1
|
Kettel P, Marosits L, Spinetti E, Rechberger M, Giannini C, Radler P, Niedermoser I, Fischer I, Versteeg GA, Loose M, Covino R, Karagöz GE. Disordered regions in the IRE1α ER lumenal domain mediate its stress-induced clustering. EMBO J 2024; 43:4668-4698. [PMID: 39232130 PMCID: PMC11480506 DOI: 10.1038/s44318-024-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Marosits
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Elena Spinetti
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- Institute of Biophysics, Goethe University, Frankfurt, Germany
| | | | - Caterina Giannini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Saha S, Mandal A, Ranjan A, Ghosh DK. Membrane tension sensing formin-binding protein 1 is a neuronal nutrient stress-responsive Golgiphagy receptor. Metabolism 2024:156040. [PMID: 39341273 DOI: 10.1016/j.metabol.2024.156040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Nutrient stress-responsive neuronal homeostasis relies on intricate autophagic mechanisms that modulate various organelle integrity and function. The selective autophagy of the Golgi, known as Golgiphagy, regulates secretory processes by modulating vesicle trafficking during nutrient starvation. RESULTS In this study, we explored a genetic screen of BAR-domain-containing proteins to elucidate the role of formin-binding protein 1 (FNBP1) as a Golgiphagy receptor in modulating Golgi dynamics in response to varying nutrient availability in neurons. Mapping the systems network of FNBP1 and its interacting proteins reveals the putative involvement of FNBP1 in autophagy and Golgi-associated processes. While nutrient depletion causes Golgi fragmentation, FNBP1 preferentially localizes to the fragmented Golgi membrane through its 284FEDYTQ289 motif during nutrient stress. Simultaneously, FNBP1 engages in molecular interactions with LC3B through a conserved 131WKQL134 LC3 interacting region, thereby sequestering the fragmented Golgi membrane in neuronal autophagosomes. Increased aggregation of GM130, abnormal clumping of RAB11-positive secretory granules, and enhanced senescent death of FNBP1-depleted starved neurons indicate disruptions of neuronal homeostasis under metabolic stress. CONCLUSION The identification of FNBP1 as a nutrient stress-responsive Golgiphagy receptor expands our insights into the molecular mechanisms underlying Golgiphagy, establishing the crosstalk between nutrient sensing and membrane tension-sensing regulatory autophagic processes of Golgi turnover in neurons.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, West Bengal, India
| | - Akash Ranjan
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Wu H, Wang Y, Li J, Qin Y, Chen M, Shen Z, Dong F, Cui X, Liu L, Xu Z, Gao F. cTAGE5 is involved in the assembly of Golgi ring in mouse primordial follicle. Sci Bull (Beijing) 2024:S2095-9273(24)00652-2. [PMID: 39358110 DOI: 10.1016/j.scib.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Haowei Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Mendes LFS, Oliveira CG, Simões KF, Kava E, Costa-Filho AJ. Exploring liquid-liquid phase separation in the organisation of Golgi matrix proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141029. [PMID: 38917877 DOI: 10.1016/j.bbapap.2024.141029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The Golgi apparatus is a critical organelle in protein sorting and lipid metabolism. Characterized by its stacked, flattened cisternal structure, the Golgi exhibits distinct polarity with its cis- and trans-faces orchestrating various protein maturation and transport processes. At the heart of its structural integrity and organisation are the Golgi Matrix Proteins (GMPs), predominantly comprising Golgins and GRASPs. These proteins contribute to this organelle's unique stacked and polarized structure and ensure the precise localization of Golgi-resident enzymes, which is crucial for accurate protein processing. Despite over a century of research since its discovery, the Golgi architecture's intricate mechanisms still need to be fully understood. Here, we discuss that GMPs across different Eukaryotic lineages present a significant tendency to form biomolecular condensates. Moreover, we validated experimentally that members of the GRASP family also exhibit a strong tendency. Our findings offer a new perspective on the possible roles of protein disorder and condensation of GMPs in the Golgi organisation.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Group of Biophysics and Structural Biology "Sergio Mascarenhas". São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil.
