
| | - Paola Del Porto
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University, 00100 Rome, Italy;
| |
Collapse
|
21
|
Riedl A, Fischer J, Burgert HG, Ruzsics Z. Rescue of Recombinant Adenoviruses by CRISPR/Cas-Mediated in vivo Terminal Resolution. Front Microbiol 2022; 13:854690. [PMID: 35369433 PMCID: PMC8975557 DOI: 10.3389/fmicb.2022.854690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
Recombinant adenovirus (rAd) vectors represent one of the most frequently used vehicles for gene transfer applications in vitro and in vivo. rAd genomes are constructed in Escherichia coli where their genomes can be maintained, propagated, and modified in form of circular plasmids or bacterial artificial chromosomes. Although the rescue of rAds from their circular plasmid or bacmid forms is well established, it works with relatively low primary efficiency, preventing this technology for library applications. To overcome this barrier, we tested a novel strategy for the reconstitution of rAds that utilizes the CRISPR/Cas-machinery to cleave the circular rAd genomes in close proximity to their inverted terminal repeats (ITRs) within the producer cells upon transfection. This CRISPR/Cas-mediated in vivo terminal resolution allowed efficient rescue of vectors derived from different human adenovirus (HAdV) species. By this means, it was not only possible to increase the efficiency of virus rescue by about 50-fold, but the presented methodology appeared also remarkably simpler and faster than traditional rAd reconstitution methods.
Collapse
|
22
|
Majhen D. Human adenovirus type 26 basic biology and its usage as vaccine vector. Rev Med Virol 2022; 32:e2338. [PMID: 35278248 DOI: 10.1002/rmv.2338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022]
Abstract
Due to their nature, adenoviruses have been recognised as promising candidates for vaccine vector development. Since they mimic natural infection, recombinant adenovirus vectors have been proven as ideal shuttles to deliver foreign transgenes aiming at inducing both humoral and cellular immune response. In addition, a potent adjuvant effect can be exerted due to the adenovirus inherent stimulation of various elements of innate and adaptive immunity. Due to its low seroprevalence in humans as well as induction of favourable immune response to inserted transgene, human adenovirus type 26 (HAdV-D26) has been recognised as a promising platform for vaccine vector development and is studied in number of completed or ongoing clinical studies. Very recently HAdV-D26 based Ebola and Covid-19 vaccines were approved for medical use. In this review, current state of the art regarding HAdV-D26 basic biology and its usage as vaccine vector will be discussed.
Collapse
Affiliation(s)
- Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
23
|
Guo X, Sun Y, Chen J, Zou X, Hou W, Tan W, Hung T, Lu Z. Restriction-Assembly: A Solution to Construct Novel Adenovirus Vector. Viruses 2022; 14:v14030546. [PMID: 35336953 PMCID: PMC8954691 DOI: 10.3390/v14030546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Gene therapy and vaccine development need more novel adenovirus vectors. Here, we attempt to provide strategies to construct adenovirus vectors based on restriction-assembly for researchers with little experience in this field. Restriction-assembly is a combined method of restriction digestion and Gibson assembly, by which the major part of the obtained plasmid comes from digested DNA fragments instead of PCR products. We demonstrated the capability of restriction-assembly in manipulating the genome of simian adenovirus 1 (SAdV-1) in this study. A PCR product of the plasmid backbone was combined with SAdV-1 genomic DNA to construct an infectious clone, plasmid pKSAV1, by Gibson assembly. Restriction-assembly was performed repeatedly in the steps of intermediate plasmid isolation, modification, and restoration. The generated adenoviral plasmid was linearized by restriction enzyme digestion and transfected into packaging 293 cells to rescue E3-deleted replication-competent SAdV1XE3-CGA virus. Interestingly, SAdV1XE3-CGA could propagate in human chronic myelogenous leukemia K562 cells. The E1 region was similarly modified to generate E1/E3-deleted replication-defective virus SAdV1-EG. SAdV1-EG had a moderate gene transfer ability to adherent mammalian cells, and it could efficiently transduce suspension cells when compared with the human adenovirus 5 control vector. Restriction-assembly is easy to use and can be performed without special experimental materials and instruments. It is highly effective with verifiable outcomes at each step. More importantly, restriction-assembly makes the established vector system modifiable, upgradable and under sustainable development, and it can serve as the instructive method or strategy for the synthetic biology of adenoviruses.
