1
|
Sarangi P. Role of indoleamine 2, 3-dioxygenase 1 in immunosuppression of breast cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:246-255. [PMID: 39371092 PMCID: PMC11447360 DOI: 10.1016/j.cpt.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Breast cancer (BC) contributes greatly to global cancer incidence and is the main cause of cancer-related deaths among women globally. It is a complex disease characterized by numerous subtypes with distinct clinical manifestations. Immune checkpoint inhibitors (ICIs) are not effective in all patients and have been associated with tumor resistance and immunosuppression. Because amino acid (AA)-catabolizing enzymes have been shown to regulate immunosuppressive effects, this review investigated the immunosuppressive roles of indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme, which is overexpressed in various metastatic tumors. It promotes immunomodulatory effects by depleting Trp in the regional microenvironment. This leads to a reduction in the number of immunogenic immune cells, such as effector T and natural killer (NK) cells, and an increase in tolerogenic immune cells, such as regulatory T (Treg) cells. The BC tumor microenvironment (TME) establishes a supportive niche where cancer cells can interact with immune cells and neighboring endothelial cells and is thus a feasible target for cancer therapy. In many immunological contexts, IDO1 regulates immune control by causing regional metabolic changes in the TME and tissue environment, which may further affect the maturation of systemic immunological tolerance. In the development of effective treatment targets and approaches, it is essential to understand the immunomodulatory effects exerted by AA-catabolizing enzymes, such as IDO1, on the components of the TME.
Collapse
Affiliation(s)
- Pratyasha Sarangi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
2
|
Zhou X, Zhao J, Yan T, Ye D, Wang Y, Zhou B, Liu D, Wang X, Zheng W, Zheng B, Qian F, Li Y, Li D, Fang L. ANXA9 facilitates S100A4 and promotes breast cancer progression through modulating STAT3 pathway. Cell Death Dis 2024; 15:260. [PMID: 38609357 PMCID: PMC11014919 DOI: 10.1038/s41419-024-06643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.
Collapse
Affiliation(s)
- Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyong Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Yan
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bai'an Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yating Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Breast Disease, School of Medicine, Tongji University, Shanghai, China.
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Breast Disease, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Nikotina AD, Vladimirova SA, Kokoreva NE, Nevdakha VA, Lazarev VF, Kuznetcova LS, Komarova EY, Suezov RV, Efremov S, Leonova E, Kartsev VG, Aksenov ND, Margulis BA, Guzhova IV. Novel mechanism of drug resistance triggered by tumor-associated macrophages through Heat Shock Factor-1 activation. Cancer Immunol Immunother 2024; 73:25. [PMID: 38280079 PMCID: PMC10821977 DOI: 10.1007/s00262-023-03612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/09/2023] [Indexed: 01/29/2024]
Abstract
Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.
Collapse
Affiliation(s)
- Alina D Nikotina
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Snezhana A Vladimirova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Nadezhda E Kokoreva
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Valeria A Nevdakha
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Vladimir F Lazarev
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Liubov S Kuznetcova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Elena Y Komarova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Roman V Suezov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
- Department of Gastroenterology, Center for Tumor- and Immune Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Sergei Efremov
- Saint-Petersburg State University Hospital, 190103, St. Petersburg, Russia
| | - Elizaveta Leonova
- Saint-Petersburg State University Hospital, 190103, St. Petersburg, Russia
| | | | - Nikolay D Aksenov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Boris A Margulis
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Irina V Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| |
Collapse
|
5
|
Nour SM, Abbasi N, Sadi S, Ravan N, Alipourian A, Yarizadeh M, Soofi A, Ataei A, Tehrany PM. miRNAs as key modulators between normal cells and tumor microenvironment interactions. Chem Biol Drug Des 2023; 102:939-950. [PMID: 37402595 DOI: 10.1111/cbdd.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The tumor microenvironment (TME) is well-defined target for understanding tumor progression and various cell types. Major elements of the tumor microenvironment are the followings: endothelial cells, fibroblasts, signaling molecules, extracellular matrix, and infiltrating immune cells. MicroRNAs (miRNAs) are a group of small noncoding RNAs with major functions in the gene expression regulation at post-transcriptional level that have also appeared to exerts key functions in the cancer initiation/progression in diverse biological processes and the tumor microenvironment. This study summarized various roles of miRNAs in the complex interactions between the tumor and normal cells in their microenvironment.
