1
|
Jiménez-Franco A, Jiménez-Aguilar JM, Canela-Capdevila M, García-Pablo R, Castañé H, Martínez-Navidad C, Araguas P, Malavé B, Benavides-Villarreal R, Acosta JC, Onoiu AI, Somaiah N, Camps J, Joven J, Arenas M. Preliminary Metabolomics Study Suggests Favorable Metabolic Changes in the Plasma of Breast Cancer Patients after Surgery and Adjuvant Treatment. Biomedicines 2024; 12:2196. [PMID: 39457508 PMCID: PMC11505071 DOI: 10.3390/biomedicines12102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The management of early breast cancer (BC) includes surgery, followed by adjuvant radiotherapy, chemotherapy, hormone therapy, or immunotherapy. However, the influence of these interventions in metabolic reprogramming remains unknown. This study explored alterations in the plasma metabolome of BC patients following distinct treatments to deepen our understanding of BC pathophysiology, outcomes, and the identification of potential biomarkers. Methods: We included 52 women diagnosed with BC and candidates for surgery as primary oncological treatment. Blood samples were collected at diagnosis, two weeks post-surgery, and one month post-radiotherapy. Plasma samples from 49 healthy women served as controls. Targeted metabolomics assessed 74 metabolites spanning carbohydrates, amino acids, lipids, nucleotide pathways, energy metabolism, and xenobiotic biodegradation. Results: Before treatment, the BC patients exhibited notable changes in carbohydrate, nucleotide, lipid, and amino acid metabolism. We noticed a gradual restoration of specific metabolite levels (hypoxanthine, 3-phosphoglyceric acid, xylonic acid, and maltose) throughout different treatments, suggesting a normalization of the nucleotide and carbohydrate metabolic pathways. Moreover, we observed increased dodecanoic acid concentrations, a metabolite associated with cancer protection. These variations distinguished patients from controls with high specificity and sensitivity. Conclusions: Our preliminary study suggests that oncological treatments modify the metabolism of patients towards a favorable profile with a decrease in the pathways that favor cell proliferation and an increase in the levels of anticancer molecules. These findings emphasize the pivotal role of metabolomics in recognizing the biological pathways influenced by each cancer treatment and the resulting metabolic consequences. Furthermore, it aids in identifying potential biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Marta Canela-Capdevila
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| | - Raquel García-Pablo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Pablo Araguas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| | - Bárbara Malavé
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| | - Rocío Benavides-Villarreal
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| | - Johana C. Acosta
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| | - Alina Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Navita Somaiah
- The Royal Marsden NHS Foundation Trust and Division of Radiotherapy and Imaging, Institute of Cancer Research, 131-139 Dovehouse St, London SW3 6JZ, UK;
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (M.C.-C.); (R.G.-P.); (H.C.); (C.M.-N.); (R.B.-V.); (J.C.A.); (A.I.O.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (P.A.); (B.M.)
| |
Collapse
|
2
|
Yan Y, Shen S, Li J, Su L, Wang B, Zhang J, Lu J, Luo H, Han P, Xu K, Shen X, Huang S. Cross-omics strategies and personalised options for lung cancer immunotherapy. Front Immunol 2024; 15:1471409. [PMID: 39391313 PMCID: PMC11465239 DOI: 10.3389/fimmu.2024.1471409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide and its high mortality rate makes it a leading cause of cancer-related deaths. To address this daunting challenge, we need a comprehensive understanding of the pathogenesis and progression of lung cancer in order to adopt more effective therapeutic strategies. In this regard, integrating multi-omics data of the lung provides a highly promising avenue. Multi-omics approaches such as genomics, transcriptomics, proteomics, and metabolomics have become key tools in the study of lung cancer. The application of these methods not only helps to resolve the immunotherapeutic mechanisms of lung cancer, but also provides a theoretical basis for the development of personalised treatment plans. By integrating multi-omics, we have gained a more comprehensive understanding of the process of lung cancer development and progression, and discovered potential immunotherapy targets. This review summarises the studies on multi-omics and immunology in lung cancer, and explores the application of these studies in early diagnosis, treatment selection and prognostic assessment of lung cancer, with the aim of providing more personalised and effective treatment options for lung cancer patients.
Collapse
Affiliation(s)
- Yalan Yan
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Siyi Shen
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiamin Li
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Binbin Wang
- Intensive Care Unit, Xichong People’s Hospital, Nanchong, China
| | - Jinghan Zhang
- Department of Anaesthesiology, Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ping Han
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiang Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Ding Z, Chen J, Li B, Ji X. Inflammatory factors and risk of lung adenocarcinoma: a Mendelian randomization study mediated by blood metabolites. Front Endocrinol (Lausanne) 2024; 15:1446863. [PMID: 39257908 PMCID: PMC11384989 DOI: 10.3389/fendo.2024.1446863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, and its pathogenesis remains not fully elucidated. Inflammation and metabolic dysregulation are considered to play crucial roles in LUAD development, but their causal relationships and specific mechanisms remain unclear. Methods This study employed a two-sample Mendelian randomization (MR) approach to systematically evaluate the causal associations between 91 circulating inflammatory factors, 1,400 serum metabolites, and LUAD. We utilized LUAD genome-wide association studies (GWAS) data from the FinnGen biobank and GWAS data of metabolites and inflammatory factors from the GWAS catalog to conduct two-sample MR analyses. For the identified key metabolites, we further used mediator MR to investigate their mediating effects in the influence of IL-17A on LUAD and explored potential mechanisms through protein-protein interaction and functional enrichment analyses. Results The MR analyses revealed that IL-17A (OR 0.78, 95%CI 0.62-0.99) was negatively associated with LUAD, while 71 metabolites were significantly associated with LUAD. Among them, ferulic acid 4-sulfate may play a crucial mediating role in the suppression of LUAD by IL-17A (OR 0.87, 95%CI 0.78-0.97). IL-17A may exert its anti-LUAD effects through extensive interactions with genes related to ferulic acid 4-sulfate metabolism (such as SULT1A1, CYP1A1, etc.), inhibiting oxidative stress and inflammatory responses, as well as downstream tumor-related pathways of ferulic acid 4-sulfate (such as MAPK, NF-κB, etc.). Conclusion This study discovered causal associations between IL-17A, multiple serum metabolites, and LUAD occurrence, revealing the key role of inflammatory and metabolic dysregulation in LUAD pathogenesis. Our findings provide new evidence-based medical support for specific inflammatory factors and metabolites as early predictive and risk assessment biomarkers for LUAD, offering important clues for subsequent mechanistic studies and precision medicine applications.
Collapse
Affiliation(s)
- Zheng Ding
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Juan Chen
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Bohan Li
- Department of Urinary Surgery, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Xinyu Ji
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| |
Collapse
|
4
|
Siddique F, Shehata M, Ghazal M, Contractor S, El-Baz A. Lung Cancer Subtyping: A Short Review. Cancers (Basel) 2024; 16:2643. [PMID: 39123371 PMCID: PMC11312171 DOI: 10.3390/cancers16152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
As of 2022, lung cancer is the most commonly diagnosed cancer worldwide, with the highest mortality rate. There are three main histological types of lung cancer, and it is more important than ever to accurately identify the subtypes since the development of personalized, type-specific targeted therapies that have improved mortality rates. Traditionally, the gold standard for the confirmation of histological subtyping is tissue biopsy and histopathology. This, however, comes with its own challenges, which call for newer sampling techniques and adjunctive tools to assist in and improve upon the existing diagnostic workflow. This review aims to list and describe studies from the last decade (n = 47) that investigate three such potential omics techniques-namely (1) transcriptomics, (2) proteomics, and (3) metabolomics, as well as immunohistochemistry, a tool that has already been adopted as a diagnostic adjunct. The novelty of this review compared to similar comprehensive studies lies with its detailed description of each adjunctive technique exclusively in the context of lung cancer subtyping. Similarities between studies evaluating individual techniques and markers are drawn, and any discrepancies are addressed. The findings of this study indicate that there is promising evidence that supports the successful use of omics methods as adjuncts to the subtyping of lung cancer, thereby directing clinician practice in an economical and less invasive manner.