Collapse
Affiliation(s)
- Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Yangyang Sun
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, China
| | - Juan Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Wenjie Tan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- Correspondence: (Z.L.); (W.T.); Tel.: +86-10-63511368 (Z.L.)
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- Chinese Center for Disease Control and Prevention–Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, China
- Correspondence: (Z.L.); (W.T.); Tel.: +86-10-63511368 (Z.L.)
| |
Collapse
|
24
|
E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral gene expression in HAdV-C5 infection. J Virol 2022; 96:e0206221. [PMID: 35019711 DOI: 10.1128/jvi.02062-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional adenoviral E1B-55K phosphoprotein is a major regulator of viral replication and plays key roles in virus-mediated cell transformation. While much is known about its function in oncogenic cell transformation, underlying features and exact mechanisms that implicate E1B-55K in regulation of viral gene expression are less well understood. Therefore, this work aimed at unravelling basic intranuclear principles of E1B-55K-regulated viral mRNA biogenesis using wild type HAdV-C5 E1B-55K, a virus mutant with abrogated E1B-55K expression and a mutant that expresses a phosphomimetic E1B-55K. By subnuclear fractionation, mRNA, DNA and protein analyses as well as luciferase reporter assays, we show that (i) E1B-55K promotes efficient release of viral late mRNAs from their site of synthesis in viral replication compartments (RCs) to the surrounding nucleoplasm, that (ii) E1B-55K modulates the rate of viral gene transcription and splicing in RCs, that (iii) E1B-55K participates in the temporal regulation of viral gene expression, that (iv) E1B-55K can enhance or repress the expression of viral early and late promoters and that (v) the phosphorylation of E1B-55K regulates the temporal effect of the protein on each of these activities. Together, these data demonstrate that E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes during HAdV-C5 infection. Importance Human adenoviruses are useful models to study basic aspects of gene expression and splicing. Moreover, they are one of the most commonly used viral vectors for clinical applications. However, key aspects of the activities of essential viral proteins that are commonly modified in adenoviral vectors have not been fully described. A prominent example is the multifunctional adenoviral oncoprotein E1B-55K that is known to promote efficient viral genome replication and expression while simultaneously repressing host gene expression and antiviral host responses. Our study combined different quantitative methods to study how E1B-55K promotes viral mRNA biogenesis. The data presented here propose a novel role for E1B-55K as a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes.
Collapse
|
25
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
26
|
Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol 2022; 106:25-56. [PMID: 34889981 PMCID: PMC8661323 DOI: 10.1007/s00253-021-11713-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Inactivated and live attenuated vaccines have improved human life and significantly reduced morbidity and mortality of several human infectious diseases. However, these vaccines have faults, such as reactivity or suboptimal efficacy and expensive and time-consuming development and production. Additionally, despite the enormous efforts to develop vaccines against some infectious diseases, the traditional technologies have not been successful in achieving this. At the same time, the concerns about emerging and re-emerging diseases urge the need to develop technologies that can be rapidly applied to combat the new challenges. Within the last two decades, the research of vaccine technologies has taken several directions to achieve safe, efficient, and economic platforms or technologies for novel vaccines. This review will give a brief overview of the current state of the novel vaccine technologies, new vaccine candidates in clinical trial phases 1-3 (listed by European Medicines Agency (EMA) and Food and Drug Administration (FDA)), and vaccines based on the novel technologies which have already been commercially available (approved by EMA and FDA) with the special reference to pandemic COVID-19 vaccines. KEY POINTS: • Vaccines of the new generation follow the minimalist strategy. • Some infectious diseases remain a challenge for the vaccine development. • The number of new vaccine candidates in the late phase clinical trials remains low.