Collapse
Affiliation(s)
| | - Nadia Abbasi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadi
- Medical Doctor, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ravan
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Yarizadeh
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Pooya M Tehrany
- Faculty of Medicine, National University of Malaysia, Bani, Malaysia
| |
Collapse
|
6
|
Dhandapani H, Siddiqui A, Karadkar S, Tayalia P. In Vitro 3D Spheroid Model Preserves Tumor Microenvironment of Hot and Cold Breast Cancer Subtypes. Adv Healthc Mater 2023; 12:e2300164. [PMID: 37141121 DOI: 10.1002/adhm.202300164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Dynamic interaction of cancer, immune, and stromal cells with extracellular matrix components modulates and resists the response of standard care therapies. To mimic this, an in vitro 3D spheroid model is designed using liquid overlay method to simulate hot (MDA-MB-231) and cold (MCF-7) breast tumor microenvironment (TME). This study shows increased mesenchymal phenotype, stemness, and suppressive microenvironment in MDA-MB-231-spheroids upon exposure to doxorubicin. Intriguingly, the presence of human dermal fibroblasts enhances cancer-associated fibroblast phenotype in MDA-MB-231-spheroids through increased expression of CXCL12 and FSP-1, leading to higher infiltration of immune cells (THP-1 monocytes). However, a suppressive TME is observed in both subtypes, as seen by upregulation of M2-macrophage-specific CD68 and CD206 markers. Specifically, increased PDL-1 expressing tumor-associated macrophages along with FoxP3 expressing T regulatory cells are found in MDA-MB-231-spheroids when cultured with peripheral blood mononuclear cells. Further, it is found that the addition of 1-methyl-tryptophan, a potent indoleamine-2,3-dioxygenase-1 inhibitor, subsides the suppressive phenotype by decreasing the M2 polarization via downregulation of tryptophan metabolism and IL10 expression, particularly in MCF-7 triculture spheroids. Thus, the in vitro 3D spheroid model of TME can be utilized in therapeutics to validate immunomodulatory drugs for various breast cancer subtypes.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Armaan Siddiqui
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Shivam Karadkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
7
|
Murillo OD, Petrosyan V, LaPlante EL, Dobrolecki LE, Lewis MT, Milosavljevic A. Deconvolution of cancer cell states by the XDec-SM method. PLoS Comput Biol 2023; 19:e1011365. [PMID: 37578979 PMCID: PMC10449115 DOI: 10.1371/journal.pcbi.1011365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Proper characterization of cancer cell states within the tumor microenvironment is a key to accurately identifying matching experimental models and the development of precision therapies. To reconstruct this information from bulk RNA-seq profiles, we developed the XDec Simplex Mapping (XDec-SM) reference-optional deconvolution method that maps tumors and the states of constituent cells onto a biologically interpretable low-dimensional space. The method identifies gene sets informative for deconvolution from relevant single-cell profiling data when such profiles are available. When applied to breast tumors in The Cancer Genome Atlas (TCGA), XDec-SM infers the identity of constituent cell types and their proportions. XDec-SM also infers cancer cells states within individual tumors that associate with DNA methylation patterns, driver somatic mutations, pathway activation and metabolic coupling between stromal and breast cancer cells. By projecting tumors, cancer cell lines, and PDX models onto the same map, we identify in vitro and in vivo models with matching cancer cell states. Map position is also predictive of therapy response, thus opening the prospects for precision therapy informed by experiments in model systems matched to tumors in vivo by cancer cell state.
Collapse
Affiliation(s)
- Oscar D. Murillo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Varduhi Petrosyan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Emily L. LaPlante
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int 2023; 23:119. [PMID: 37340387 DOI: 10.1186/s12935-023-02971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women. Accumulated evidence over the past decades indicates a very high prevalence of human cytomegalovirus (HCMV) in breast cancer. High-risk HCMV strains possess a direct oncogenic effect displayed by cellular stress, polyploid giant cancer cells (PGCCs) generation, stemness, and epithelial-to-mesenchymal transition (EMT) leading to cancer of aggressive phenotype. Breast cancer development and progression have been regulated by several cytokines where the latter can promote cancer cell survival, help in tumor immune evasion, and initiate the EMT process, thereby resulting in invasion, angiogenesis, and breast cancer metastasis. In the present study, we screened cytokines expression in cytomegalovirus-transformed HMECs (CTH cells) cultures infected with HCMV high-risk strains namely, HCMV-DB and BL, as well as breast cancer biopsies, and analyzed the association between cytokines production, PGCCs count, and HCMV presence in vitro and in vivo. METHODS In CTH cultures and breast cancer biopsies, HCMV load was quantified by real-time qPCR. PGCCs count in CTH cultures and breast cancer biopsies was identified based on cell morphology and hematoxylin and eosin staining, respectively. CTH supernatants were evaluated for the production of TGF-β, IL-6, IL1-β, and IL-10 by ELISA assays. The above-mentioned cytokines expression was assessed in breast cancer biopsies using reverse transcription-qPCR. The correlation analyses were performed using Pearson correlation test. RESULTS The revealed PGCCs/cytokine profile in our in vitro CTH model matched that of the breast cancer biopsies, in vivo. Pronounced cytokine expression and PGCCs count were detected in particularly CTH-DB cultures and basal-like breast cancer biopsies. CONCLUSIONS The analysis of cytokine profiles in PGCCs present mostly in basal-like breast cancer biopsies and derived from CTH cells chronically infected with the high-risk HCMV strains might have the potential to provide novel therapies such as cytokine-based immunotherapy which is a promising field in cancer treatments.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- Department of Virology, CHRU Besancon, Besancon, France.