| | - Carolina G Oliveira
- Molecular Biophysics Laboratory, Department of Physics, Faculty of Philosophy, Sciences, and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kevin F Simões
- Group of Biophysics and Structural Biology "Sergio Mascarenhas". São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Emanuel Kava
- Molecular Biophysics Laboratory, Department of Physics, Faculty of Philosophy, Sciences, and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Molecular Biophysics Laboratory, Department of Physics, Faculty of Philosophy, Sciences, and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered microtubule-associated protein-IDR condensates. J Biol Chem 2024; 300:107544. [PMID: 38992434 PMCID: PMC11342785 DOI: 10.1016/j.jbc.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Microtubule filaments are assembled into higher-order structures using microtubule-associated proteins. However, synthetic MAPs that direct the formation of new structures are challenging to design, as nanoscale biochemical activities must be organized across micron length-scales. Here, we develop modular MAP-IDR condensates (synMAPs) that enable inducible assembly of higher-order microtubule structures for synthetic exploration in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity we show can be rewired by interaction with unrelated condensate-forming IDR sequences. This combination is sufficient to allow synMAPs to self-organize multivalent structures that bind and bridge microtubules into higher-order architectures. By regulating the connection between the microtubule-binding domain and condensate-forming components of a synMAP, the formation of these structures can be triggered by small molecules or cell-signaling inputs. We systematically test a panel of synMAP circuit designs to define how the assembly of these synthetic microtubule structures can be controlled at the nanoscale (via microtubule-binding affinity) and microscale (via condensate formation). synMAPs thus provide a modular starting point for the design of higher-order microtubule systems and an experimental testbed for exploring condensate-directed mechanisms of higher-order microtubule assembly from the bottom-up.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Ravindran R, Michnick SW. Biomolecular condensates as drivers of membrane trafficking and remodelling. Curr Opin Cell Biol 2024; 89:102393. [PMID: 38936257 DOI: 10.1016/j.ceb.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Membrane remodelling is essential for the trafficking of macromolecules throughout the cell, a process that regulates various aspects of cellular health and pathology. Recent studies implicate the role of biomolecular condensates in regulating multiple steps of the membrane trafficking pathway including but not limited to the organization of the trafficking machinery, dynamic remodeling of membranes, spatial and functional regulation, and response to cellular signals. The implicated proteins contain key structural elements, most notably prion-like domains within intrinsically disordered regions that are necessary for biomolecular condensate formation at fusion sites in processes like endocytic assembly, autophagy, organelle biosynthesis and synaptic vesicle fusion. Experimental and theoretical advances in the field continue to demonstrate that protein condensates can perform mechanical work, the implications of which can be extrapolated to diverse areas of membrane biology.
Collapse
Affiliation(s)
- Rini Ravindran
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Gebauer F. RNA glues it all. Nat Cell Biol 2024; 26:1021-1022. [PMID: 38992140 DOI: 10.1038/s41556-024-01454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Affiliation(s)
- Fátima Gebauer
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Zhang Y, Seemann J. RNA scaffolds the Golgi ribbon by forming condensates with GM130. Nat Cell Biol 2024; 26:1139-1153. [PMID: 38992139 DOI: 10.1038/s41556-024-01447-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
The mammalian Golgi is composed of stacks that are laterally connected into a continuous ribbon-like structure. The integrity and function of the ribbon is disrupted under stress conditions, but the molecular mechanisms remain unclear. Here we show that the ribbon is maintained by biomolecular condensates of RNA and the Golgi matrix protein GM130 (GOLGA2). We identify GM130 as a membrane-bound RNA-binding protein, which directly recruits RNA and associated RNA-binding proteins to the Golgi membrane. Acute degradation of RNA or GM130 in cells disrupts the ribbon. Under stress conditions, RNA dissociates from GM130 and the ribbon is disjointed, but after the cells recover from stress the ribbon is restored. When overexpressed in cells, GM130 forms RNA-dependent liquid-like condensates. GM130 contains an intrinsically disordered domain at its amino terminus, which binds RNA to induce liquid-liquid phase separation. These co-condensates are sufficient to link purified Golgi membranes, reconstructing lateral linking of stacks into a ribbon-like structure. Together, these studies show that RNA acts as a structural biopolymer that together with GM130 maintains the integrity of the Golgi ribbon.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Campelo F, Lillo JV, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophys J 2024; 123:1531-1541. [PMID: 38698644 PMCID: PMC11214006 DOI: 10.1016/j.bpj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
10
|
Boyer NP, Sharma R, Wiesner T, Delamare A, Pelletier F, Leterrier C, Roy S. Spectrin condensates provide a nidus for assembling the periodic axonal structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597638. [PMID: 38895400 PMCID: PMC11185721 DOI: 10.1101/2024.06.05.597638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coordinated assembly of individual components into higher-order structures is a defining theme in biology, but underlying principles are not well-understood. In neurons, α/β spectrins, adducin, and actinfilaments assemble into a lattice wrapping underneath the axonal plasma membrane, but mechanistic events leading to this periodic axonal structure (PAS) are unclear. Visualizing PAS components in axons as they develop, we found focal patches in distal axons containing spectrins and adducin (but sparse actin filaments) with biophysical properties reminiscent of biomolecular condensation. Overexpressing spectrin-repeats - constituents of α/β-spectrins - in heterologous cells triggered condensate formation, and preventing association of βII-spectrin with actin-filaments/membranes also facilitated condensation. Finally, overexpressing condensate-triggering spectrin repeats in neurons before PAS establishment disrupted the lattice, presumably by competing with innate assembly, supporting a functional role for biomolecular condensation. We propose a condensation-assembly model where PAS components form focal phase-separated condensates that eventually unfurl into a stable lattice-structure by associating with subplasmalemmal actin. By providing local 'depots' of assembly parts, biomolecular condensation may play a wider role in the construction of intricate cytoskeletal structures.