Collapse
Affiliation(s)
- Farzana Siddique
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| |
Collapse
|
5
|
Xu Y, Ding K, Peng Z, Ding L, Li H, Fan Y. Evaluating for Correlations between Specific Metabolites in Patients Receiving First-Line or Second-Line Immunotherapy for Metastatic or Recurrent NSCLC: An Exploratory Study Based on Two Cohorts. Mol Cancer Ther 2024; 23:733-742. [PMID: 38346938 PMCID: PMC11063768 DOI: 10.1158/1535-7163.mct-23-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/07/2023] [Accepted: 02/06/2024] [Indexed: 05/03/2024]
Abstract
Immune checkpoint inhibitors (ICI) have displayed impressive clinical efficacy in the context of non-small cell lung cancer (NSCLC). However, most patients do not achieve long-term survival. Minimally invasive collected samples are attracting significant interest as new fields of biomarker study, and metabolomics is one of these growing fields. We concentrated on the augmented value of the metabolomic profile in differentiating long-term survival from short-term survival in patients with NSCLC subjected to ICIs. We prospectively recruited 97 patients with stage IV NSCLC who were treated with anti-PD-1 inhibitor, including patients treated with monoimmunotherapy as second-line treatment (Cohort 1), and patients treated with combination immunotherapy as first-line treatment (Cohort 2). Each cohort was divided into long-term and short-term survival groups. All blood samples were collected before beginning immunotherapy. Serum metabolomic profiling was performed by UHPLC-Q-TOF MS analysis. Pareto-scaled principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis were performed. In Cohort 1, the mPFS and mOS of long-survival patients are 27.05 and NR months, respectively, and those of short-survival patients are 2.79 and 10.59 months. In Cohort 2, the mPFS and mOS of long-survival patients are 27.35 and NR months, respectively, and those of short-survival patients are 3.77 and 12.17 months. A total of 41 unique metabolites in Cohort 1 and 47 in Cohort 2 were screened. In Cohorts 1 and 2, there are 6 differential metabolites each that are significantly associated with both progression-free survival and overall survival. The AUC values for all groups ranged from 0.73 to 0.95. In cohort 1, the top 3 enriched KEGG pathways, as determined through significant different metabolic pathway analysis, were primary bile acid biosynthesis, African trypanosomiasis, and choline metabolism in cancer. In Cohort 2, the top 3 enriched KEGG pathways were the citrate cycle (TCA cycle), PPAR signaling pathway, and primary bile acid biosynthesis. The primary bile acid synthesis pathway had significant differences in the long-term and short-term survival groups in both Cohorts 1 and 2. Our study suggests that peripheral blood metabolomic analysis is critical for identifying metabolic biomarkers and pathways responsible for the patients with NSCLC treated with ICIs.
Collapse
Affiliation(s)
- Yanjun Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Kaibo Ding
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhongsheng Peng
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Ling Ding
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
6
|
Haitzmann T, Schindlmaier K, Frech T, Mondal A, Bubalo V, Konrad B, Bluemel G, Stiegler P, Lackner S, Hrzenjak A, Eichmann T, Köfeler HC, Leithner K. Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells. Cancer Metab 2024; 12:9. [PMID: 38515202 PMCID: PMC10956291 DOI: 10.1186/s40170-024-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.
Collapse
Affiliation(s)
- Theresa Haitzmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Tobias Frech
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Visnja Bubalo
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Barbara Konrad
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gabriele Bluemel
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, 5020, Salzburg, Austria
| | - Philipp Stiegler
- Division of General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Stefanie Lackner
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010, Graz, Austria
| | - Thomas Eichmann
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
7
|
Shi W, Cheng Y, Zhu H, Zhao L. Metabolomics and lipidomics in non-small cell lung cancer. Clin Chim Acta 2024; 555:117823. [PMID: 38325713 DOI: 10.1016/j.cca.2024.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Due to its insidious nature, lung cancer remains a leading cause of cancer-related deaths worldwide. Therefore, there is an urgent need to identify sensitive/specific biomarkers for early diagnosis and monitoring. The current study was designed to provide a current metabolic profile of non-small cell lung cancer (NSCLC) by systematically reviewing and summarizing various metabolomic/ lipidomic studies based on NSCLC blood samples, attempting to find biomarkers in human blood that can predict or diagnose NSCLC, and investigating the involvement of key metabolites in the pathogenesis of NSCLC. We searched all articles on lung cancer published in Elsevier, PubMed, Web of Science and the Cochrane Library between January 2012 and December 2022. After critical selection, a total of 31 studies (including 2768 NSCLC patients and 9873 healthy individuals) met the inclusion criteria, and 22 were classified as "high quality". Forty-six metabolites related to NSCLC were repeatedly identified, involving glucose metabolism, amino acid metabolism, lipid metabolism and nucleotide metabolism. Pyruvic acid, carnitine, phenylalanine, isoleucine, kynurenine and 3-hydroxybutyrate showed upward trends in all studies, citric acid, glycine, threonine, cystine, alanine, histidine, inosine, betaine and arachidic acid showed downward trends in all studies. This review summarizes the existing metabolomic/lipidomic studies related to the identification of blood biomarkers in NSCLC, examines the role of key metabolites in the pathogenesis of NSCLC, and provides an important reference for the clinical diagnosis and treatment of NSCLC. Due to the limited size and design heterogeneity of the existing studies, there is an urgent need for standardization of future studies, while validating existing findings with more studies.
Collapse
Affiliation(s)
- Wei Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016 Shenyang, Liaoning Province, PR China
| | - Yizhen Cheng
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016 Shenyang, Liaoning Province, PR China
| | - Haihua Zhu
- Betta Pharmaceuticals Co., Ltd, 24 Wuzhou Road Yuhang Economic and Technological Development Area, Hangzhou, Zhejiang Province, PR China
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
8
|
Boubnovski Martell M, Linton-Reid K, Hindocha S, Chen M, Moreno P, Álvarez-Benito M, Salvatierra Á, Lee R, Posma JM, Calzado MA, Aboagye EO. Deep representation learning of tissue metabolome and computed tomography annotates NSCLC classification and prognosis. NPJ Precis Oncol 2024; 8:28. [PMID: 38310164 PMCID: PMC10838282 DOI: 10.1038/s41698-024-00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024] Open
Abstract
The rich chemical information from tissue metabolomics provides a powerful means to elaborate tissue physiology or tumor characteristics at cellular and tumor microenvironment levels. However, the process of obtaining such information requires invasive biopsies, is costly, and can delay clinical patient management. Conversely, computed tomography (CT) is a clinical standard of care but does not intuitively harbor histological or prognostic information. Furthermore, the ability to embed metabolome information into CT to subsequently use the learned representation for classification or prognosis has yet to be described. This study develops a deep learning-based framework -- tissue-metabolomic-radiomic-CT (TMR-CT) by combining 48 paired CT images and tumor/normal tissue metabolite intensities to generate ten image embeddings to infer metabolite-derived representation from CT alone. In clinical NSCLC settings, we ascertain whether TMR-CT results in an enhanced feature generation model solving histology classification/prognosis tasks in an unseen international CT dataset of 742 patients. TMR-CT non-invasively determines histological classes - adenocarcinoma/squamous cell carcinoma with an F1-score = 0.78 and further asserts patients' prognosis with a c-index = 0.72, surpassing the performance of radiomics models and deep learning on single modality CT feature extraction. Additionally, our work shows the potential to generate informative biology-inspired CT-led features to explore connections between hard-to-obtain tissue metabolic profiles and routine lesion-derived image data.
Collapse
Affiliation(s)
| | | | - Sumeet Hindocha
- Early Diagnosis and Detection Centre, National Institute for Health and Care Research Biomedical Research Centre at the Royal Marsden and Institute of Cancer Research, London, SW3 6JJ, UK
| | - Mitchell Chen
- Imperial College London Hammersmith Campus, London, SW7 2AZ, UK
| | - Paula Moreno
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 14004, Spain
- Departamento de Cirugía Toráxica y Trasplante de Pulmón, Hospital Universitario Reina Sofía, Córdoba, 14014, Spain
| | - Marina Álvarez-Benito
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 14004, Spain
- Unidad de Radiodiagnóstico y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, 14004, Spain
| | - Ángel Salvatierra
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 14004, Spain
- Unidad de Radiodiagnóstico y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, 14004, Spain
| | - Richard Lee
- Early Diagnosis and Detection Centre, National Institute for Health and Care Research Biomedical Research Centre at the Royal Marsden and Institute of Cancer Research, London, SW3 6JJ, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Joram M Posma
- Imperial College London Hammersmith Campus, London, SW7 2AZ, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 14004, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, 14014, Spain.
| | - Eric O Aboagye
- Imperial College London Hammersmith Campus, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Harber KJ, Nguyen TA, Schomakers BV, Heister DAF, de Vries HE, van Weeghel M, Van den Bossche J, de Winther MPJ. Adenine is an anti-inflammatory metabolite found to be more abundant in M-CSF over GM-CSF-differentiated human macrophages. Immunol Lett 2024; 265:23-30. [PMID: 38142781 DOI: 10.1016/j.imlet.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Immunometabolism has been unveiled in the last decade to play a major role in controlling macrophage metabolism and inflammation. There has been a constant effort to understand the immunomodulating properties of regulated metabolites during inflammation with the aim of controlling and re-wiring aberrant macrophages in inflammatory diseases. M-CSF and GM-CSF-differentiated macrophages play a key role in mounting successful innate immune responses. When a resolution phase is not achieved however, GM-CSF macrophages contribute substantially more towards an adverse inflammatory milieu than M-CSF macrophages, consequently driving disease progression. Whether there are specific immunometabolites that determine the homoeostatic or inflammatory nature of M-CSF and GM-CSF-differentiated macrophages is still unknown. As such, we performed metabolomics analysis on LPS and IL-4-stimulated M-CSF and GM-CSF-differentiated human macrophages to identify differentially accumulating metabolites. Adenine was distinguished as a metabolite significantly higher in M-CSF-differentiated macrophages after both LPS or IL-4 stimulation. Human macrophages treated with adenine before LPS stimulation showed a reduction in inflammatory gene expression, cytokine secretion and surface marker expression. Adenine caused macrophages to become more quiescent by lowering glycolysis and OXPHOS which resulted in reduced ATP production. Moreover, typical metabolite changes seen during LPS-induced macrophage metabolic reprogramming were absent in the presence of adenine. Phosphorylation of metabolic signalling proteins AMPK, p38 MAPK and AKT were not responsible for the suppressed metabolic activity of adenine-treated macrophages. Altogether, in this study we highlight the immunomodulating capacity of adenine in human macrophages and its function in driving cellular quiescence.