Collapse
|
27
|
Concepts in Oncolytic Adenovirus Therapy. Int J Mol Sci 2021; 22:ijms221910522. [PMID: 34638863 PMCID: PMC8508870 DOI: 10.3390/ijms221910522] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic adenovirus therapy is gaining importance as a novel treatment option for the management of various cancers. Different concepts of modification within the adenovirus vector have been identified that define the mode of action against and the interaction with the tumour. Adenoviral vectors allow for genetic manipulations that restrict tumour specificity and also the expression of specific transgenes in order to support the anti-tumour effect. Additionally, replication of the virus and reinfection of neighbouring tumour cells amplify the therapeutic effect. Another important aspect in oncolytic adenovirus therapy is the virus induced cell death which is a process that activates the immune system against the tumour. This review describes which elements in adenovirus vectors have been identified for modification not only to utilize oncolytic adenovirus vectors into conditionally replicating adenoviruses (CRAds) that allow replication specifically in tumour cells but also to confer specific characteristics to these viruses. These advances in development resulted in clinical trials that are summarized based on the conceptual design.
Collapse
|
28
|
Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021; 45:fuab016. [PMID: 33765123 PMCID: PMC8498563 DOI: 10.1093/femsre/fuab016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (Basel) 2021; 9:vaccines9080848. [PMID: 34451973 PMCID: PMC8402319 DOI: 10.3390/vaccines9080848] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which has reached pandemic proportions. A number of effective vaccines have been produced, including mRNA vaccines and viral vector vaccines, which are now being implemented on a large scale in order to control the pandemic. The mRNA vaccines are composed of viral Spike S1 protein encoding mRNA incorporated in a lipid nanoparticle and stabilized by polyethylene glycol (PEG). The mRNA vaccines are novel in many respects, including cellular uptake and the intracellular routing, processing, and secretion of the viral protein. Viral vector vaccines have incorporated DNA sequences, encoding the SARS-CoV-2 Spike protein into (attenuated) adenoviruses. The antigen presentation routes in MHC class I and class II, in relation to the induction of virus-neutralizing antibodies and cytotoxic T-lymphocytes, will be reviewed. In rare cases, mRNA vaccines induce unwanted immune mediated side effects. The mRNA-based vaccines may lead to an anaphylactic reaction. This reaction may be triggered by PEG. The intracellular routing of PEG and potential presentation in the context of CD1 will be discussed. Adenovirus vector-based vaccines have been associated with thrombocytopenic thrombosis events. The anti-platelet factor 4 antibodies found in these patients could be generated due to conformational changes of relevant epitopes presented to the immune system.
Collapse
|
30
|
Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep 2021; 3:100300. [PMID: 34159305 PMCID: PMC8203845 DOI: 10.1016/j.jhepr.2021.100300] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.