| |
Collapse
|
9
|
Shettigar A, Salunke R, Modi D, Mukherjee N. Targeting molecular cross-talk between tumor cells and tumor associated macrophage as therapeutic strategy in triple negative breast cancer. Int Immunopharmacol 2023; 119:110250. [PMID: 37163922 DOI: 10.1016/j.intimp.2023.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Triple-negative Breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks expression for ER/PR/Her2 receptors and is associated with aggressive disease pathogenesis and the worst prognosis among other subtypes of BC. Accumulating evidence-based studies indicate the high immunogenic ability of TNBC tumors and the applicability of immunotherapeutic strategies to overcome therapy resistance and tumor recurrence in TNBC patients. However, not all TNBC patients respond equally well to current immunotherapies that mainly target the adaptive immune system for tumor rejection. Recent studies are contemplating the efficacy of tumor-associated macrophage (TAM) targeted therapies since these subpopulations of cells comprise one of the major components of tumor-infiltrating immune cells (TIIs) in the TNBC tumor microenvironment (TME) and play an essential role in priming the adaptive immune response mediators towards both antitumorigenic and pro-tumorigenic response facilitated by intercellular cross-talk between tumor cells and TAM populations present within TNBC-TME. The present review discusses these molecular mechanisms and their consequence on the progression of TNBC tumors. Also, the therapeutic strategies targeting candidate genes/pathways involved in molecular cross-talk between TAM-TNBC cells and their impact on the development and progression of TNBC tumors are also discussed.
Collapse
Affiliation(s)
- Anusha Shettigar
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rushigandha Salunke
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nupur Mukherjee
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
10
|
Ding L, Kun W, Xu W, Chen S, Cai Z. Comparative analysis of clinicopathological characteristics of central necrotizing breast cancer and basal cell-like breast cancer. Front Oncol 2023; 13:915949. [PMID: 37114130 PMCID: PMC10127251 DOI: 10.3389/fonc.2023.915949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
PurposeThis study aims to compare the clinicopathological and immunohistochemical characteristics of centrally necrotizing carcinoma of the breast (CNC) and basal-like breast cancer (BLBC), as well as to analyze the characteristics of the molecular typing of the CNC.MethodsThe clinicopathological features of 69 cases of CNC and 48 cases of BLBC were observed and compared. EnVision immunohistochemical staining was performed to detect the expressions of hypoxia-inducible factor 1α (HIF-1α), breast cancer susceptibility gene 1 (BRCA1), and vascular endothelial growth factor (VEGF) in CNC and BLBC.ResultsThe age of the 69 patients ranged from 32 to 80 years, with an average of 54.55 years. Gross examination showed that most tumors were well-defined single central nodules with a diameter of 1.2~5.0 cm. Microscopically, there is a large necrotic or acellular area in the center of the tumor, mainly composed of tumor coagulative necrosis with varying degrees of fibrosis or hyaline degeneration. A small amount of cancer tissue remained in the form of a ribbon or small nest around the necrotic focus. Among 69 cases of CNC, the proportion of basal cell type (56.5%) was significantly higher than that of lumen type A (18.84%), lumen type B (13.04%), HER2 overexpression (5.8%), and nonexpression (5.8%). A total of 31 cases were followed up for 8~50 months, with an average of 33.94 months. There have been nine cases of disease progression. When compared to BLBC, there were no significant differences in BRCA1 and VEGF protein expression in response to CNC (p > 0.05), but there were significant differences in protein expression in HIF-1α (p < 0.05).ConclusionThe molecular typing of CNC showed that over half of those were BLBC. No statistically significant difference in the expression of BRCA1 was observed between CNC and BLBC; thus, we predict that targeted therapy for BRCA1 in BLBC may also have considerable effects in CNC patients. The expression of HIF-1α is significantly different in CNC and BLBC, and perhaps HIF-1α can be used as a new entry point to distinguish between the two. There is a significant correlation between the expression of VEGF and HIF-1α in BLBC, and there was no significant correlation between the expression levels of the two proteins in CNC.