Collapse
Affiliation(s)
- Karl J Harber
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Thuc-Anh Nguyen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Bauke V Schomakers
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Daan A F Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands; Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Michel van Weeghel
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands.
| | - Jan Van den Bossche
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam, UMC, Netherlands.
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands.
| |
Collapse
|
10
|
Madama D, Carrageta DF, Guerra-Carvalho B, Botelho MF, Oliveira PF, Cordeiro CR, Alves MG, Abrantes AM. Impact of Different Treatment Regimens and Timeframes in the Plasmatic Metabolic Profiling of Patients with Lung Adenocarcinoma. Metabolites 2023; 13:1180. [PMID: 38132862 PMCID: PMC10744969 DOI: 10.3390/metabo13121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, the treatment of advanced non-small cell lung cancer (NSCLC) has suffered a variety of alterations. Chemotherapy (CTX), immunotherapy (IT) and tyrosine kinase inhibitors (TKI) have shown remarkable results. However, not all patients with NSCLC respond to these drug treatments or receive durable benefits. In this framework, metabolomics has been applied to improve the diagnosis, treatment, and prognosis of lung cancer and particularly lung adenocarcinoma (AdC). In our study, metabolomics was used to analyze plasma samples from 18 patients with AdC treated with CTX or IT via 1H-NMR spectroscopy. Relevant clinical information was gathered, and several biochemical parameters were also evaluated throughout the treatments. During the follow-up of patients undergoing CTX or IT, imaging control is recommended in order to assess the effectiveness of the therapy. This evaluation is usually performed every three treatments. Based on this procedure, all the samples were collected before the beginning of the treatment and after three and six treatments. The identified and quantified metabolites in the analyzed plasma samples were the following: isoleucine, valine, alanine, acetate, lactate, glucose, tyrosine, and formate. Multivariate/univariate statistical analyses were performed. Our data are in accordance with previous published results, suggesting that the plasma glucose levels of patients under CTX become higher throughout the course of treatment, which we hypothesize could be related to the tumor response to the therapy. It was also found that alanine levels become lower during treatment with CTX regimens, a fact that could be associated with frailty. NMR spectra of long responders' profiles also showed similar results. Based on the results of the study, metabolomics can represent a potential option for future studies, in order to facilitate patient selection and the monitoring of therapy efficacy in treated patients with AdC. Further studies are needed to improve the prospective identification of predictive markers, particularly glucose and alanine levels, as well as confer guidance to NSCLC treatment and patient stratification, thus avoiding ineffective therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Madama
- Clinical Academic Centre of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - David F. Carrageta
- Clinical and Experimental Endocrinology, UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal (M.G.A.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
| | - Bárbara Guerra-Carvalho
- Clinical and Experimental Endocrinology, UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal (M.G.A.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria F. Botelho
- Clinical Academic Centre of Coimbra (CACC), Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal
| | - Pedro F. Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos R. Cordeiro
- Clinical Academic Centre of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marco G. Alves
- Clinical and Experimental Endocrinology, UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal (M.G.A.)
| | - Ana M. Abrantes
- Clinical Academic Centre of Coimbra (CACC), Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal
| |
Collapse
|
11
|
Sungthong R, Khine HEE, Sumkhemthong S, Chanvorachote P, Tansawat R, Chaotham C. How do prolonged anchorage-free lifetimes strengthen non-small-cell lung cancer cells to evade anoikis? - A link with altered cellular metabolomics. Biol Res 2023; 56:44. [PMID: 37542350 PMCID: PMC10403914 DOI: 10.1186/s40659-023-00456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Malignant cells adopt anoikis resistance to survive anchorage-free stresses and initiate cancer metastasis. It is still unknown how varying periods of anchorage loss contribute to anoikis resistance, cell migration, and metabolic reprogramming of cancerous cells. RESULTS Our study demonstrated that prolonging the anchorage-free lifetime of non-small-cell lung cancer NCI-H460 cells for 7 days strengthened anoikis resistance, as shown by higher half-life and capability to survive and grow without anchorage, compared to wild-type cells or those losing anchorage for 3 days. While the prolonged anchorage-free lifetime was responsible for the increased aggressive feature of survival cells to perform rapid 3-dimensional migration during the first 3 h of a transwell assay, no significant influence was observed with 2-dimensional surface migration detected at 12 and 24 h by a wound-healing method. Metabolomics analysis revealed significant alteration in the intracellular levels of six (oxalic acid, cholesterol, 1-ethylpyrrolidine, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, β-alanine, and putrescine) among all 37 identified metabolites during 7 days without anchorage. Based on significance values, enrichment ratios, and impact scores of all metabolites and their associated pathways, three principal metabolic activities (non-standard amino acid metabolism, cell membrane biosynthesis, and oxidative stress response) offered potential links with anoikis resistance. CONCLUSIONS These findings further our insights into the evolution of anoikis resistance in lung cancer cells and identify promising biomarkers for early lung cancer diagnosis.
Collapse
Affiliation(s)
- Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Kannampuzha S, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Murali R, Namachivayam A, Renu K, Dey A, Vellingiri B, Madhyastha H, Ganesan R. A Systematic Role of Metabolomics, Metabolic Pathways, and Chemical Metabolism in Lung Cancer. Vaccines (Basel) 2023; 11:381. [PMID: 36851259 PMCID: PMC9960365 DOI: 10.3390/vaccines11020381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Lung cancer (LC) is considered as one of the leading causes of cancer-associated mortalities. Cancer cells' reprogrammed metabolism results in changes in metabolite concentrations, which can be utilized to identify a distinct metabolic pattern or fingerprint for cancer detection or diagnosis. By detecting different metabolic variations in the expression levels of LC patients, this will help and enhance early diagnosis methods as well as new treatment strategies. The majority of patients are identified at advanced stages after undergoing a number of surgical procedures or diagnostic testing, including the invasive procedures. This could be overcome by understanding the mechanism and function of differently regulated metabolites. Significant variations in the metabolites present in the different samples can be analyzed and used as early biomarkers. They could also be used to analyze the specific progression and type as well as stages of cancer type making it easier for the treatment process. The main aim of this review article is to focus on rewired metabolic pathways and the associated metabolite alterations that can be used as diagnostic and therapeutic targets in lung cancer diagnosis as well as treatment strategies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (S.K.); (A.G.M.); (U.R.W.); (R.M.); (A.N.)
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (S.K.); (A.G.M.); (U.R.W.); (R.M.); (A.N.)
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (S.K.); (A.G.M.); (U.R.W.); (R.M.); (A.N.)
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (S.K.); (A.G.M.); (U.R.W.); (R.M.); (A.N.)
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (S.K.); (A.G.M.); (U.R.W.); (R.M.); (A.N.)
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (S.K.); (A.G.M.); (U.R.W.); (R.M.); (A.N.)
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India;
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
13
|
He X, Jarrell ZR, Smith MR, Ly VT, Liang Y, Orr M, Go YM, Jones DP. Metabolomics of V 2O 5 nanoparticles and V 2O 5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol Appl Pharmacol 2023; 459:116327. [PMID: 36460058 PMCID: PMC9986994 DOI: 10.1016/j.taap.2022.116327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Chen MM, Guo W, Chen SM, Guo XZ, Xu L, Ma XY, Wang YX, Xie C, Meng LH. Xanthine dehydrogenase rewires metabolism and the survival of nutrient deprived lung adenocarcinoma cells by facilitating UPR and autophagic degradation. Int J Biol Sci 2023; 19:772-788. [PMID: 36778128 PMCID: PMC9909990 DOI: 10.7150/ijbs.78948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Xanthine dehydrogenase (XDH) is the rate-limiting enzyme in purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. The altered expression and activity of XDH are associated with the development and prognosis of multiple types of cancer, while its role in lung adenocarcinoma (LUAD) remains unknown. Herein, we demonstrated that XDH was highly expressed in LUAD and was significantly correlated with poor prognosis. Though inhibition of XDH displayed moderate effect on the viability of LUAD cells cultured in the complete medium, it significantly attenuated the survival of starved cells. Similar results were obtained in XDH-knockout cells. Nucleosides supplementation rescued the survival of starved LUAD cells upon XDH inhibition, while inhibition of purine nucleoside phosphorylase abrogated the process, indicating that nucleoside degradation is required for the XDH-mediated survival of LUAD cells. Accordingly, metabolic flux revealed that ribose derived from nucleoside fueled key carbon metabolic pathways to sustain the survival of starved LUAD cells. Mechanistically, down-regulation of XDH suppressed unfolded protein response (UPR) and autophagic flux in starved LUAD cells. Inhibition of XDH decreased the level of amino acids produced by autophagic degradation, which was accompanied with down-regulation of mTORC1 signaling. Supplementation of amino acids including glutamine or glutamate rescued the survival of starved LUAD cells upon knockout or inhibition of XDH. Finally, XDH inhibitors potentiated the anti-cancer activity of 2-deoxy-D-glucose that induced UPR and/or autophagy in vitro and in vivo. In summary, XDH plays a crucial role in the survival of starved LUAD cells and targeting XDH may improve the efficacy of drugs that induce UPR and autophagy in the therapy of LUAD.