Collapse
|
11
|
Arab M, Chen T, Lowe M. Mechanisms governing vesicle traffic at the Golgi apparatus. Curr Opin Cell Biol 2024; 88:102365. [PMID: 38705050 DOI: 10.1016/j.ceb.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Vesicle transport at the Golgi apparatus is a well-described process, and the major protein components involved have been identified. This includes the coat proteins that function in cargo sorting and vesicle formation, and the proteins that mediate the downstream events of vesicle tethering and membrane fusion. However, despite this knowledge, there remain significant gaps in our mechanistic understanding of these processes which includes how they are coordinated in space and time. In this review we discuss recent advances that have provided new insights into the mechanisms of Golgi trafficking, focussing on vesicle formation and cargo sorting, and vesicle tethering and fusion. These studies point to a high degree of spatial organisation of trafficking components at the Golgi and indicate an inherent plasticity of trafficking. Going forward, further advancements in technology and more sophisticated functional assays are expected to yield greater understanding of the mechanisms that govern Golgi trafficking events.
Collapse
Affiliation(s)
- Maryam Arab
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tong Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
Qiu H, Wu X, Ma X, Li S, Cai Q, Ganzella M, Ge L, Zhang H, Zhang M. Short-distance vesicle transport via phase separation. Cell 2024; 187:2175-2193.e21. [PMID: 38552623 DOI: 10.1016/j.cell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/28/2024]
Abstract
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Collapse
Affiliation(s)
- Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qixu Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Wegeng WR, Bogus SM, Ruiz M, Chavez SR, Noori KSM, Niesman IR, Ernst AM. A Hollow TFG Condensate Spatially Compartmentalizes the Early Secretory Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586876. [PMID: 38585729 PMCID: PMC10996658 DOI: 10.1101/2024.03.26.586876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In the early secretory pathway, endoplasmic reticulum (ER) and Golgi membranes form a nearly spherical interface. In this ribosome-excluding zone, bidirectional transport of cargo coincides with a spatial segregation of anterograde and retrograde carriers by an unknown mechanism. We show that at physiological conditions, Trk-fused gene (TFG) self-organizes to form a hollow, anisotropic condensate that matches the dimensions of the ER-Golgi interface. Regularly spaced hydrophobic residues in TFG control the condensation mechanism and result in a porous condensate surface. We find that TFG condensates act as a molecular sieve, enabling molecules corresponding to the size of anterograde coats (COPII) to access the condensate interior while restricting retrograde coats (COPI). We propose that a hollow TFG condensate structures the ER-Golgi interface to create a diffusion-limited space for bidirectional transport. We further propose that TFG condensates optimize membrane flux by insulating secretory carriers in their lumen from retrograde carriers outside TFG cages.
Collapse
Affiliation(s)
- William R. Wegeng
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Savannah M. Bogus
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Miguel Ruiz
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Sindy R. Chavez
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Khalid S. M. Noori
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Ingrid R. Niesman
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
14
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models. Biophys J 2024; 123:703-717. [PMID: 38356260 PMCID: PMC10995412 DOI: 10.1016/j.bpj.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions that support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as the multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and have implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
- Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
15
|
Hoffmann C, Milovanovic D. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes. J Cell Sci 2023; 136:jcs261413. [PMID: 38149872 PMCID: PMC10785658 DOI: 10.1242/jcs.261413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Liquid-liquid phase separation is a major mechanism for organizing macromolecules, particularly proteins with intrinsically disordered regions, in compartments not limited by a membrane or a scaffold. The cell can therefore be perceived as a complex emulsion containing many of these membraneless organelles, also referred to as biomolecular condensates, together with numerous membrane-bound organelles. It is currently unclear how such a complex concoction operates to allow for intracellular trafficking, signaling and metabolic processes to occur with high spatiotemporal precision. Based on experimental observations of synaptic vesicle condensates - a membraneless organelle that is in fact packed with membranes - we present here the framework of dipping contacts: a novel type of contact site between membraneless organelles and membranes. In this Hypothesis, we propose that our framework of dipping contacts can serve as a foundation to investigate the interface that couples the diffusion and material properties of condensates to biochemical processes occurring in membranes. The identity and regulation of this interface is especially critical in the case of neurodegenerative diseases, where aberrant inclusions of misfolded proteins and damaged organelles underlie cellular pathology.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, CA 94720, USA
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
16
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered MAP-IDR condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532644. [PMID: 38105997 PMCID: PMC10723337 DOI: 10.1101/2023.03.14.532644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microtubules filaments are assembled into higher-order structures and machines critical for cellular processes using microtubule-associated proteins (MAPs). However, the design of synthetic MAPs that direct the formation of new structures in cells is challenging, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop synthetic MAP-IDR condensates (synMAPs) that provide tunable and regulatable assembly of higher-order microtubule structures in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity can be synthetically rewired by interaction with condensate-forming IDR sequences. This combination allows synMAPs to self-organize multivalent structures that bind and bridge microtubules into synthetic architectures. Regulating the connection between the microtubule-binding and condensate-forming components allows synMAPs to act as nodes in more complex cytoskeletal circuits in which the formation and dynamics of the microtubule structure can be controlled by small molecules or cell-signaling inputs. By systematically testing a panel of synMAP circuit designs, we define a two-level control scheme for dynamic assembly of microtubule architectures at the nanoscale (via microtubule-binding) and microscale (via condensate formation). synMAPs provide a compact and rationally engineerable starting point for the design of more complex microtubule architectures and cellular machines.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Scott M. Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
17
|
Wilfling F, Kaksonen M, Stachowiak J. Protein condensates as flexible platforms for membrane traffic. Curr Opin Cell Biol 2023; 85:102258. [PMID: 37832166 PMCID: PMC11165926 DOI: 10.1016/j.ceb.2023.102258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
With an essential role in nearly every physiological process and disease state, trafficking vesicles are fundamental to cell biology. Canonical understanding of membrane traffic has been driven by key achievements in structural biology. Nonetheless, discoveries over the past few years progressively point to the critical role of intrinsically disordered domains and proteins, which lack a well-defined secondary structure. From the initiation of endocytosis and the sequestration of synaptic vesicles to the stabilization of endoplasmic reticulum exit sites and the extension of the autophagic cup, flexible protein condensates, rich in intrinsic disorder, are increasingly implicated. While important debates about the physical nature and mechanistic interpretation of these findings remain, the significance of transient, multivalent protein assemblies in membrane traffic is increasingly clear.