Collapse
Affiliation(s)
- Li Ding
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wang Kun
- Department of Pathology, Mengcheng Hospital of Traditional Chinese Medicine, Bozhou, Anhui, China
| | - Wenjing Xu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shaohua Chen
- Department of Pathology, Bengbu Medical College and The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaogen Cai
- Department of Pathology, Bengbu Medical College and The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Zhaogen Cai,
| |
Collapse
|
11
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic Reprogramming of Breast Tumor-Educated Macrophages Revealed by NMR Metabolomics. Cancers (Basel) 2023; 15:cancers15041211. [PMID: 36831553 PMCID: PMC9954003 DOI: 10.3390/cancers15041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The metabolic crosstalk between tumor cells and tumor-associated macrophages (TAMs) has emerged as a critical contributor to tumor development and progression. In breast cancer (BC), the abundance of immune-suppressive TAMs positively correlates with poor prognosis. However, little is known about how TAMs reprogram their metabolism in the BC microenvironment. In this work, we have assessed the metabolic and phenotypic impact of incubating THP-1-derived macrophages in conditioned media (CM) from two BC cell lines cultured in normoxia/hypoxia: MDA-MB-231 cells (highly metastatic, triple-negative BC), and MCF-7 cells (less aggressive, luminal BC). The resulting tumor-educated macrophages (TEM) displayed prominent differences in their metabolic activity and composition, compared to control cells (M0), as assessed by exo- and endometabolomics. In particular, TEM turned to the utilization of extracellular pyruvate, alanine, and branched chain keto acids (BCKA), while exhibiting alterations in metabolites associated with several intracellular pathways, including polyamines catabolism (MDA-TEM), collagen degradation (mainly MCF-TEM), adenosine accumulation (mainly MDA-TEM) and lipid metabolism. Interestingly, following a second-stage incubation in fresh RPMI medium, TEM still displayed several metabolic differences compared to M0, indicating persistent reprogramming. Overall, this work provided new insights into the metabolic plasticity of TEM, revealing potentially important nutritional exchanges and immunoregulatory metabolites in the BC TME.
Collapse
Affiliation(s)
- Ana S. Dias
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina R. Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luisa A. Helguero
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F. Duarte
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
12
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
13
|
Dukhanina EA, Portseva TN, Dukhanin AS, Georgieva SG. Triple-negative and triple-positive breast cancer cells reciprocally control their growth and migration via the S100A4 pathway. Cell Adh Migr 2022; 16:65-71. [PMID: 35546077 PMCID: PMC9116394 DOI: 10.1080/19336918.2022.2072554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The study's aim was to investigate the S100A4-mediated mechanisms of the regulation of tumor cell proliferation and migration in the human triple-positive breast carcinoma cell line MCF-7 (TPBC) and triple-negative breast carcinoma cell line MDA-MB-231 (TNBC). The proliferative activity of TNBC more than doubled during the incubation in the conditioned medium of TPBC. Extracellular S100A4 dose-dependently decreased the proliferative response of TPBC. TPBC negatively impacted the growth of TNBCs during their co-culturing. TPBC significantly decreased the migration activity of the TNBC cells while the S100A4 intracellular level in the TNBC was also decreasing. The decrease in the S100A4 intracellular level occurred due to the protein's monomeric form while the contribution of the dimeric form into the overall S100A4 concentration in TNBC cells increased 1.5-2-fold. The S100A4 pathway in the intercellular communication between TNBC and TPBCs also included the dexamethasone-sensitive mechanisms of S100A4 intra- and extracellular pools regulation.