Collapse
Affiliation(s)
- Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Guo
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Meng Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Lan Xu
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xiang Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Lin YS, Chen YC, Chen TE, Cheng ML, Lynn KS, Shah P, Chen JS, Huang RFS. Probing Folate-Responsive and Stage-Sensitive Metabolomics and Transcriptional Co-Expression Network Markers to Predict Prognosis of Non-Small Cell Lung Cancer Patients. Nutrients 2022; 15:nu15010003. [PMID: 36615660 PMCID: PMC9823804 DOI: 10.3390/nu15010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour metabolomics and transcriptomics co-expression network as related to biological folate alteration and cancer malignancy remains unexplored in human non-small cell lung cancers (NSCLC). To probe the diagnostic biomarkers, tumour and pair lung tissue samples (n = 56) from 97 NSCLC patients were profiled for ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS)-analysed metabolomics, targeted transcriptionomics, and clinical folate traits. Weighted Gene Co-expression Network Analysis (WGCNA) was performed. Tumour lactate was identified as the top VIP marker to predict advance NSCLC (AUC = 0.765, Sig = 0.017, CI 0.58-0.95). Low folate (LF)-tumours vs. adjacent lungs displayed higher glycolytic index of lactate and glutamine-associated amino acids in enriched biological pathways of amino sugar and glutathione metabolism specific to advance NSCLCs. WGCNA classified the green module for hub serine-navigated glutamine metabolites inversely associated with tumour and RBC folate, which module metabolites co-expressed with a predominant up-regulation of LF-responsive metabolic genes in glucose transport (GLUT1), de no serine synthesis (PHGDH, PSPH, and PSAT1), folate cycle (SHMT1/2 and PCFR), and down-regulation in glutaminolysis (SLC1A5, SLC7A5, GLS, and GLUD1). The LF-responsive WGCNA markers predicted poor survival rates in lung cancer patients, which could aid in optimizing folate intervention for better prognosis of NSCLCs susceptible to folate malnutrition.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Chu Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tzu-En Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ke-Shiuan Lynn
- Department of Mathematics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Pramod Shah
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Praexisio Taiwan Inc., New Taipei City 22180, Taiwan
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: (J.-S.C.); (R.-F.S.H.); Tel.: +886-2-2905-2512 (R.-F.S.H.)
| | - Rwei-Fen S. Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (J.-S.C.); (R.-F.S.H.); Tel.: +886-2-2905-2512 (R.-F.S.H.)
| |
Collapse
|
16
|
Ivanina Foureau AV, Sha W, Foureau DM, Symanowski JT, Farhangfar CJ, Mileham KF. Landscape and clinical impact of metabolic alterations in non-squamous non-small cell lung cancer. Transl Lung Cancer Res 2022; 11:2464-2476. [PMID: 36636422 PMCID: PMC9830272 DOI: 10.21037/tlcr-22-377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022]
Abstract
Background Metabolomics studies to date have described widespread metabolic reprogramming events during the development of non-squamous non-small cell lung cancer (NSCLC). Extending far beyond the Warburg effect, not only is carbohydrate metabolism affected, but also metabolism of amino acids, cofactors, lipids, and nucleotides. Methods We evaluated the clinical impact of metabolic reprogramming. We performed comparative analysis of publicly available data on non-squamous NSCLC, to identify concensus altered metabolic pathways. We investigated whether alterations of metabolic genes controlling those consensus metabolic pathways impacted clinical outcome. Using the clinically annotated lung adenocarcinoma (LUAD) cohort from The Cancer Genome Atlas, we surveyed the distribution and frequency of function-altering mutations in metabolic genes and their impact on overall survival (OS). Results We identified 42 metabolic genes of clinical significance, the majority of which (37 of 42) clustered across three metabolic superpathways (carbohydrates, amino acids, and nucleotides) and most functions (40 of 42) were associated with shorter OS. Multivariate analyses showed that dysfunction of carbohydrate metabolism had the most profound impact on OS [hazard ratio (HR) =5.208; 95% confidence interval (CI): 3.272 to 8.291], false discovery rate (FDR)-P≤0.0001, followed by amino acid metabolism (HR =3.346; 95% CI: 2.129 to 5.258), FDR-P≤0.0001 and nucleotide metabolism (HR =2.578; 95% CI: 1.598 to 4.159), FDR-P=0.0001. The deleterious effect of metabolic reprogramming on non-squamous NSCLC was observed independently of disease stage and across treatments groups. Conclusions By providing a detailed landscape of metabolic alterations in non-squamous NSCLC, our findings offer new insights in the biology of the disease and metabolic adaptation mechanisms of clinical significance.
Collapse
Affiliation(s)
| | - Wei Sha
- Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - David M. Foureau
- Translational Research, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - James T. Symanowski
- Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Carol J. Farhangfar
- Translational Research, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Kathryn F. Mileham
- Thoracic Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
17
|
Zang X, Zhang J, Jiao P, Xue X, Lv Z. Non-Small Cell Lung Cancer Detection and Subtyping by UPLC-HRMS-Based Tissue Metabolomics. J Proteome Res 2022; 21:2011-2022. [PMID: 35856400 DOI: 10.1021/acs.jproteome.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the prevalent histological subtype of lung cancer. In this study, we performed ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS)-based metabolic profiling of 227 tissue samples from 79 lung cancer patients with adenocarcinoma (AC) or squamous cell carcinoma (SCC). Orthogonal partial least squares-discriminant analysis (oPLS-DA) analyses showed that AC, SCC, and NSCLC tumors were discriminated from adjacent noncancerous tissue (ANT) and distant noncancerous tissue (DNT) samples with good accuracies (91.3, 100, and 88.3%), sensitivities (85.7, 100, and 83.9%), and specificities (94.3, 100, and 90.7%), using 12, 4, and 7 discriminant metabolites, respectively. The discriminant panel for AC detection included valine, sphingosine, glutamic acid γ-methyl ester, and lysophosphatidylcholine (LPC) (16:0), levels of which in tumor tissues were significantly altered. Valine, sphingosine, LPC (18:1), and leucine derivatives were used for SCC detection. The discrimination between AC and SCC had 96.8% accuracy, 98.2% sensitivity, and 85.7% specificity using a five-metabolite panel, of which valine and creatine had significant differences. The classification models were further verified with external validation sets, showing a promising prospect for NSCLC tissue detection and subtyping.
Collapse
Affiliation(s)
- Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xuyan Xue
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| |
Collapse
|
18
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
19
|
Changes in Metabolism as a Diagnostic Tool for Lung Cancer: Systematic Review. Metabolites 2022; 12:metabo12060545. [PMID: 35736478 PMCID: PMC9229104 DOI: 10.3390/metabo12060545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with five-year survival rates varying from 3–62%. Screening aims at early detection, but half of the patients are diagnosed in advanced stages, limiting therapeutic possibilities. Positron emission tomography-computed tomography (PET-CT) is an essential technique in lung cancer detection and staging, with a sensitivity reaching 96%. However, since elevated 18F-fluorodeoxyglucose (18F-FDG) uptake is not cancer-specific, PET-CT often fails to discriminate between malignant and non-malignant PET-positive hypermetabolic lesions, with a specificity of only 23%. Furthermore, discrimination between lung cancer types is still impossible without invasive procedures. High mortality and morbidity, low survival rates, and difficulties in early detection, staging, and typing of lung cancer motivate the search for biomarkers to improve the diagnostic process and life expectancy. Metabolomics has emerged as a valuable technique for these pitfalls. Over 150 metabolites have been associated with lung cancer, and several are consistent in their findings of alterations in specific metabolite concentrations. However, there is still more variability than consistency due to the lack of standardized patient cohorts and measurement protocols. This review summarizes the identified metabolic biomarkers for early diagnosis, staging, and typing and reinforces the need for biomarkers to predict disease progression and survival and to support treatment follow-up.
Collapse
|
20
|
Thaiparambil J, Dong J, Grimm SL, Perera D, Ambati CSR, Putluri V, Robertson MJ, Patel TD, Mistretta B, Gunaratne PH, Kim MP, Yustein JT, Putluri N, Coarfa C, El‐Zein R. Integrative metabolomics and transcriptomics analysis reveals novel therapeutic vulnerabilities in lung cancer. Cancer Med 2022; 12:584-596. [PMID: 35676822 PMCID: PMC9844651 DOI: 10.1002/cam4.4933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) comprises the majority (~85%) of all lung tumors, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being the most frequently diagnosed histological subtypes. Multi-modal omics profiling has been carried out in NSCLC, but no studies have yet reported a unique metabolite-related gene signature and altered metabolic pathways associated with LUAD and LUSC. METHODS We integrated transcriptomics and metabolomics to analyze 30 human lung tumors and adjacent noncancerous tissues. Differential co-expression was used to identify modules of metabolites that were altered between normal and tumor. RESULTS We identified unique metabolite-related gene signatures specific for LUAD and LUSC and key pathways aberrantly regulated at both transcriptional and metabolic levels. Differential co-expression analysis revealed that loss of coherence between metabolites in tumors is a major characteristic in both LUAD and LUSC. We identified one metabolic onco-module gained in LUAD, characterized by nine metabolites and 57 metabolic genes. Multi-omics integrative analysis revealed a 28 metabolic gene signature associated with poor survival in LUAD, with six metabolite-related genes as individual prognostic markers. CONCLUSIONS We demonstrated the clinical utility of this integrated metabolic gene signature in LUAD by using it to guide repurposing of AZD-6482, a PI3Kβ inhibitor which significantly inhibited three genes from the 28-gene signature. Overall, we have integrated metabolomics and transcriptomics analyses to show that LUAD and LUSC have distinct profiles, inferred gene signatures with prognostic value for patient survival, and identified therapeutic targets and repurposed drugs for potential use in NSCLC treatment.