Collapse
Affiliation(s)
- Florian Wilfling
- Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, Frankfurt a. M., Germany.
| | - Marko Kaksonen
- University of Geneva, Department of Biochemistry, Geneva, Switzerland.
| | - Jeanne Stachowiak
- University of Texas at Austin, Department of Biomedical Engineering, USA; University of Texas at Austin, Department of Chemical Engineering, USA.
| |
Collapse
|
18
|
Vaglietti S, Villeri V, Dell’Oca M, Marchetti C, Cesano F, Rizzo F, Miller D, LaPierre L, Pelassa I, Monje FJ, Colnaghi L, Ghirardi M, Fiumara F. PolyQ length-based molecular encoding of vocalization frequency in FOXP2. iScience 2023; 26:108036. [PMID: 37860754 PMCID: PMC10582585 DOI: 10.1016/j.isci.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
The transcription factor FOXP2, a regulator of vocalization- and speech/language-related phenotypes, contains two long polyQ repeats (Q1 and Q2) displaying marked, still enigmatic length variation across mammals. We found that the Q1/Q2 length ratio quantitatively encodes vocalization frequency ranges, from the infrasonic to the ultrasonic, displaying striking convergent evolution patterns. Thus, species emitting ultrasonic vocalizations converge with bats in having a low ratio, whereas species vocalizing in the low-frequency/infrasonic range converge with elephants and whales, which have higher ratios. Similar, taxon-specific patterns were observed for the FOXP2-related protein FOXP1. At the molecular level, we observed that the FOXP2 polyQ tracts form coiled coils, assembling into condensates and fibrils, and drive liquid-liquid phase separation (LLPS). By integrating evolutionary and molecular analyses, we found that polyQ length variation related to vocalization frequency impacts FOXP2 structure, LLPS, and transcriptional activity, thus defining a novel form of polyQ length-based molecular encoding of vocalization frequency.
Collapse
Affiliation(s)
- Serena Vaglietti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Veronica Villeri
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Marco Dell’Oca
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Chiara Marchetti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Federico Cesano
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesca Rizzo
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China
| | - Dave Miller
- Cascades Pika Watch, Oregon Zoo, Portland, OR 97221, USA
| | - Louis LaPierre
- Deptartment of Natural Science, Lower Columbia College, Longview, WA 98632, USA
| | - Ilaria Pelassa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mirella Ghirardi
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| |
Collapse
|
19
|
Gallo R, Rai AK, McIntyre ABR, Meyer K, Pelkmans L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev Cell 2023; 58:1880-1897.e11. [PMID: 37643612 DOI: 10.1016/j.devcel.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
The dual-specificity kinase DYRK3 controls the formation and dissolution of multiple biomolecular condensates, regulating processes including stress recovery and mitotic progression. Here, we report that DYRK3 functionally interacts with proteins associated with endoplasmic reticulum (ER) exit sites (ERESs) and that inhibition of DYRK3 perturbs the organization of the ERES-Golgi interface and secretory trafficking. DYRK3-mediated regulation of ERES depends on the N-terminal intrinsically disordered region (IDR) of the peripheral membrane protein SEC16A, which co-phase separates with ERES components to form liquid-like condensates on the surface of the ER. By modulating the liquid-like properties of ERES, we show that their physical state is essential for functional cargo trafficking through the early secretory pathway. Our findings support a mechanism whereby phosphorylation by DYRK3 and its reversal by serine-threonine phosphatases regulate the material properties of ERES to create a favorable physicochemical environment for directional membrane traffic in eukaryotic cells.
Collapse
Affiliation(s)
- Raffaella Gallo
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| | - Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| |
Collapse
|
20
|
Dragwidge JM, Van Damme D. Protein phase separation in plant membrane biology: more than just a compartmentalization strategy. THE PLANT CELL 2023; 35:3162-3172. [PMID: 37352127 PMCID: PMC10473209 DOI: 10.1093/plcell/koad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The formation of biomolecular condensates through phase separation is an important strategy to compartmentalize cellular functions. While it is now well established that condensates exist throughout eukaryotic cells, how condensates assemble and function on lipid membranes is only beginning to be understood. In this perspective, we highlight work from plant, animal, and yeast model systems showing that condensates assemble on many endomembrane surfaces to carry out diverse functions. In vesicle trafficking, condensation has reported roles in the formation of endocytic vesicles and autophagosomes and in the inactivation of secretory COPII vesicles. We briefly discuss how membranes and membrane lipids regulate the formation and function of membrane-associated condensates. This includes how membranes act as surfaces for condensate assembly, with lipids mediating the nucleation of condensates during endocytosis and other processes. Additionally, membrane-condensate interactions give rise to the biophysical property of "wetting", which has functional importance in shaping autophagosomal and vacuolar membranes. We also speculate on the existence of membrane-associated condensates during cell polarity in plants and discuss how condensation may help to establish functional plasma membrane domains. Lastly, we provide advice on relevant in vitro and in vivo approaches and techniques to study membrane-associated phase separation.