Collapse
Key Words
- AAT, α1-antitrypsin
- AAV, adeno-associated virus
- AHP, acute hepatic porphyrias
- AIP, acute intermittent porphyria
- ALAS1, aminolevulic synthase 1
- APCs, antigen-presenting cells
- ASGCT, American Society of Gene and Cell Therapy
- ASGPR, asialoglycoprotein receptor
- ASOs, antisense oligonucleotides
- Ad, adenovirus
- CBS, cystathionine β-synthase
- CN, Crigel-Najjar
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9, CRISPR associated protein 9
- DSBs, double-strand breaks
- ERT, enzyme replacement therapy
- FH, familial hypercholesterolemia
- FSP27, fat-specific protein 27
- GO, glycolate oxidase
- GSD1a, glycogen storage disorder 1a
- GT, gene therapy
- GUSB, β-glucuronidase
- GalNAc, N-acetyl-D-galactosamine
- HDAd, helper-dependent adenovirus
- HDR, homology-directed repair
- HT, hereditary tyrosinemia
- HemA/B, haemophilia A/B
- IDS, iduronate 2-sulfatase
- IDUA, α-L-iduronidase
- IMLD, inherited metabolic liver diseases
- ITR, inverted terminal repetition
- LDH, lactate dehydrogenase
- LDLR, low-density lipoprotein receptor
- LNP, Lipid nanoparticles
- LTR, long terminal repeat
- LV, lentivirus
- MMA, methylmalonic acidemia
- MPR, metabolic pathway reprograming
- MPS type I, MPSI
- MPS type VII, MPSVII
- MPS, mucopolysaccharidosis
- NASH, non-alcoholic steatohepatitis
- NHEJ, non-homologous end joining
- NHPs, non-human primates
- Non-viral vectors
- OLT, orthotopic liver transplantation
- OTC, ornithine transcarbamylase
- PA, propionic acidemia
- PB, piggyBac
- PCSK9, proprotein convertase subtilisin/kexin type 9
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PFIC3, progressive familial cholestasis type 3
- PH1, Primary hyperoxaluria type 1
- PKU, phenylketonuria
- RV, retrovirus
- S/MAR, scaffold matrix attachment regions
- SB, Sleeping Beauty
- SRT, substrate reduction therapy
- STK25, serine/threonine protein kinase 25
- TALEN, transcription activator-like effector nucleases
- TTR, transthyretin
- UCD, urea cycle disorders
- VLDLR, very-low-density lipoprotein receptor
- WD, Wilson’s disease
- ZFN, zinc finger nucleases
- apoB/E, apolipoprotein B/E
- dCas9, dead Cas9
- efficacy
- gene addition
- gene editing
- gene silencing
- hepatocytes
- immune response
- lncRNA, long non-coding RNA
- miRNAs, microRNAs
- siRNA, small-interfering RNA
- toxicity
- viral vectors
Collapse
Affiliation(s)
- Sheila Maestro
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | | | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Rafael Aldabe
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| |
Collapse
|
31
|
Aydin M, Schellhorn S, Wirth S, Zhang W, Ehrhardt A. Human Species D Adenoviruses Isolated from Diarrheal Feces Show Low Infection Rates in Primary Nasal Epithelial Cells. CHILDREN (BASEL, SWITZERLAND) 2021; 8:563. [PMID: 34208817 PMCID: PMC8307086 DOI: 10.3390/children8070563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/20/2023]
Abstract
The importance of adenovirus (Ad) research is significantly increasing with respect to virotherapy for vaccine development, tumor, and gene therapy. Due to the different species and subtypes of this virus, the characterization of the biological significance of especially rare Ad is necessary. Previously, rare Ad types 70, 73, and 74 were originally isolated from fecal samples of immunocompromised patients and they represent recombinants of other Ad types. Here we investigated transduction experiments of these reporter gene tagged Ad types in primary cells exemplified by subject-derived primary nasal epithelial cells (NAEPCs). To analyze the transduction rates, we performed flow cytometry, quantitative polymerase chain reaction (PCR), and cytokine analyses 25 h post-infection. We found that, in contrast to Ad type 5 (as a positive control), the transduction rates of NAEPCs with Ad types 70, 73, and 74 were interestingly low. The major Ad receptor (coxsackievirus-adenovirus receptor and CD46) expression levels showed no significant change after infection with Ad types 70, 73 and 74. Moreover, Interleukin 6 (IL-6) was not released after in vitro Ad transduction. Due to the high risk of developing life-threatening complications in immunocompromised patients by these human species D Ads, even more attention needs to be investigated into the development of diagnostic and therapeutic concepts to prevent and treat those opportunistic infections in susceptible patients.