Collapse
Affiliation(s)
| | - Jianrong Dong
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA
| | - Sandra L. Grimm
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Dimuthu Perera
- Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | | | - Vasanta Putluri
- Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Matthew J. Robertson
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Tajhal D. Patel
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma CenterBaylor College of MedicineHoustonTexasUSA
| | - Brandon Mistretta
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Preethi H. Gunaratne
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Min P. Kim
- Houston Methodist Cancer CenterHoustonTexasUSA,Division of Thoracic Surgery, Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
| | - Jason T. Yustein
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma CenterBaylor College of MedicineHoustonTexasUSA,Integrative Molecular and Biological Sciences ProgramBaylor College of MedicineHoustonTexasUSA
| | - Nagireddy Putluri
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Cristian Coarfa
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
21
|
Ford L, Mitchell M, Wulff J, Evans A, Kennedy A, Elsea S, Wittmann B, Toal D. Clinical metabolomics for inborn errors of metabolism. Adv Clin Chem 2022; 107:79-138. [PMID: 35337606 DOI: 10.1016/bs.acc.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metabolism is a highly regulated process that provides nutrients to cells and essential building blocks for the synthesis of protein, DNA and other macromolecules. In healthy biological systems, metabolism maintains a steady state in which the concentrations of metabolites are relatively constant yet are subject to metabolic demands and environmental stimuli. Rare genetic disorders, such as inborn errors of metabolism (IEM), cause defects in regulatory enzymes or proteins leading to metabolic pathway disruption and metabolite accumulation or deficiency. Traditionally, the laboratory diagnosis of IEMs has been limited to analytical methods that target specific metabolites such as amino acids and acyl carnitines. This approach is effective as a screening method for the most common IEM disorders but lacks the comprehensive coverage of metabolites that is necessary to identify rare disorders that present with nonspecific clinical symptoms. Fortunately, advancements in technology and data analytics has introduced a new field of study called metabolomics which has allowed scientists to perform comprehensive metabolite profiling of biological systems to provide insight into mechanism of action and gene function. Since metabolomics seeks to measure all small molecule metabolites in a biological specimen, it provides an innovative approach to evaluating disease in patients with rare genetic disorders. In this review we provide insight into the appropriate application of metabolomics in clinical settings. We discuss the advantages and limitations of the method and provide details related to the technology, data analytics and statistical modeling required for metabolomic profiling of patients with IEMs.
Collapse
Affiliation(s)
- Lisa Ford
- Metabolon, Inc., Morrisville, NC, United States
| | | | - Jacob Wulff
- Metabolon, Inc., Morrisville, NC, United States
| | - Annie Evans
- Metabolon, Inc., Morrisville, NC, United States
| | | | - Sarah Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - Douglas Toal
- Metabolon, Inc., Morrisville, NC, United States.
| |
Collapse
|
22
|
Singh A, Prakash V, Gupta N, Kumar A, Kant R, Kumar D. Serum Metabolic Disturbances in Lung Cancer Investigated through an Elaborative NMR-Based Serum Metabolomics Approach. ACS OMEGA 2022; 7:5510-5520. [PMID: 35187366 PMCID: PMC8851899 DOI: 10.1021/acsomega.1c06941] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/18/2022] [Indexed: 06/01/2023]
Abstract
Detection of metabolic disturbances in lung cancer (LC) has the potential to aid early diagnosis/prognosis and hence improve disease management strategies through reliable grading, staging, and determination of neoadjuvant status in LC. However, a majority of previous metabolomics studies compare the normalized spectral features which not only provide ambiguous information but further limit the clinical translation of this information. Various such issues can be resolved by performing the concentration profiling of various metabolites with respect to formate as an internal reference using commercial software Chenomx. Continuing our efforts in this direction, the serum metabolic profiles were measured on 39 LC patients and 42 normal controls (NCs, comparable in age/sex) using high-field 800 MHz NMR spectroscopy and compared using multivariate statistical analysis tools to identify metabolic disturbances and metabolites of diagnostic potential. Partial least-squares discriminant analysis (PLS-DA) model revealed a distinct separation between LC and NC groups and resulted in excellent discriminatory ability with the area under the receiver-operating characteristic (AUROC) = 0.97 [95% CI = 0.89-1.00]. The metabolic features contributing to the differentiation of LC from NC samples were identified first using variable importance in projection (VIP) score analysis and then checked for their statistical significance (with p-value < 0.05) and diagnostic potential using the ROC curve analysis. The analysis revealed relevant metabolic disturbances associated with LC. Among various circulatory metabolites, six metabolites, including histidine, glutamine, glycine, threonine, alanine, and valine, were found to be of apposite diagnostic potential for clinical implications. These metabolic alterations indicated altered glucose metabolism, aberrant fatty acid synthesis, and augmented utilization of various amino acids including active glutaminolysis in LC.
Collapse
Affiliation(s)
- Anjana Singh
- All
India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand 249201, India
- Pulmonary
& Critical Care Medicine, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Ved Prakash
- Pulmonary
& Critical Care Medicine, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Nikhil Gupta
- Centre
of Biomedical Research (CBMR), SGPGIMS, Lucknow, Uttar Pradesh 226014, India
- Department
of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ashish Kumar
- Department
of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ravi Kant
- All
India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand 249201, India
| | - Dinesh Kumar
- Centre
of Biomedical Research (CBMR), SGPGIMS, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
23
|
Tian XZ, Li JX, Luo QY, Wang X, Xiao MM, Zhou D, Lu Q, Chen X. Effect of Supplementation With Selenium-Yeast on Muscle Antioxidant Activity, Meat Quality, Fatty Acids and Amino Acids in Goats. Front Vet Sci 2022; 8:813672. [PMID: 35146016 PMCID: PMC8821878 DOI: 10.3389/fvets.2021.813672] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to observe the effects of selenium-yeast (SY) on growth performance, muscle antioxidant activity, meat quality, fatty acid and amino acid profiles in growing goats. A total of 18 Qianbei-pockmarked goats were assigned to three groups (six duplicates per group) by body weight (25.75 ± 1.75 kg; mean ± standard deviation) according to a completely randomized design: (1) basal diet (CON); (2) CON with 2.4 mg/kg SY (LS); and (3) CON with 4.8 mg/kg SY (HS). The results indicated that goats receiving SY did not show any differences (P > 0.05) in terms of dry matter intake, growth performance, or muscle chemical composition. In addition, dietary treatment did not affect (P > 0.05) the pH values (pH45min and pH24h), percentage of water loss, drip loss, or cooking loss. The HS group showed a significant increase (P < 0.05) in the dressing percentage, eye muscle area and meat color, as well as muscle total antioxidant capacity, glutathione peroxidase and 2,2-diphenyl-1-picrylhydrazyl scavenging activity levels, whereas it showed a significant drop (P < 0.05) in shear force and muscle malondialdehyde levels relative to the control. Feeding 4.8 mg/kg SY led to a significant (P < 0.05) decrease in the levels of C8:0, C14:0, C15:0, C16:0, C17:0, C18:0, C20:0 and total saturated fatty acids, whereas it led to a significant (P < 0.05) increase in C15:1 in comparison with that of the control group. Goats receiving 2.4 mg/kg SY had significantly (P < 0.05) increased C16:1, C17:1, C18:1n7, C18:2n6, C18:3n3, C20:4n6, C22:1n9, and PUFA relative to the control group. Compared with the control group, the treatment groups had higher (P < 0.05) levels of C18:1n9, C22:4, and monounsaturated fatty acids. The inclusion of 2.4 mg/kg SY induced significant (P < 0.05) increases in 4-aminobutyric acid, glutamic acid and umami amino acid concentrations compared to the control. In addition, the feeding of 4.8 mg/kg SY had significantly higher (P < 0.05) muscle serine, valine, isoleucine, leucine, ornithine hydrochloride, methionine, and tyrosine levels than the control group. Collectively, Se supplementation in the diet did not affect growth performance, muscle chemical composition, whereas it could improve meat quality, muscle antioxidant activity, fatty acid and amino acid profiles in Qianbei-pockmarked goats. This showed that the optimal accession SY level was 4.8 mg/kg under the experimental conditions of this study.