Collapse
Affiliation(s)
- Elena A Dukhanina
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Portseva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Dukhanin
- Molecular Pharmacology and Radiology Department, Russian National Research Medical University, Moscow, Russia
| | - Sofia G Georgieva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Yao CY, Lin CC, Wang YH, Hsu CL, Kao CJ, Hou HA, Chou WC, Tien HF. The clinical and biological characterization of acute myeloid leukemia patients with S100A4 overexpression. J Formos Med Assoc 2022:S0929-6646(22)00422-3. [DOI: 10.1016/j.jfma.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
|
15
|
González-Martínez S, Pérez-Mies B, Pizarro D, Caniego-Casas T, Cortés J, Palacios J. Epithelial Mesenchymal Transition and Immune Response in Metaplastic Breast Carcinoma. Int J Mol Sci 2021; 22:ijms22147398. [PMID: 34299016 PMCID: PMC8306902 DOI: 10.3390/ijms22147398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent triple negative (TN) invasive carcinomas with poor prognosis. MBCs have a different clinical behavior from other types of triple negative breast cancer (TNBC), being more resistant to standard chemotherapy. MBCs are an example of tumors with activation of epithelial–mesenchymal transition (EMT). The mechanisms involved in EMT could be responsible for the increase in the infiltrative and metastatic capacity of MBCs and resistance to treatments. In addition, a relationship between EMT and the immune response has been seen in these tumors. In this sense, MBC differ from other TN tumors showing a lower number of tumor-infiltrating lymphocytes (TILS) and a higher percentage of tumor cells expressing programmed death-ligand 1 (PD-L1). A better understanding of the relationship between the immune system and EMT could provide new therapeutic approaches in MBC.
Collapse
Affiliation(s)
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| | - David Pizarro
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Tamara Caniego-Casas
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
16
|
Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers (Basel) 2021; 13:cancers13133357. [PMID: 34283088 PMCID: PMC8269090 DOI: 10.3390/cancers13133357] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network composed of various cells, signaling molecules, and extra cellular matrix. TME plays a crucial role in triple negative breast cancer (TNBC) immunomodulation and tumor progression, paradoxically, acting as an immunosuppressive as well as immunoreactive factor. Research regarding tumor immune microenvironment has contributed to a better understanding of TNBC subtype classification. Shall we treat patients precisely according to specific subtype classification? Moving beyond traditional chemotherapy, multiple clinical trials have recently implied the potential benefits of immunotherapy combined with chemotherapy. In this review, we aimed to elucidate the paradoxical role of TME in TNBC immunomodulation, summarize the subtype classification methods for TNBC, and explore the synergistic mechanism of chemotherapy plus immunotherapy. Our study may provide a new direction for the development of combined treatment strategies for TNBC. Abstract Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
- Correspondence: (H.Z.); (X.W.)
| | - Sumit Siddharth
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Sheetal Parida
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Xinhong Wu
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- Correspondence: (H.Z.); (X.W.)
| | - Dipali Sharma
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| |
Collapse
|
17
|
Gallo G, Vescio G, De Paola G, Sammarco G. Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer. J Clin Med 2021; 10:jcm10112295. [PMID: 34070480 PMCID: PMC8197564 DOI: 10.3390/jcm10112295] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a genetically, anatomically, and transcriptionally heterogeneous disease. The prognosis for a CRC patient depends on the stage of the tumor at diagnosis and widely differs accordingly. The tumor microenvironment (TME) in CRC is an important factor affecting targeted cancer therapy. The TME has a dynamic composition including various cell types, such as cancer-associated fibroblasts, tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells, as well as extracellular factors that surround cancer cells and have functional and structural roles under physiological and pathological conditions. Moreover, the TME can limit the efficacy of therapeutic agents through high interstitial pressure, fibrosis, and the degradation of the therapeutic agents by enzymatic activity. For this reason, the TME is a fertile ground for the discovery of new drugs. The aim of this narrative review is to present current knowledge and future perspectives regarding the TME composition based on strategies for patients with CRC.