Collapse
Affiliation(s)
- Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| | - Stefan Wirth
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| |
Collapse
|
32
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
33
|
Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021; 275:120908. [PMID: 34119885 DOI: 10.1016/j.biomaterials.2021.120908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Genetically modified cell sheet technology is emerging as a promising biomedical tool to deliver therapeutic genes for regenerative medicine and tissue engineering. Virus-based gene transfection and non-viral gene transfection have been used to fabricate genetically modified cell sheets. Preclinical and clinical studies have shown various beneficial effects of genetically modified cell sheets in the regeneration of bone, periodontal tissue, cartilage and nerves, as well as the amelioration of dental implant osseointegration, myocardial infarction, skeletal muscle ischemia and kidney injury. Furthermore, this technology provides a potential treatment option for various hereditary diseases. However, the method has several limitations, such as safety concerns and difficulties in controlling transgene expression. Therefore, recent studies explored efficient and safe gene transfection methods, prolonged and controllable transgene expression and their potential application in personalized and precision medicine. This review summarizes various types of genetically modified cell sheets, preparation procedures, therapeutic applications and possible improvements.
Collapse
Affiliation(s)
- Zhiwei Jiang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Na Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danji Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Lingfei Ren
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qin Shao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ke Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
34
|
Adenovirus - a blueprint for gene delivery. Curr Opin Virol 2021; 48:49-56. [PMID: 33892224 DOI: 10.1016/j.coviro.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
A central quest in gene therapy and vaccination is to achieve effective and long-lasting gene expression at minimal dosage. Adenovirus vectors are widely used therapeutics and safely deliver genes into many cell types. Adenoviruses evolved to use elaborate trafficking and particle deconstruction processes, and efficient gene expression and progeny formation. Here, we discuss recent insights into how human adenoviruses deliver their double-stranded DNA genome into cell nuclei, and effect lytic cell killing, non-lytic persistent infection or vector gene expression. The mechanisms underlying adenovirus entry, uncoating, nuclear transport and gene expression provide a blueprint for the emerging field of synthetic virology, where artificial virus-like particles are evolved to deliver therapeutic payload into human cells without viral proteins and genomes.
Collapse
|
35
|
Lee M, Lu ZH, Shoemaker CB, Tremblay JM, St Croix B, Seaman S, Gonzalez-Pastor R, Kashentseva EA, Dmitriev IP, Curiel DT. Advanced genetic engineering to achieve in vivo targeting of adenovirus utilizing camelid single domain antibody. J Control Release 2021; 334:106-113. [PMID: 33872627 DOI: 10.1016/j.jconrel.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/11/2021] [Indexed: 11/27/2022]
Abstract
For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhi Hong Lu
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Bradley St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Rebeca Gonzalez-Pastor
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Elena A Kashentseva
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor P Dmitriev
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
37
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
38
|
Giménez-Roig J, Núñez-Manchón E, Alemany R, Villanueva E, Fillat C. Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Front Microbiol 2021; 12:633946. [PMID: 33643266 PMCID: PMC7902882 DOI: 10.3389/fmicb.2021.633946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.
Collapse
Affiliation(s)
- Judit Giménez-Roig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estela Núñez-Manchón
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Alemany
- Procure Program, Institut Català d’Oncologia- Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
39
|
Brücher D, Kirchhammer N, Smith SN, Schumacher J, Schumacher N, Kolibius J, Freitag PC, Schmid M, Weiss F, Keller C, Grove M, Greber UF, Zippelius A, Plückthun A. iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:572-586. [PMID: 33665227 PMCID: PMC7890373 DOI: 10.1016/j.omtm.