Collapse
Affiliation(s)
- Xing-Zhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Jia-Xuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Qing-Yuan Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Mei-Mei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Di Zhou
- Testing Center for Livestock and Poultry Germplasm, Guizhou Agricultural and Rural Affairs Office, Guiyang, China
| | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qi Lu
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen
| |
Collapse
|
24
|
Lee H, To NB, Kim M, Nguyen YTK, Cho SK, Choi HK. Metabolic and lipidomic characterization of radioresistant MDA-MB-231 human breast cancer cells to investigate potential therapeutic targets. J Pharm Biomed Anal 2022; 208:114449. [PMID: 34749107 DOI: 10.1016/j.jpba.2021.114449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
To provide preliminary insights into metabolic and lipidomic characteristics in radioresistant triple-negative breast cancer (TNBC) cells and suggest potential therapeutic targets, we performed a comprehensive metabolic and lipidomic profiling of radioresistant MDA-MB-231 (MDA-MB-231/RR) TNBC cells and their parental cells using gas chromatography-mass spectrometry and nano electrospray ionization-mass spectrometry, followed by multivariate statistical analysis. Buthionine sulfoximine (BSO) and radiation were co-treated to radioresistant TNBC cells. The level of glutathione (GSH) was significantly increased, and the levels of GSH synthesis-related metabolites, such as cysteine, glycine, and glutamine were also increased in MDA-MB-231/RR cells. In contrast, the level of lactic acid was significantly reduced. In addition, reactive oxygen species (ROS) level was decreased in MDA-MB-231/RR cells. In the lipidomic profiles of MDA-MB-231/RR cells, the levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were significantly increased, whereas those of most of the phosphatidylinositol species were significantly decreased. BSO sensitized MDA-MB-231/RR cells to radiotherapy, which resulted in decreased GSH level and increased ROS level and apoptosis. Radioresistant TNBC cells showed distinct metabolic and lipidomic characteristics compared to their parental cells. We suggested activated GSH, PC, and PE biosynthesis pathways as potential targets for treating radioresistant TNBC cells. Particularly, enhanced radiosensitivity was achieved by inhibition of GSH biosynthesis in MDA-MB-231/RR cells.
Collapse
Affiliation(s)
- Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ngoc Bao To
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Myeongsun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
25
|
Wu WS, Wu HY, Wang PH, Chen TY, Chen KR, Chang CW, Lee DE, Lin BH, Chang WCW, Liao PC. LCMD: Lung Cancer Metabolome Database. Comput Struct Biotechnol J 2022; 20:65-78. [PMID: 34976312 PMCID: PMC8683384 DOI: 10.1016/j.csbj.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023] Open
Abstract
Lung cancer, one of the most common causes of cancer-related death worldwide, has been associated with high treatment cost and imposed great burdens. The 5-year postoperative survival rate of lung cancer (13%) is lower than many other leading cancers indicating the urgent needs to dissect its pathogenic mechanisms and discover specific biomarkers. Although several proteins have been proposed to be potential candidates for the diagnosis of lung cancer, they present low accuracy in clinical settings. Metabolomics has thus emerged as a very promising tool for biomarker discovery. To date, many lung cancer-related metabolites have been highlighted in the literature but no database is available for scientists to retrieve this information. Herein, we construct and introduce the first Lung Cancer Metabolome Database (LCMD), a freely available online database depositing 2013 lung cancer-related metabolites identified from 65 mass spectrometry-based lung cancer metabolomics studies. Researchers are able to explore LCMD via two ways. Firstly, by applying various filters in the “Browse Metabolites” mode, users can access a list of lung cancer-related metabolites that satisfy the filter specifications. For each metabolite, users can acquire the value of the fold change (cancer/normal), statistical significance (p-value) of the fold change, and the comparative research designs of all the mass spectrometry-based lung cancer metabolomics studies that identify this metabolite. Secondly, by applying various filters in the “Browse Studies” mode, users can obtain a list of mass spectrometry-based lung cancer metabolomics studies that satisfy the filter specifications. For each study, users can view the type of studied specimen, mass spectrometry (MS) method, MS data processing software, and differential analysis method, as well as all the identified lung cancer-related metabolites. Furthermore, the overview of each study is clearly illustrated by a graphical summary. The LCMD (http://cosbi7.ee.ncku.edu.tw/LCMD/) is the first database that brings together the meaningful information of lung cancer-related metabolites. The development of the LCMD is envisioned to promote the biomarker discovery of lung cancer.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Hsuan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Chen
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Ru Chen
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan
| | - Dong-En Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Bo-Heng Lin
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - William Chih-Wei Chang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Master Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Food Safety / Hygiene and Risk Management, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
26
|
DeNicola GM, Shackelford DB. Metabolic Phenotypes, Dependencies, and Adaptation in Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037838. [PMID: 34127512 PMCID: PMC8559540 DOI: 10.1101/cshperspect.a037838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors. Microenvironmental factors, including nutrient and oxygen availability and the presence of stromal cells, are a critical influence on tumor metabolism. Recent technological advances facilitate the direct evaluation of metabolic alterations in patient tumors in this complex microenvironment. In addition, molecular alterations directly influence tumor cell metabolism and metabolic dependencies that influence response to therapy. Current therapeutic approaches to target tumor metabolism are currently being developed and translated into the clinic for patient therapy.
Collapse
Affiliation(s)
- Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
| |
Collapse
|
27
|
Yu M, Sun R, Zhao Y, Shao F, Zhu W, Aa J. Detection and verification of coexisting diagnostic markers in plasma and serum of patients with non-small-cell lung cancer. Future Oncol 2021; 17:4355-4369. [PMID: 34674559 DOI: 10.2217/fon-2021-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To screen and identify the potential biomarkers co-existing in plasma and serum of patients with non-small-cell lung cancer (NSCLC), and establish appropriate diagnostic models. Methods: A cohort of 195 plasma samples and 180 serum samples were obtained from healthy controls (HCs), adenocarcinoma (AdC) and squamous cell carcinoma (SqCC) patients enrolled from the First Affiliated Hospital of Nanjing Medical University. Metabolites in plasma and serum were analyzed by GC-MS. Results: Hypoxanthine was found to have good performance in the differential diagnosis of NSCLC (including AdC and SqCC) and HC (area under the receiver operating characteristic [AUROC] ≥0.85). Combinations of metabolites could be used for differential diagnosis of NSCLC and HC (AUROC >0.93), AdC and HC (AUROC >0.91), SqCC and HC (AUROC >0.95), AdC and SqCC (AUROC >0.72). Conclusions: Metabolomics based on GC-MS can screen and identify the differential metabolites coexisting in plasma and serum of patients with NSCLC, and prediction models established by this method can be used for the differential diagnosis of patients with NSCLC.
Collapse
Affiliation(s)
- Mengjie Yu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Yuqing Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
28
|
Madama D, Martins R, Pires AS, Botelho MF, Alves MG, Abrantes AM, Cordeiro CR. Metabolomic Profiling in Lung Cancer: A Systematic Review. Metabolites 2021; 11:630. [PMID: 34564447 PMCID: PMC8471464 DOI: 10.3390/metabo11090630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer continues to be a significant burden worldwide and remains the leading cause of cancer-associated mortality. Two considerable challenges posed by this disease are the diagnosis of 61% of patients in advanced stages and the reduced five-year survival rate of around 4%. Noninvasively collected samples are gaining significant interest as new areas of knowledge are being sought and opened up. Metabolomics is one of these growing areas. In recent years, the use of metabolomics as a resource for the study of lung cancer has been growing. We conducted a systematic review of the literature from the past 10 years in order to identify some metabolites associated with lung cancer. More than 150 metabolites have been associated with lung cancer-altered metabolism. These were detected in different biological samples by different metabolomic analytical platforms. Some of the published results have been consistent, showing the presence/alteration of specific metabolites. However, there is a clear variability due to lack of a full clinical characterization of patients or standardized patients selection. In addition, few published studies have focused on the added value of the metabolomic profile as a means of predicting treatment response for lung cancer. This review reinforces the need for consistent and systematized studies, which will help make it possible to identify metabolic biomarkers and metabolic pathways responsible for the mechanisms that promote tumor progression, relapse and eventually resistance to therapy.
Collapse
Affiliation(s)
- Daniela Madama
- Clinical Academic Center of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Rosana Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal;
| | - Ana S. Pires
- Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal; (A.S.P.); (M.F.B.); (A.M.A.)
| | - Maria F. Botelho
- Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal; (A.S.P.); (M.F.B.); (A.M.A.)
| | - Marco G. Alves
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-002 Porto, Portugal;
| | - Ana M. Abrantes
- Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal; (A.S.P.); (M.F.B.); (A.M.A.)
| | - Carlos R. Cordeiro
- Clinical Academic Center of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal;
| |
Collapse
|
29
|
Jiang X, Chen X, Chen Z, Yu J, Lou H, Wu J. High-Throughput Salivary Metabolite Profiling on an Ultralow Noise Tip-Enhanced Laser Desorption Ionization Mass Spectrometry Platform for Noninvasive Diagnosis of Early Lung Cancer. J Proteome Res 2021; 20:4346-4356. [PMID: 34342461 DOI: 10.1021/acs.jproteome.1c00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lung cancer (LC) is a widespread cancer that is the cause of the highest mortality rate accounting for 25% of all cancer deaths. To date, most LC patients are diagnosed at the advanced stage owing to the lack of obvious symptoms in the early stage and the limitations of current clinical diagnostic techniques. Therefore, developing a high throughput technique for early screening is of great importance. In this work, we established an effective and rapid salivary metabolic analysis platform for early LC diagnosis and combined metabolomics and transcriptomics to reveal the metabolic fluctuations correlated to LC. Saliva samples were collected from a total of 150 volunteers including 89 patients with early LC, 11 patients with advanced LC, and 50 healthy controls. The metabolic profiling of noninvasive samples was investigated on an ultralow noise TELDI-MS platform. In addition, data normalization methods were screened and assessed to overcome the MS signal variation caused by individual difference for biomarker mining. For untargeted metabolic profiling of saliva samples, around 264 peaks could be reliably detected in each sample. After multivariate analysis, 23 metabolites were sorted out and verified to be related to the dysfunction of the amino acid and nucleotide metabolism in early LC. Notably, transcriptomic data from online TCGA repository were utilized to support findings from the salivary metabolomics experiment, including the disorder of amino acid biosynthesis and amino acid metabolism. Based on the verified differential metabolites, early LC patients could be clearly distinguished from healthy controls with a sensitivity of 97.2% and a specificity of 92%. The ultralow noise TELDI-MS platform displayed satisfactory ability to explore salivary metabolite information and discover potential biomarkers that may help develop a noninvasive screening tool for early LC.