Collapse
Affiliation(s)
- Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
21
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation of proteins in molecular models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543124. [PMID: 37398035 PMCID: PMC10312653 DOI: 10.1101/2023.05.31.543124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions which support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and has implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder CO, 80309
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80309
| |
Collapse
|
22
|
Sansevrino R, Hoffmann C, Milovanovic D. Condensate biology of synaptic vesicle clusters. Trends Neurosci 2023; 46:293-306. [PMID: 36725404 DOI: 10.1016/j.tins.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.
Collapse
Affiliation(s)
- Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
23
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
24
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
25
|
Shaiken TE, Grimm SL, Siam M, Williams A, Rezaeian AH, Kraushaar D, Ricco E, Robertson MJ, Coarfa C, Jain A, Malovannaya A, Stossi F, Opekun AR, Price AP, Dubrulle J. Transcriptome, proteome, and protein synthesis within the intracellular cytomatrix. iScience 2023; 26:105965. [PMID: 36824274 PMCID: PMC9941065 DOI: 10.1016/j.isci.2023.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.
Collapse
Affiliation(s)
- Tattym E. Shaiken
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
| | - Sandra L. Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamad Siam
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
| | - Amanda Williams
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
| | - Abdol-Hossein Rezaeian
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daniel Kraushaar
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily Ricco
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antone R. Opekun
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyssa P. Price
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julien Dubrulle
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
27
|
Retro-2 alters Golgi structure. Sci Rep 2022; 12:14975. [PMID: 36056100 PMCID: PMC9438350 DOI: 10.1038/s41598-022-19415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Retro-2 directly interacts with an ER exit site protein, Sec16A, inhibiting ER exit of a Golgi tSNARE, Syntaxin5, which results in rapid re-distribution of Syntaxin5 to the ER. Recently, it was shown that SARS-CoV-2 infection disrupts the Golgi apparatus within 6–12 h, while its replication was effectively inhibited by Retro-2 in cultured human lung cells. Yet, exactly how Retro-2 may influence ultrastructure of the Golgi apparatus have not been thoroughly investigated. In this study, we characterized the effect of Retro-2 treatment on ultrastructure of the Golgi apparatus using electron microscopy and EM tomography. Our initial results on protein secretion showed that Retro-2 treatment does not significantly influence secretion of either small or large cargos. Ultra-structural study of the Golgi, however, revealed rapid accumulation of COPI-like vesicular profiles in the perinuclear area and a partial disassembly of the Golgi stack under electron microscope within 3–5 h, suggesting altered Golgi organization in these cells. Retro-2 treatment in cells depleted of GRASP65/55, the two well-known Golgi structural proteins, induced complete and rapid disassembly of the Golgi into individual cisterna. Taken together, these results suggest that Retro-2 profoundly alters Golgi structure to a much greater extent than previously anticipated.
Collapse
|
28
|
Conti BA, Oppikofer M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol Sci 2022; 43:820-837. [PMID: 36028355 DOI: 10.1016/j.tips.2022.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Biomolecular condensates organize cellular functions in the absence of membranes. These membraneless organelles can form through liquid-liquid phase separation coalescing RNA and proteins into well-defined, yet dynamic, structures distinct from the surrounding cellular milieu. Numerous physiological and disease-causing processes link to biomolecular condensates, which could impact drug discovery in several ways. First, disruption of pathological condensates seeded by mutated proteins or RNAs may provide new opportunities to treat disease. Second, condensates may be leveraged to tackle difficult-to-drug targets lacking binding pockets whose function depends on phase separation. Third, condensate-resident small molecules and RNA therapeutics may display unexpected pharmacology. We discuss the potential impact of phase separation on drug discovery and RNA therapeutics, leveraging concrete examples, towards novel clinical opportunities.