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Adenovirus-mediated combination gene therapies have shown promising results in vaccination or treating malignant and genetic diseases. Nevertheless, an efficient system for the rapid assembly and incorporation of therapeutic genes into high-capacity adenoviral vectors (HCAdVs) is still missing. In this study, we developed the iMATCH (integrated modular assembly for therapeutic combination HCAdVs) platform, which enables the generation and production of HCAdVs encoding therapeutic combinations in high quantity and purity within 3 weeks. Our modular cloning system facilitates the efficient combination of up to four expression cassettes and the rapid integration into HCAdV genomes with defined sizes. Helper viruses (HVs) and purification protocols were optimized to produce HCAdVs with distinct capsid modifications and unprecedented purity (0.1 ppm HVs). The constitution of HCAdVs, with adapters for targeting and a shield of trimerized single-chain variable fragment (scFv) for reduced liver clearance, mediated cell- and organ-specific targeting of HCAdVs. As proof of concept, we show that a single HCAdV encoding an anti PD-1 antibody, interleukin (IL)-12, and IL-2 produced all proteins, and it led to tumor regression and prolonged survival in tumor models, comparable to a mixture of single payload HCAdVs in vitro and in vivo. Therefore, the iMATCH system provides a versatile platform for the generation of high-capacity gene therapy vectors with a high potential for clinical development.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sheena N. Smith
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jatina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabian Weiss
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Corina Keller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Corresponding author: Andreas Plückthun, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
40
|
Zittersteijn HA, Gonçalves MA, Hoeben RC. A primer to gene therapy: Progress, prospects, and problems. J Inherit Metab Dis 2021; 44:54-71. [PMID: 32510617 PMCID: PMC7891367 DOI: 10.1002/jimd.12270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Genetic therapies based on gene addition have witnessed a variety of clinical successes and the first therapeutic products have been approved for clinical use. Moreover, innovative gene editing techniques are starting to offer new opportunities in which the mutations that underlie genetic diseases can be directly corrected in afflicted somatic cells. The toolboxes underpinning these DNA modifying technologies are expanding with great pace. Concerning the ongoing efforts for their implementation, viral vector-based gene delivery systems have acquired center-stage, providing new hopes for patients with inherited and acquired disorders. Specifically, the application of genetic therapies using viral vectors for the treatment of inborn metabolic disorders is growing and clinical applications are starting to appear. While the field has matured from the technology perspective and has yielded efficacious products, it is the perception of many stakeholders that from the regulatory side further developments are urgently needed. In this review, we summarize the features of state-of-the-art viral vector systems and the corresponding gene-centered therapies they seek to deliver. Moreover, a brief summary is also given on emerging gene editing approaches built on CRISPR-Cas9 nucleases and, more recently, nickases, including base editors and prime editors. Finally, we will point at some regulatory aspects that may deserve further attention for translating these technological developments into actual advanced therapy medicinal products (ATMPs).
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
41
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
42
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
43
|
Pscheidt VM, Gregianini TS, Martins LG, Veiga ABGD. Epidemiology of human adenovirus associated with respiratory infection in southern Brazil. Rev Med Virol 2020; 31:e2189. [PMID: 33156553 DOI: 10.1002/rmv.2189] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Human adenoviruses (HAdVs) are associated with respiratory infection in the human population worldwide, but HAdV is underreported and less studied than other respiratory viruses. We investigated HAdV in patients with respiratory infection in Rio Grande do Sul (RS), Brazil, between 2004 and 2018. The frequency and seasonality of HAdV, clinical symptoms and underlying diseases were analysed. Respiratory samples from outpatients with acute respiratory illness (ARI) who attended sentinel units and from inpatients with severe acute respiratory infection (SARI) were collected for HAdV detection by immunofluorescence assay; demographic and clinical data were analysed. In total, 43,514 cases of respiratory infection were analysed, of which 8,901 were ARI (20.5%), and 34,613 (79.5%) were SARI. Respiratory viruses were detected in 35.8% of the cases. The frequency of HAdV in relation to respiratory viruses was 2.8%. HAdV circulated year-round, with higher frequency during winter and early spring; increases in the average monthly temperature were associated with decreases in HAdV infections (p = 0.013). Most hospitalized patients with HAdV were male (p = 0.003). HAdV infection showed association with age (p < 0.001), and children between 1 and 5 years old accounted for 30.8% of the outpatients, whereas among cases of SARI, 88.2% were paediatric patients. Among inpatients with HAdV, 3% died, and of these, the majority had at least one underlying condition, such as cardiopathy and immunosuppression. HAdV infection of the respiratory tract causes morbidity and mortality, and individuals with heart diseases and the immunocompromised are at higher risk of fatality.