Collapse
Affiliation(s)
- Xinrong Jiang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Chen
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Well-Healthcare Technologies Co., Hangzhou 310051, China
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiekai Yu
- Institute of Cancer Research, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Kowalczyk T, Kisluk J, Pietrowska K, Godzien J, Kozlowski M, Reszeć J, Sierko E, Naumnik W, Mróz R, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. The Ability of Metabolomics to Discriminate Non-Small-Cell Lung Cancer Subtypes Depends on the Stage of the Disease and the Type of Material Studied. Cancers (Basel) 2021; 13:cancers13133314. [PMID: 34282765 PMCID: PMC8268630 DOI: 10.3390/cancers13133314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023] Open
Abstract
Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland; (J.K.); (J.N.)
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Patomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Ogrodowa 12, 15-027 Bialystok, Poland;
| | - Wojciech Naumnik
- 1st Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Żurawia 14, 15-540 Bialystok, Poland;
| | - Robert Mróz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Żurawia 14, 15-540 Bialystok, Poland;
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland;
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland; (J.K.); (J.N.)
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; (T.K.); (K.P.); (J.G.); (A.K.)
- Correspondence:
| |
Collapse
|
31
|
Pathmanapan S, Ilkayeva O, Martin JT, Loe AKH, Zhang H, Zhang GF, Newgard CB, Wunder JS, Alman BA. Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes. Cancer Metab 2021; 9:13. [PMID: 33762012 PMCID: PMC7992867 DOI: 10.1186/s40170-021-00247-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Majority of chondrosarcomas are associated with a number of genetic alterations, including somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, but the downstream effects of these mutated enzymes on cellular metabolism and tumor energetics are unknown. As IDH mutations are likely to be involved in malignant transformation of chondrosarcomas, we aimed to exploit metabolomic changes in IDH mutant and non-mutant chondrosarcomas. METHODS Here, we profiled over 69 metabolites in 17 patient-derived xenografts by targeted mass spectrometry to determine if metabolomic differences exist in mutant IDH1, mutant IDH2, and non-mutant chondrosarcomas. UMAP (Uniform Manifold Approximation and Projection) analysis was performed on our dataset to examine potential similarities that may exist between each chondrosarcoma based on genotype. RESULTS UMAP revealed that mutant IDH chondrosarcomas possess a distinct metabolic profile compared with non-mutant chondrosarcomas. More specifically, our targeted metabolomics study revealed large-scale differences in organic acid intermediates of the tricarboxylic acid (TCA) cycle, amino acids, and specific acylcarnitines in chondrosarcomas. Lactate and late TCA cycle intermediates were elevated in mutant IDH chondrosarcomas, suggestive of increased glycolytic metabolism and possible anaplerotic influx to the TCA cycle. A broad elevation of amino acids was found in mutant IDH chondrosarcomas. A few acylcarnitines of varying carbon chain lengths were also elevated in mutant IDH chondrosarcomas, but with minimal clustering in accordance with tumor genotype. Analysis of previously published gene expression profiling revealed increased expression of several metabolism genes in mutant IDH chondrosarcomas, which also correlated to patient survival. CONCLUSIONS Overall, our findings suggest that IDH mutations induce global metabolic changes in chondrosarcomas and shed light on deranged metabolic pathways.
Collapse
Affiliation(s)
- Sinthu Pathmanapan
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Olga Ilkayeva
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - John T Martin
- Department of Orthopaedic Surgery, Duke University, 311 Trent, Durham, NC, 27710, USA
| | - Adrian Kwan Ho Loe
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery, Duke University, 311 Trent, Durham, NC, 27710, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, and the University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON, Canada
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University, 311 Trent, Durham, NC, 27710, USA.
| |
Collapse
|
32
|
Yu L, Lai Q, Feng Q, Li Y, Feng J, Xu B. Serum Metabolic Profiling Analysis of Chronic Gastritis and Gastric Cancer by Untargeted Metabolomics. Front Oncol 2021; 11:636917. [PMID: 33777793 PMCID: PMC7991914 DOI: 10.3389/fonc.2021.636917] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Gastric cancer is a common tumor of the digestive system. Identification of potential molecules associated with gastric cancer progression and validation of potential biomarkers for gastric cancer diagnosis are very important. Thus, the aim of our study was to determine the serum metabolic characteristics of the serum of patients with chronic gastritis (CG) or gastric cancer (GC) and validate candidate biomarkers for disease diagnosis. Experimental Design A total of 123 human serum samples from patients with CG or GC were collected for untargeted metabolomic analysis via UHPLC-Q-TOF/MS to determine characteristics of the serum. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and heat map were used for multivariate analysis. In addition, commercial databases were used to identify the pathways of metabolites. Differential metabolites were identified based on a heat map with a t-test threshold (p < 0.05), fold-change threshold (FC > 1.5 or FC < 2/3) and variable importance in the projection (VIP >1). Then, differential metabolites were analyzed by receiver operating characteristic (ROC) curve to determine candidate biomarkers. All samples were analyzed for fasting lipid profiles. Results Analysis of serum metabolomic profiles indicated that most of the altered metabolic pathways in the three groups were associated with lipid metabolism (p < 0.05) and lipids and lipid-like molecules were the predominating metabolites within the top 100 differential metabolites (p < 0.05, FC > 1.5 or FC < 2/3, and VIP >1). Moreover, differential metabolites, including hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl amine had high diagnostic performance according to PLS-DA. In addition, fasting lipid profile analysis showed the serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (Apo-A1) were decreased concomitant to the progression of the progression of the disease compared with those in the control group (p < 0.05). Conclusions Thus, this study demonstrated that lipid metabolism may influence the development of CG to GC. Hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl amine were selected as candidate diagnostic markers for CG and GC.
Collapse
Affiliation(s)
- Lin Yu
- Departmant of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qian Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanmeng Li
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Feng
- Departmant of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Departmant of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
33
|
Gray N, Lawler NG, Yang R, Morillon AC, Gay MC, Bong SH, Holmes E, Nicholson JK, Whiley L. A simultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS. Talanta 2021; 223:121872. [DOI: 10.1016/j.talanta.2020.121872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
|
34
|
Boyacıoğlu Ö, Bilgiç E, Varan C, Bilensoy E, Nemutlu E, Sevim D, Kocaefe Ç, Korkusuz P. ACPA decreases non-small cell lung cancer line growth through Akt/PI3K and JNK pathways in vitro. Cell Death Dis 2021; 12:56. [PMID: 33431819 PMCID: PMC7801394 DOI: 10.1038/s41419-020-03274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Therapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39 × 10-12 M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24 hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Hacettepe University, Graduate School of Science and Engineering, Department of Bioengineering, 06800, Beytepe, Ankara, Turkey
- Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Elif Bilgiç
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey
| | - Cem Varan
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Duygu Sevim
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Çetin Kocaefe
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Petek Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
35
|
Southam AD, Pursell H, Frigerio G, Jankevics A, Weber RJM, Dunn WB. Characterization of Monophasic Solvent-Based Tissue Extractions for the Detection of Polar Metabolites and Lipids Applying Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry Clinical Metabolic Phenotyping Assays. J Proteome Res 2020; 20:831-840. [PMID: 33236910 DOI: 10.1021/acs.jproteome.0c00660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic phenotyping of tissues uses metabolomics and lipidomics to measure the relative polar and nonpolar (lipid) metabolite levels in biological samples. This approach aims to understand disease biochemistry and identify biochemical markers of disease. Sample preparation methods must be reproducible, sensitive (high metabolite and lipid yield), and ideally rapid. We evaluated three biphasic methods for polar and nonpolar compound extraction (chloroform/methanol/water, dichloromethane/methanol/water, and methyl tert-butyl ether [MTBE]/methanol/water), a monophasic method for polar compound extraction (acetonitrile/methanol/water), and a monophasic method for nonpolar compound extraction (isopropanol/water). All methods were applied to mammalian heart, kidney, and liver tissues. Polar extracts were analyzed by hydrophilic interaction chromatography (HILIC) ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS) and nonpolar extracts by C18 reversed-phase UHPLC-MS. Method reproducibility and yield were assessed using multiple annotated endogenous compounds (putatively and MS/MS annotated). Monophasic methods had the highest yield and high reproducibility for both polar (positive ion: median relative standard deviation (RSD) < 18%; negative ion: median RSD < 28%) and nonpolar (positive and negative ion: median RSD < 15%) extractions for heart, kidneys, and liver. The polar monophasic method extracted higher levels of lipid than biphasic polar extractions, and these lipids caused minimal detection suppression for other compounds during HILIC UHPLC-MS. The nonpolar monophasic method had similar or greater detection responses of all detected lipid classes compared to biphasic methods (including increased phosphatidylinositol, phosphatidylserine, and cardiolipin responses). Monophasic methods are quicker and simpler than biphasic methods and are therefore most suited for future automation.