Collapse
Affiliation(s)
- Brooke A Conti
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY, USA
| | - Mariano Oppikofer
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY, USA.
| |
Collapse
|
29
|
Screening membraneless organelle participants with machine-learning models that integrate multimodal features. Proc Natl Acad Sci U S A 2022; 119:e2115369119. [PMID: 35687670 PMCID: PMC9214545 DOI: 10.1073/pnas.2115369119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein self-assembly is one of the formation mechanisms of biomolecular condensates. However, most phase-separating systems (PS) demand multiple partners in biological conditions. In this study, we divided PS proteins into two groups according to the mechanism by which they undergo PS: PS-Self proteins can self-assemble spontaneously to form droplets, while PS-Part proteins interact with partners to undergo PS. Analysis of the amino acid composition revealed differences in the sequence pattern between the two protein groups. Existing PS predictors, when evaluated on two test protein sets, preferentially predicted self-assembling proteins. Thus, a comprehensive predictor is required. Herein, we propose that properties other than sequence composition can provide crucial information in screening PS proteins. By incorporating phosphorylation frequencies and immunofluorescence image-based droplet-forming propensity with other PS-related features, we built two independent machine-learning models to separately predict the two protein categories. Results of independent testing suggested the superiority of integrating multimodal features. We performed experimental verification on the top-scored proteins DHX9, Ki-67, and NIFK. Their PS behavior in vitro revealed the effectiveness of our models in PS prediction. Further validation on the proteome of membraneless organelles confirmed the ability of our models to identify PS-Part proteins. We implemented a web server named PhaSePred (http://predict.phasep.pro/) that incorporates our two models together with representative PS predictors. PhaSePred displays proteome-level quantiles of different features, thus profiling PS propensity and providing crucial information for identification of candidate proteins.
Collapse
|
30
|
Watanabe C, Yanagisawa M. Evaporation Patterns of Dextran-Poly(Ethylene Glycol) Droplets with Changes in Wettability and Compatibility. Life (Basel) 2022; 12:life12030373. [PMID: 35330124 PMCID: PMC8954583 DOI: 10.3390/life12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The dextran−PEG system is one of the most famous systems exhibiting phase separation. Various phase behaviors, including the evaporation process of the dextran−PEG system, have been studied in order to understand the physicochemical mechanism of intracellular phase separation and the effect of condensation on the origin of life. However, there have been few studies in dilute regime. In this study, we focused on such regimes and analyzed the pattern formation by evaporation. The specificity of this regime is the slow onset of phase separation due to low initial concentration, and the separated phases can have contrasting wettability to the substrate as evaporation progresses. When the polymer concentration is rather low (<5 wt%), the dextran−PEG droplets form a phase-separated pattern, consisting of PEG at the center and dextran ring of multiple strings pulling from the ring. This pattern formation is explained from the difference in wettability and compatibility between dextran and PEG upon condensation. At the initial dilute stage, the dextran-rich phase with higher wettability accumulates at the contact line of the droplet to form a ring pattern, and then forms multiple domains due to density fluctuation. The less wettable PEG phase recedes and pulls the dextran domains, causing them to deform into strings. Further condensation leads to phase separation, and the condensed PEG with improved wettability stops receding and prevents a formed circular pattern. These findings suggest that evaporation patterns of polymer blend droplets can be manipulated through changes in wettability and compatibility between polymers due to condensation, thus providing the basis to explore origins of life that are unique to the process of condensate formation from dilute systems.
Collapse
Affiliation(s)
- Chiho Watanabe
- School of Integrated Arts and Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
- Correspondence:
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan;
- Universal Biology Institute, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo 153-8902, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Milicevic K, Rankovic B, Andjus PR, Bataveljic D, Milovanovic D. Emerging Roles for Phase Separation of RNA-Binding Proteins in Cellular Pathology of ALS. Front Cell Dev Biol 2022; 10:840256. [PMID: 35372329 PMCID: PMC8965147 DOI: 10.3389/fcell.2022.840256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a major principle for the mesoscale organization of proteins, RNAs, and membrane-bound organelles into biomolecular condensates. These condensates allow for rapid cellular responses to changes in metabolic activities and signaling. Nowhere is this regulation more important than in neurons and glia, where cellular physiology occurs simultaneously on a range of time- and length-scales. In a number of neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), misregulation of biomolecular condensates leads to the formation of insoluble aggregates-a pathological hallmark of both sporadic and familial ALS. Here, we summarize how the emerging knowledge about the LLPS of ALS-related proteins corroborates with their aggregation. Understanding the mechanisms that lead to protein aggregation in ALS and how cells respond to these aggregates promises to open new directions for drug development.
Collapse
Affiliation(s)
- Katarina Milicevic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Danijela Bataveljic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
32
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
33
|
Resurrecting Golgi proteins to grasp Golgi ribbon formation and self-association under stress. Int J Biol Macromol 2022; 194:264-275. [PMID: 34861272 DOI: 10.1016/j.ijbiomac.2021.11.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022]
Abstract
The Golgi complex is an essential organelle of the eukaryotic exocytic pathway. A subfamily of Golgi matrix proteins, called GRASPs, is central in stress-induced unconventional secretion, Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogues and two Golgins (GM130/Golgin45), which form specific GRASP-Golgin pairs. The molecular details of their appearance only in Metazoans are unknown. Moreover, despite new functionalities supported by GRASP paralogy, little is known about their structural and evolutionary differences. Here, we used ancestor sequence reconstruction and biophysical/biochemical approaches to assess the evolution of GRASPs structure/dynamics, fibrillation, and how they started anchoring their Golgin partners. Our data showed that a GRASP ancestor anchored Golgins before gorasp gene duplication in Metazoans. After gene duplication, variations within the GRASP binding pocket determined which paralogue would recruit which Golgin. These interactions are responsible for their specific Golgi location and Golgi ribbon appearance. We also suggest that GRASPs have a long-standing capacity to form supramolecular structures, affecting their participation in stress-induced processes.