Collapse
Affiliation(s)
- Veridiane Maria Pscheidt
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-LACEN/CEVS/SES-RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia Garay Martins
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul - CEVS/SES-RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Beatriz Gorini da Veiga
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
44
|
Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther 2020; 28:375-389. [PMID: 32951021 DOI: 10.1038/s41417-020-00227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments, PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.
Collapse
|
45
|
Wang H, Georgakopoulou A, Li C, Liu Z, Gil S, Bashyam A, Yannaki E, Anagnostopoulos A, Pande A, Izsvák Z, Papayannopoulou T, Lieber A. Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements. JCI Insight 2020; 5:139538. [PMID: 32814708 PMCID: PMC7455141 DOI: 10.1172/jci.insight.139538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, we demonstrated that hematopoietic stem/progenitor cell (HSPC) mobilization followed by intravenous injection of integrating, helper-dependent adenovirus HDAd5/35++ vectors resulted in efficient transduction of long-term repopulating cells and disease amelioration in mouse models after in vivo selection of transduced HSPCs. Acute innate toxicity associated with HDAd5/35++ injection was controlled by appropriate prophylaxis, making this approach feasible for clinical translation. Our ultimate goal is to use this technically simple in vivo HSPC transduction approach for gene therapy of thalassemia major or sickle cell disease. A cure of these diseases requires high expression levels of the therapeutic protein (γ- or β-globin), which is difficult to achieve with lentivirus vectors because of their genome size limitation not allowing larger regulatory elements to be accommodated. Here, we capitalized on the 35 kb insert capacity of HDAd5/35++ vectors to demonstrate that transcriptional regulatory regions of the β-globin locus with a total length of 29 kb can efficiently be transferred into HSPCs. The in vivo HSPC transduction resulted in stable γ-globin levels in erythroid cells that conferred a complete cure of murine thalassemia intermedia. Notably, this was achieved with a minimal in vivo HSPC selection regimen. Employing large regulatory elements in the context of HDAd5/35++ vectors for in vivo transduction of HSPCs achieved gamma-globin levels in erythroid cells that cured murine thalassemia intermedia.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA.,Hematology Department, Hematopoietic Stem Cell Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Zhinan Liu
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Evangelia Yannaki
- Hematology Department, Hematopoietic Stem Cell Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Hematology Department, Hematopoietic Stem Cell Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Amit Pande
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
46
|
Gallego C, Gonçalves MAFV, Wijnholds J. Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Front Neurosci 2020; 14:838. [PMID: 32973430 PMCID: PMC7468381 DOI: 10.3389/fnins.2020.00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal diseases encompass a highly heterogenous group of disorders caused by a wide range of genetic variants and with diverse clinical symptoms that converge in the common trait of retinal degeneration. Indeed, mutations in over 270 genes have been associated with some form of retinal degenerative phenotype. Given the immune privileged status of the eye, cell replacement and gene augmentation therapies have been envisioned. While some of these approaches, such as delivery of genes through recombinant adeno-associated viral vectors, have been successfully tested in clinical trials, not all patients will benefit from current advancements due to their underlying genotype or phenotypic traits. Gene editing arises as an alternative therapeutic strategy seeking to correct mutations at the endogenous locus and rescue normal gene expression. Hence, gene editing technologies can in principle be tailored for treating retinal degeneration. Here we provide an overview of the different gene editing strategies that are being developed to overcome the challenges imposed by the post-mitotic nature of retinal cell types. We further discuss their advantages and drawbacks as well as the hurdles for their implementation in treating retinal diseases, which include the broad range of mutations and, in some instances, the size of the affected genes. Although therapeutic gene editing is at an early stage of development, it has the potential of enriching the portfolio of personalized molecular medicines directed at treating genetic diseases.