Collapse
Affiliation(s)
- Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
- Correspondence:
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Gilda De Paola
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Giuseppe Sammarco
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
18
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
19
|
Ganaie AA, Mansini AP, Hussain T, Rao A, Siddique HR, Shabaneh A, Ferrari MG, Murugan P, Klingelhöfer J, Wang J, Ambartsumian N, Warlick CA, Konety BR, Saleem M. Anti-S100A4 Antibody Therapy Is Efficient in Treating Aggressive Prostate Cancer and Reversing Immunosuppression: Serum and Biopsy S100A4 as a Clinical Predictor. Mol Cancer Ther 2020; 19:2598-2611. [PMID: 32999046 DOI: 10.1158/1535-7163.mct-20-0410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
S100A4 oncoprotein plays a critical role during prostate cancer progression and induces immunosuppression in host tissues. We hypothesized that S100A4-regulated oncogenic activity in immunosuppressed prostate tumors promotes growth of neoplastic cells, which are likely to become aggressive. In the current study, we investigated whether biopsy-S100A4 gene alteration independently predicts the outcome of disease in patients and circulatory-S100A4 is druggable target for treating immunosuppressive prostate cancer. Aided by DECIPHER-genomic test, we show biopsy-S100A4 overexpression as predictive of (i) poor ADT response and (ii) high risk of mortality in 228 radical prostatectomy-treated patients. Furthermore, analysis of tumor genome data of more than 1,000 patients with prostate cancer (PRAD/SU2C/FHCRC studies) validated the association of S100A4-alteration to poor survival and metastasis. We show that increased serum-S100A4 levels are associated to the prostate cancer progression in patients. The prerequisite for metastasis is the escape of tumor cells via vascular system. We show that extracellular-S100A4 protein as a growth factor induces vascular transmigration of prostate cancer cells and bone demineralization thus forms an ideal target for therapies for treating prostate cancer. By employing surface plasmon resonance and isothermal titration calorimetry, we show that mab6B12 antibody interacts with and neutralizes S100A4 protein. When tested for therapeutic efficacy, the mab6B12 therapy reduced the (i) osteoblastic demineralization of bone-derived MSCs, (ii) S100A4-target (NFκB/MMP9/VEGF) levels in prostate cancer cells, and (iii) tumor growth in a TRAMPC2 syngeneic mouse model. The immuno-profile analysis showed that mAb6B12-therapy (i) shifted Th1/Th2 balance (increased Stat4+/T-bet+ and decreased GATA2+/CD68+/CD45+/CD206+ cells); (ii) modulated cytokine levels in CD4+ T cells; and (iii) decreased levels of IL5/6/12/13, sTNFR1, and serum-RANTES. We suggest that S100A4-antibody therapy has clinical applicability in treating immunosuppressive prostate cancer in patients.
Collapse
Affiliation(s)
- Arsheed A Ganaie
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Adrian P Mansini
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Tabish Hussain
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Arpit Rao
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Hifzur R Siddique
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ashraf Shabaneh
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marina G Ferrari
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jörg Klingelhöfer
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Laboratory of Neural Plasticity, Copenhagen University, Copenhagen, Denmark
| | - Jinhua Wang
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Noona Ambartsumian
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Laboratory of Neural Plasticity, Copenhagen University, Copenhagen, Denmark
| | - Christopher A Warlick
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Badrinath R Konety
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Rush Medical College, Rush University, Chicago, Illinois
| | - Mohammad Saleem
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
20
|
Shihab I, Khalil BA, Elemam NM, Hachim IY, Hachim MY, Hamoudi RA, Maghazachi AA. Understanding the Role of Innate Immune Cells and Identifying Genes in Breast Cancer Microenvironment. Cancers (Basel) 2020; 12:cancers12082226. [PMID: 32784928 PMCID: PMC7464944 DOI: 10.3390/cancers12082226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.
Collapse
Affiliation(s)
- Israa Shihab
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Bariaa A. Khalil
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Noha Mousaad Elemam
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Ibrahim Y. Hachim
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, UAE;
| | - Rifat A. Hamoudi
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Azzam A. Maghazachi
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
- Correspondence:
| |
Collapse
|
21
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
22
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
23
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
24
|