Collapse
|
34
|
Bogan JS. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Front Endocrinol (Lausanne) 2022; 13:1019405. [PMID: 36246906 PMCID: PMC9556833 DOI: 10.3389/fendo.2022.1019405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
In response to insulin stimulation, fat and muscle cells mobilize GLUT4 glucose transporters to the cell surface to enhance glucose uptake. Ubiquitin-like processing of TUG (Aspscr1, UBXD9) proteins is a central mechanism to regulate this process. Here, recent advances in this area are reviewed. The data support a model in which intact TUG traps insulin-responsive "GLUT4 storage vesicles" at the Golgi matrix by binding vesicle cargoes with its N-terminus and matrix proteins with its C-terminus. Insulin stimulation liberates these vesicles by triggering endoproteolytic cleavage of TUG, mediated by the Usp25m protease. Cleavage occurs in fat and muscle cells, but not in fibroblasts or other cell types. Proteolytic processing of intact TUG generates TUGUL, a ubiquitin-like protein modifier, as the N-terminal cleavage product. In adipocytes, TUGUL modifies a single protein, the KIF5B kinesin motor, which carries GLUT4 and other vesicle cargoes to the cell surface. In muscle, this or another motor may be modified. After cleavage of intact TUG, the TUG C-terminal product is extracted from the Golgi matrix by the p97 (VCP) ATPase. In both muscle and fat, this cleavage product enters the nucleus, binds PPARγ and PGC-1α, and regulates gene expression to promote fatty acid oxidation and thermogenesis. The stability of the TUG C-terminal product is regulated by an Ate1 arginyltransferase-dependent N-degron pathway, which may create a feedback mechanism to control oxidative metabolism. Although it is now clear that TUG processing coordinates glucose uptake with other aspects of physiology and metabolism, many questions remain about how this pathway is regulated and how it is altered in metabolic disease in humans.
Collapse
Affiliation(s)
- Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Jonathan S. Bogan,
| |
Collapse
|
35
|
Huber LA. Presenting the FEBS Letters virtual issue on vesicle biology. FEBS Lett 2021; 595:2978-2980. [PMID: 34783009 DOI: 10.1002/1873-3468.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Surface densities prewet a near-critical membrane. Proc Natl Acad Sci U S A 2021; 118:2103401118. [PMID: 34599097 DOI: 10.1073/pnas.2103401118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Recent work has highlighted roles for thermodynamic phase behavior in diverse cellular processes. Proteins and nucleic acids can phase separate into three-dimensional liquid droplets in the cytoplasm and nucleus and the plasma membrane of animal cells appears tuned close to a two-dimensional liquid-liquid critical point. In some examples, cytoplasmic proteins aggregate at plasma membrane domains, forming structures such as the postsynaptic density and diverse signaling clusters. Here we examine the physics of these surface densities, employing minimal simulations of polymers prone to phase separation coupled to an Ising membrane surface in conjunction with a complementary Landau theory. We argue that these surface densities are a phase reminiscent of prewetting, in which a molecularly thin three-dimensional liquid forms on a usually solid surface. However, in surface densities the solid surface is replaced by a membrane with an independent propensity to phase separate. We show that proximity to criticality in the membrane dramatically increases the parameter regime in which a prewetting-like transition occurs, leading to a broad region where coexisting surface phases can form even when a bulk phase is unstable. Our simulations naturally exhibit three-surface phase coexistence even though both the membrane and the polymer bulk only display two-phase coexistence on their own. We argue that the physics of these surface densities may be shared with diverse functional structures seen in eukaryotic cells.
Collapse
|
37
|
Jamecna D, Antonny B. Intrinsically disordered protein regions at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159020. [PMID: 34352388 DOI: 10.1016/j.bbalip.2021.159020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.
Collapse
Affiliation(s)
- Denisa Jamecna
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France; Biochemistry Center (BZH), Heidelberg, Germany
| | - Bruno Antonny
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
38
|
Raote I, Saxena S, Campelo F, Malhotra V. TANGO1 marshals the early secretory pathway for cargo export. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183700. [PMID: 34293283 DOI: 10.1016/j.bbamem.2021.183700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
TANGO1 protein facilitates the endoplasmic reticulum (ER) export of large cargoes that cannot be accommodated in 60 nm transport vesicles. It assembles into a ring in the plane of the ER membrane to create a distinct domain. Its lumenal portion collects and sorts folded cargoes while its cytoplasmic domains collar COPII coats, recruit retrograde COPI-coated membranes that fuse within the TANGO1 ring, thus opening a tunnel for cargo transfer from the ER into a growing export conduit. This mode of cargo transfer bypasses the need for vesicular intermediates and is used to export the most abundant and bulky cargoes. The evolution of TANGO1 and its activities defines the difference between yeast and animal early secretory pathways.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.