Collapse
Affiliation(s)
- Carmen Gallego
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
47
|
Abstract
Both well-known and emerging viruses increasingly affect humans and cause disease, sometimes with devastating impact on society. The viruses present in the biosphere are the top predators in the life chain, virtually without enemies, except perhaps the immune system, and harsh environmental physicochemical conditions restricting their dissemination. We know a lot about viruses, but do we know enough? This series of reviews is dedicated to adenoviruses (AdVs), a family of nonenveloped DNA viruses occurring in vertebrates, including humans. AdVs have been the focus of intense research for more than 67 years. Besides causing disease, they have immensely contributed to the advance of life sciences and medicine over the past decades. Recently, AdVs have been widely used as vehicles in gene therapy and vaccination. They continue to provide fundamental insights into virus-host interactions in cells, tissues and organisms, as well as systems and metabolic networks. This special issue of FEBS Letters presents a unique collection of 23 state-of-the-art review articles by leading adenovirologists. In this prelude, I present the chapters, which provide a solid basis for further exploring the rich heritage in adenovirus molecular cell biology, structural biology, genetics, immunology, gene therapy and epidemiology. I conclude with an essential discussion of six blind spots in adenovirology.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Overcoming Immunological Challenges to Helper-Dependent Adenoviral Vector-Mediated Long-Term CFTR Expression in Mouse Airways. Genes (Basel) 2020; 11:genes11050565. [PMID: 32443586 PMCID: PMC7291004 DOI: 10.3390/genes11050565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and CF patients require life-long treatment. Although CFTR modulators show a great potential for treating most CF patients, some individuals may not tolerate the treatment. In addition, there is no effective therapy for patients with some rare CFTR mutations, such as class I CF mutations, which lead to a lack of CFTR protein production. Therefore, other therapeutic strategies, such as gene therapy, have to be investigated. Currently, immune responses to gene therapy vectors and transgene products are a major obstacle to applying CF gene therapy to clinical applications. In this study, we examined the effects of cyclophosphamide on the modulation of host immune responses and for the improvement of the CFTR transgene expression in the repeated delivery of helper-dependent adenoviral (HD-Ad) vectors to mouse lungs. We have found that cyclophosphamide significantly decreased the expression of T cell genes, such as CD3 (cluster of differentiation 3) and CD4, and reduced their infiltration into mouse lung tissues. We have also found that the levels of the anti-adenoviral antibody and neutralizing activity as well as B-cell infiltration into the mouse lung tissues were significantly reduced with this treatment. Correspondingly, the expression of the human CFTR transgene has been significantly improved with cyclophosphamide administration compared to the group with no treatment. These data suggest that the sustained expression of the human CFTR transgene in mouse lungs through repeated vector delivery can be achieved by transient immunosuppression.
Collapse
|
49
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
50
|
Expanding the Spectrum of Adenoviral Vectors for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051139. [PMID: 32370135 PMCID: PMC7281331 DOI: 10.3390/cancers12051139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectors (AdVs) have attracted much attention in the fields of vaccine development and treatment for diseases such as genetic disorders and cancer. In this review, we discuss the utility of AdVs in cancer therapies. In recent years, AdVs were modified as oncolytic AdVs (OAs) that possess the characteristics of cancer cell-specific replication and killing. Different carriers such as diverse cells and extracellular vesicles are being explored for delivering OAs into cancer sites after systemic administration. In addition, there are also various strategies to improve cancer-specific replication of OAs, mainly through modifying the early region 1 (E1) of the virus genome. It has been documented that oncolytic viruses (OVs) function through stimulating the immune system, resulting in the inhibition of cancer progression and, in combination with classical immune modulators, the anti-cancer effect of OAs can be even further enforced. To enhance the cancer treatment efficacy, OAs are also combined with other standard treatments, including surgery, chemotherapy and radiotherapy. Adenovirus type 5 (Ad5) has mainly been explored to develop vectors for cancer treatment with different modulations. Only a limited number of the more than 100 identified AdV types were converted into OAs and, therefore, the construction of an adenovirus library for the screening of potential novel OA candidates is essential. Here, we provide a state-of-the-art overview of currently performed and completed clinic trials with OAs and an adenovirus library, providing novel possibilities for developing innovative adenoviral vectors for cancer treatment.
Collapse
|