Li Z, Li Y, Liu S, Qin Z. Extracellular S100A4 as a key player in fibrotic diseases. J Cell Mol Med 2020; 24:5973-5983. [PMID: 32307910 PMCID: PMC7294136 DOI: 10.1111/jcmm.15259] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is characterized by fibroblast activation, extracellular matrix (ECM) accumulation and infiltration of inflammatory cells that sometimes leads to irreversible organ dysfunction. Considerable evidence now indicates that inflammation plays a critical role in the initiation and progression of organ fibrosis. S100A4 protein, a ubiquitous member of the S100 family, has recently been discovered as a potential factor implicated in fibrotic diseases. S100A4 protein is released at inflammatory site and has a certain biological function to promote cell motility, invasion, ECM remodelling, autophagy and angiogenesis. In addition, extracellular S100A4 is also a potential causation of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions. Elevated S100A4 level in patients’ serum closely correlates with disease activity in several fibrotic diseases and serves as a useful biomarker for diagnosis and monitoring disease progression. Analyses of knockout mouse models have identified a functional role of extracellular S100A4 protein in fibrotic diseases, suggesting that suppressing its expression, release or function might be a promising therapeutic strategy. This review will focus on the role of extracellular S100A4 as a key regulator of pro‐inflammatory signalling pathways and its relative biological processes involved in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanan Li
- School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Wen X, Yu X, Tian Y, Liu Z, Cheng W, Li H, Kang J, Wei T, Yuan S, Tian J. Quantitative shear wave elastography in primary invasive breast cancers, based on collagen-S100A4 pathology, indicates axillary lymph node metastasis. Quant Imaging Med Surg 2020; 10:624-633. [PMID: 32269923 DOI: 10.21037/qims.2020.02.18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The purpose of this study was to evaluate the value of quantitative shear wave elastography (SWE) in indicating the axillary lymph node metastasis (LNM) of invasive breast cancers (IBCs) and to investigate if S100A4 plays a key role in promoting metastasis and increasing stiffness in IBC. Methods The differences in SWE of 223 IBC patients were compared between the LNM+ and LNM- groups and the optimal cutoff values of SWE for diagnosing LNM were calculated. We searched the gene expression omnibus (GEO) to determine whether S100A4 was more highly expressed in IBCs that were LNM+ than in those that were LNM-. Sirius red and immunohistochemical staining were used to examine the collagen deposition and S100A4 expression of included tissue samples, and correlations of SWE and S100A4 expression with collagen deposition were analyzed. Results The optimal cutoff values for Emax (the maximum stiff value), Emean (the mean stiff value), and EmeanR (the ratio of Emean between mass and parenchyma) for diagnosing axillary LNM were 111.05 kPa, 79.80 kPa, and 6.89, respectively. GSE9893 exhibited more increased S100A4 expression in IBCs that were LNM+ than in those that were LNM-. Collagen volume fraction (CVF) and the average optical density of S100A4 (AODS100A4) in the LNM+ group were significantly higher than those in the LNM- group. Emax, Emean, EmeanR, and AODS100A4 were all positively correlated with CVF. Conclusions SWE in primary IBC could be useful for indicating axillary LNM. S100A4 may be a factor that regulates cancer-associated collagen deposition and metastasis; however, prospective molecular biological studies are needed.
Collapse
Affiliation(s)
- Xin Wen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiwen Yu
- Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Hairu Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jia Kang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tianci Wei
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shasha Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
26
|
Komarova EY, Marchenko LV, Zhakhov AV, Nikotina AD, Aksenov ND, Suezov RV, Ischenko AM, Margulis BA, Guzhova IV. Extracellular Hsp70 Reduces the Pro-Tumor Capacity of Monocytes/Macrophages Co-Cultivated with Cancer Cells. Int J Mol Sci 2019; 21:ijms21010059. [PMID: 31861801 PMCID: PMC6982218 DOI: 10.3390/ijms21010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are known to contain high levels of the heat shock protein 70 kDa (Hsp70), which mediates increased cell proliferation, escape from programmed cell death, enhanced invasion, and metastasis. A part of Hsp70 molecules may release from cancer cells and affect the behavior of adjacent stromal cells. To explore the effects of Hsp70 on the status of monocytes/macrophages in the tumor locale, we incubated human carcinoma cells of three distinct lines with normal and reduced content of Hsp70 with THP1 monocytes. Using two methods, we showed that the cells with knock-down of Hsp70 released a lower amount of protein in the extracellular medium. Three cycles of the co-cultivation of cancer and monocytic cells led to the secretion of several cytokines typical of the tumor microenvironment (TME) and to pro-cancer activation of the monocytes/macrophages as established by elevation of F4/80 and arginase-1 markers. Unexpectedly, the efficacy of epithelial–mesenchymal transition and resistance of carcinoma cells to anticancer drugs after incubation with monocytic cells were more pronounced in cells with lower Hsp70, e.g., releasing less Hsp70 into the extracellular milieu. These data suggest that Hsp70 released from tumor cells into the TME is able, together with the development of an anti-cancer immune response, to limit the conversion of a considerable part of monocytic cells to the pro-tumor phenotype.
Collapse
Affiliation(s)
- Elena Y. Komarova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Larisa V. Marchenko
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Alexander V. Zhakhov
- Institute of Highly Pure Biopreparation of Federal Medical and Biological Agency of Russia, Pudozhskaya street, 7, St. Petersburg 197110, Russia; (A.V.Z.); (A.M.I.)
| | - Alina D. Nikotina
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Nikolay D. Aksenov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Roman V. Suezov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Alexander M. Ischenko
- Institute of Highly Pure Biopreparation of Federal Medical and Biological Agency of Russia, Pudozhskaya street, 7, St. Petersburg 197110, Russia; (A.V.Z.); (A.M.I.)