| | - Sonashree Saxena
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
39
|
Nyitrai H, Wang SSH, Kaeser PS. ELKS1 Captures Rab6-Marked Vesicular Cargo in Presynaptic Nerve Terminals. Cell Rep 2021; 31:107712. [PMID: 32521280 PMCID: PMC7360120 DOI: 10.1016/j.celrep.2020.107712] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
Neurons face unique transport challenges. They need to deliver cargo over long axonal distances and to many presynaptic nerve terminals. Rab GTPases are master regulators of vesicular traffic, but essential presynaptic Rabs have not been identified. Here, we find that Rab6, a Golgi-derived GTPase for constitutive secretion, associates with mobile axonal cargo and localizes to nerve terminals. ELKS1 is a stationary presynaptic protein with Golgin homology that binds to Rab6. Knockout and rescue experiments for ELKS1 and Rab6 establish that ELKS1 captures Rab6 cargo. The ELKS1-Rab6-capturing mechanism can be transferred to mitochondria by mistargeting ELKS1 or Rab6 to them. We conclude that nerve terminals have repurposed mechanisms from constitutive exocytosis for their highly regulated secretion. By employing Golgin-like mechanisms with anchored ELKS extending its coiled-coils to capture Rab6 cargo, they have spatially separated cargo capture from fusion. ELKS complexes connect to active zones and may mediate vesicle progression toward release sites.
Collapse
Affiliation(s)
- Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Zhang Y, Seemann J. Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure. J Cell Biol 2021; 220:211583. [PMID: 33301566 PMCID: PMC7735681 DOI: 10.1083/jcb.202007052] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
41
|
Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. Int J Mol Sci 2021; 22:ijms22063017. [PMID: 33809541 PMCID: PMC8002189 DOI: 10.3390/ijms22063017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.
Collapse
Affiliation(s)
- Nazanin Farahi
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shoshana J. Wodak
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (P.T.); (R.P.)
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (P.T.); (R.P.)
| |
Collapse
|
42
|
Ditlev JA. Membrane-associated phase separation: organization and function emerge from a two-dimensional milieu. J Mol Cell Biol 2021; 13:319-324. [PMID: 33532844 PMCID: PMC8339363 DOI: 10.1093/jmcb/mjab010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jonathon A Ditlev
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
The exquisite structural biophysics of the Golgi Reassembly and Stacking Proteins. Int J Biol Macromol 2020; 164:3632-3644. [DOI: 10.1016/j.ijbiomac.2020.08.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
|
44
|
A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol 2020; 22:215-235. [PMID: 33169001 DOI: 10.1038/s41580-020-00303-z] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology.
Collapse
|
45
|
Omari S, Makareeva E, Gorrell L, Jarnik M, Lippincott-Schwartz J, Leikin S. Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking. Matrix Biol 2020; 93:79-94. [DOI: 10.1016/j.matbio.2020.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
|
46
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Yu C, Shen B, You K, Huang Q, Shi M, Wu C, Chen Y, Zhang C, Li T. Proteome-scale analysis of phase-separated proteins in immunofluorescence images. Brief Bioinform 2020; 22:5900570. [PMID: 34020549 DOI: 10.1093/bib/bbaa187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Phase separation is an important mechanism that mediates the spatial distribution of proteins in different cellular compartments. While phase-separated proteins share certain sequence characteristics, including intrinsically disordered regions (IDRs) and prion-like domains, such characteristics are insufficient for making accurate predictions; thus, a proteome-wide understanding of phase separation is currently lacking. Here, we define phase-separated proteomes based on the systematic analysis of immunofluorescence images of 12 073 proteins in the Human Protein Atlas. The analysis of these proteins reveals that phase-separated candidate proteins exhibit higher IDR contents, higher mean net charge and lower hydropathy and prefer to bind to RNA. Kinases and transcription factors are also enriched among these candidate proteins. Strikingly, both phase-separated kinases and phase-separated transcription factors display significantly reduced substrate specificity. Our work provides the first global view of the phase-separated proteome and suggests that the spatial proximity resulting from phase separation reduces the requirement for motif specificity and expands the repertoire of substrates. The source code and data are available at https://github.com/cheneyyu/deepphase.
Collapse
Affiliation(s)
- Chunyu Yu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Boyan Shen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; School of Medicine, Tsinghua University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; School of Medicine, Tsinghua University, Beijing, China
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
48
|
Ziltener P, Rebane AA, Graham M, Ernst AM, Rothman JE. The golgin family exhibits a propensity to form condensates in living cells. FEBS Lett 2020; 594:3086-3094. [PMID: 32668013 PMCID: PMC7589415 DOI: 10.1002/1873-3468.13884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/19/2023]
Abstract
The Golgi is surrounded by a ribosome‐excluding matrix. Recently, we reported that the cis‐Golgi‐localized golgin GM130 can phase‐separate to form dynamic, liquid‐like condensates in vitro and in vivo. Here, we show that the overexpression of each of the remaining cis (golgin160, GMAP210)‐ and trans (golgin97, golgin245, GCC88, GCC185)‐golgins results in novel protein condensates. Focused ion beam scanning electron microscopy (FIB‐SEM) images of GM130 condensates reveal a complex internal organization with branching aqueous channels. Pairs of golgins overexpressed in the same cell form distinct juxtaposed condensates. These findings support the hypothesis that, in addition to their established roles as vesicle tethers, phase separation may be a common feature of the golgin family that contributes to Golgi organization.
Collapse
Affiliation(s)
- Pascal Ziltener
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | | | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|