| | - Boris A. Margulis
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Irina V. Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
- Correspondence: ; Tel.: +7812-2973794
| |
Collapse
|
27
|
Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep 2019; 9:19150. [PMID: 31844158 PMCID: PMC6915698 DOI: 10.1038/s41598-019-55702-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Dissemination of metastatic precursors from primaries is the primary reason for patient death. Dissemination encompasses tumor cells invasion of stroma, followed by intravasation through the endothelium barrier into the bloodstream. Here, we describe how geminin-overexpressing tumor cells acquire dissemination ability. Acetylated HMGB1 (Ac-HMGB1) secreted by geminin-overexpressing cells activates RAGE and CXCR4 expression on mesenchymal stem cells (MSCs) located in tumor stroma. Through secreting CXCL12, geminin-overexpressing cells recruit these CXCR4+-MSCs into the tumor. Within the tumor, MSCs differentiate into S100A4-secreting cancer-associated fibroblasts (CAFs). S100A4, in a reciprocal manner, activates geminin-overexpressing cells to secrete CCL2 that recruits M0-macrophages from the stroma into the tumor. Within the tumor, CCL2 polarizes M0-macrophages into Gas6-secreting M2-tumor-associated macrophages (M2-TAMs). In concert, geminin-overexpression, S100A4/RAGE and Gas6/AXL signaling promote the invasive and intravasation abilities in geminin-overexpressing cells through exacerbating their stemness and epithelial-to-mesenchymal phenotypes and enhancing expression and functional interaction of CD151 and α3β1-integrin in geminin-overexpressing cells. Tumors formed following injection of geminin-overexpressing cells admixed with MSCs/CAFs grew faster, metastasized earlier, especially to lungs, and were extremely sensitive to anti-c-Abl, anti-RAGE, and anti-AXL drugs. These data support an intrinsic ability in geminin-overexpressing tumor cells to promote their metastatic potential through recruitment and bi-directional interactions with MSCs/CAFs and M2-TAMs.
Collapse
|
28
|
Ni C, Yang L, Xu Q, Yuan H, Wang W, Xia W, Gong D, Zhang W, Yu K. CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: a retrospective study and meta-analysis. J Cancer 2019; 10:4463-4472. [PMID: 31528210 PMCID: PMC6746141 DOI: 10.7150/jca.33914] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
Studies have indicated the significance of tumor associated macrophages (TAMs) in breast cancer; however, inconsistent results still exist. We retrospectively reviewed the macrophage distribution in 1579 breast cancer specimens with anti-CD68 or anti-CD163 immunohistochemical staining, and further analyzed the overall survival data. Furthermore, we performed a retrospective study and systematic review of the published studies on CD68- and CD163-positive macrophages in non-metastatic breast cancer. 13 studies with 5116 patients were included in this meta-analysis. Our own data revealed a high density of both CD68- and CD163-positive TAMs that was significantly related to lymph node metastasis (CD68, P = 0.003; CD163, P < 0.001); high Ki67 (CD68, P = 0.026; CD163, P < 0.001), poor histological grade (CD68, P < 0.001; CD163, P < 0.001) and hormonal receptor negativity (CD68, P < 0.001; CD163, P < 0.001); only CD163-positive TAMs were associated with poor overall survival (P = 0.003). Nonetheless, the meta-analysis only found that CD68- and CD163-positive TAMs were associated with high Ki67 [CD68, Relative risk (RR): 1.18, 95% confidence interval (CI): 1.09-1.28; CD163, RR: 1.75, 95% CI: 1.39-2.20], advanced histological grade (CD68, RR: 1.72, 95% CI: 1.46-2.03; CD163, RR: 1.99, 95% CI: 1.35-2.94) and low hormonal receptor levels (CD68, RR: 0.75, 95% CI: 0.69-0.82; CD163, RR: 0.82, 95% CI: 0.74-0.90), but not lymph node metastasis and HER2 expression. This meta-analysis further supports the clinical significance of TAMs in breast cancer, and both CD68- and CD163-positive TAMs could be prognostic markers in non-metastatic breast cancer.
Collapse
Affiliation(s)
- Chao Ni
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second affiliated hospital, Zhejiang University, Hangzhou, Zhejiang, 310009.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province
| | - Hongjun Yuan
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Wei Wang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Wenjie Xia
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Dihe Gong
- Department of Thyroid and Breast Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi Zhejiang 315300, China
| | - Wei Zhang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Kun Yu
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| |
Collapse
|
29
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
30
|
Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E, Mortezaee K. Tumor microenvironment: Interactions and therapy. J Cell Physiol 2018; 234:5700-5721. [PMID: 30378106 DOI: 10.1002/jcp.27425] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Radiology and Medical Physics, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Solhjoo
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|