Collapse
Affiliation(s)
- Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Harriet Pursell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan 20122, Italy
| | - Andris Jankevics
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
36
|
You L, Fan Y, Liu X, Shao S, Guo L, Noreldeen HAA, Li Z, Ouyang Y, Li E, Pan X, Liu T, Tian X, Ye F, Li X, Xu G. Liquid Chromatography-Mass Spectrometry-Based Tissue Metabolic Profiling Reveals Major Metabolic Pathway Alterations and Potential Biomarkers of Lung Cancer. J Proteome Res 2020; 19:3750-3760. [PMID: 32693607 DOI: 10.1021/acs.jproteome.0c00285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unclarified molecular mechanism and lack of practical diagnosis biomarkers hinder the effective treatment of non-small-cell lung cancer. Herein, we performed liquid chromatography-mass spectrometry-based nontargeted metabolomics analysis in 131 patients with their lung tissue pairs to study the metabolic characteristics and disordered metabolic pathways in lung tumor. A total of 339 metabolites were identified in metabolic profiling. Also, 241 differential metabolites were found between lung carcinoma tissues (LCTs) and paired distal noncancerous tissues; amino acids, purine metabolites, fatty acids, phospholipids, and most of lysophospholipids significantly increased in LCTs, while 3-phosphoglyceric acid, phosphoenolpyruvate, 6-phosphogluconate, and citrate decreased. Additionally, pathway enrichment analysis revealed that energy, purine, amino acid, lipid, and glutathione metabolism are markedly disturbed in lung cancer (LCa). Using binary logistic regression, we further defined candidate biomarkers for different subtypes of lung tumor. Xanthine and PC 35:2 were selected as combinational biomarkers for distinguishing benign from malignant lung tumors with a 0.886 area under curve (AUC) value, and creatine, myoinositol and LPE 16:0 were defined as combinational biomarkers for discriminating adenocarcinoma from squamous cell lung carcinoma with a 0.934 AUC value. Overall, metabolic characterization and pathway disturbance demonstrated apparent metabolic reprogramming in LCa. The defined candidate metabolite marker panels are useful for subtyping of lung tumors to assist clinical diagnosis.
Collapse
Affiliation(s)
- Lei You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Fan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Lei Guo
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hamada A A Noreldeen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enyou Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue Pan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tianyang Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fei Ye
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangnan Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Awah CU, Chen L, Bansal M, Mahajan A, Winter J, Lad M, Warnke L, Gonzalez-Buendia E, Park C, Zhang D, Feldstein E, Yu D, Zannikou M, Balyasnikova IV, Martuscello R, Konerman S, Győrffy B, Burdett KB, Scholtens DM, Stupp R, Ahmed A, Hsu P, Sonabend AM. Ribosomal protein S11 influences glioma response to TOP2 poisons. Oncogene 2020; 39:5068-5081. [PMID: 32528131 PMCID: PMC7646677 DOI: 10.1038/s41388-020-1342-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Topoisomerase II poisons are one of the most common class of chemotherapeutics used in cancer. We and others had shown that a subset of glioblastomas (GBM), the most malignant of all primary brain tumors in adults, are responsive to TOP2 poisons. To identify genes that confer susceptibility to this drug in gliomas, we performed a genome-scale CRISPR knockout screen with etoposide. Genes involved in protein synthesis and DNA damage were implicated in etoposide susceptibility. To define potential biomarkers for TOP2 poisons, CRISPR hits were overlapped with genes whose expression correlates with susceptibility to this drug across glioma cell lines, revealing ribosomal protein subunit RPS11, 16, 18 as putative biomarkers for response to TOP2 poisons. Loss of RPS11 led to resistance to etoposide and doxorubicin and impaired the induction of pro-apoptotic gene APAF1 following treatment. The expression of these ribosomal subunits was also associated with susceptibility to TOP2 poisons across cell lines from gliomas and multiple other cancers.
Collapse
Affiliation(s)
- Chidiebere U Awah
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | | | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Medical Center, Columbia University, New York City, NY, USA
| | - Jan Winter
- Functional Genomics and Signaling, German Center for Cancer Research, Heidelberg, Germany
| | - Meeki Lad
- Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Louisa Warnke
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Edgar Gonzalez-Buendia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Cheol Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Daniel Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Eric Feldstein
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Dou Yu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Markella Zannikou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Regina Martuscello
- Department of Pathology, Columbia University Medical Centre, Columbia University, New York City, NY, USA
| | | | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kirsten B Burdett
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Atique Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
| | - Patrick Hsu
- Molecular and Cell Biology, Salk Institute, La Jolla, CA, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States.
| |
Collapse
|
38
|
Feng D, Yuan J, Liu Q, Liu L, Zhang X, Wu Y, Qian Y, Chen L, Shi Y, Gu M. UPLC‑MS/MS‑based metabolomic characterization and comparison of pancreatic adenocarcinoma tissues using formalin‑fixed, paraffin‑embedded and optimal cutting temperature‑embedded materials. Int J Oncol 2019; 55:1249-1260. [PMID: 31638165 PMCID: PMC6831194 DOI: 10.3892/ijo.2019.4898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/09/2019] [Indexed: 12/04/2022] Open
Abstract
The purpose of the present study was to compare metabolites from formalin-fixed and paraffin-embedded (FFPE) pancreatic tissue blocks with those identified in optimal cutting temperature (OCT)-embedded pancreatic tissue blocks. Thus, ultra-performance liquid chromatograph-mass spectrometry/mass spectrometry-based metabolic profiling was performed in paired frozen (n=13) and FFPE (n=13) human pancreatic adenocarcinoma tissue samples, in addition to their benign counterparts. A total of 206 metabolites were identified in both OCT-embedded and FFPE tissue samples. The method feasibility was confirmed through reproducibility and a consistency assessment. Partial least-squares discriminant analysis and heatmap analysis reliably distinguished tumor and normal tissue phenotypes. The expression of 10 compounds, including N-acetylaspartate and creatinine, was significantly different in both OCT-embedded and FFPE tumor samples. These ten compounds may be viable candidate biomarkers of malignant pancreatic tissues. The super-categories to which they belonged exhibited no significant differences between FFPE and OCT-embedded samples. Furthermore, purine, arginine and proline, and pyrimidine metabolism used a shared pathway found in both OCT-embedded and FFPE tissue samples. These results supported the notion that metabolomic data acquired from FFPE pancreatic cancer specimens are reliable for use in retrospective and clinical studies.
Collapse
Affiliation(s)
- Di Feng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Jing Yuan
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xu Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yali Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yifan Qian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Liping Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yan Shi
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Mancang Gu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
39
|
Hoang LT, Domingo-Sabugo C, Starren ES, Willis-Owen SAG, Morris-Rosendahl DJ, Nicholson AG, Cookson WOCM, Moffatt MF. Metabolomic, transcriptomic and genetic integrative analysis reveals important roles of adenosine diphosphate in haemostasis and platelet activation in non-small-cell lung cancer. Mol Oncol 2019; 13:2406-2421. [PMID: 31461552 PMCID: PMC6822241 DOI: 10.1002/1878-0261.12568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related deaths in the world. The most prevalent subtype, accounting for 85% of cases, is non‐small‐cell lung cancer (NSCLC). Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the most common subtypes. Despite recent advances in treatment, the low 5‐year survival rate of NSCLC patients (approximately 13%) reflects the lack of early diagnostic biomarkers and incomplete understanding of the underlying disease mechanisms. We hypothesized that integration of metabolomic, transcriptomic and genetic profiles of tumours and matched normal tissues could help to identify important factors and potential therapeutic targets that contribute to tumorigenesis. We integrated omics profiles in tumours and matched adjacent normal tissues of patients with LUSC (N = 20) and LUAD (N = 17) using multiple system biology approaches. We confirmed the presence of previously described metabolic pathways in NSCLC, particularly those mediating the Warburg effect. In addition, through our combined omics analyses we found that metabolites and genes that contribute to haemostasis, angiogenesis, platelet activation and cell proliferation were predominant in both subtypes of NSCLC. The important roles of adenosine diphosphate in promoting cancer metastasis through platelet activation and angiogenesis suggest this metabolite could be a potential therapeutic target.
Collapse
Affiliation(s)
- Long T Hoang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, UK
| | - Clara Domingo-Sabugo
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, UK
| | - Elizabeth S Starren
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, UK
| | | | | | - Andrew G Nicholson
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, UK.,Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
40
|
Brustugun OT. A NOTCH added to metabolomics. Br J Cancer 2019; 121:3-4. [PMID: 31114016 PMCID: PMC6738034 DOI: 10.1038/s41416-019-0463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/27/2022] Open
Abstract
Deregulated metabolism is a hallmark of cancer. In the accompanying study by Sellers et al. published in the British Journal of Cancer, metabolism-related transcriptomics data from in silico data sets are analysed, with the findings being further investigated in the experiments on tumour tissue slices and finally validated in patients. The study adds to our growing understanding of therapeutically accessible metabolic reprogramming in malignancies.
Collapse
Affiliation(s)
- Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Health Trust, Dronninggata 28, N-3004, Drammen, Norway.
| |
Collapse
|
41
|
Mock A, Rapp C, Warta R, Abdollahi A, Jäger D, Sakowitz O, Brors B, von Deimling A, Jungk C, Unterberg A, Herold-Mende C. Impact of post-surgical freezing delay on brain tumor metabolomics. Metabolomics 2019; 15:78. [PMID: 31087206 DOI: 10.1007/s11306-019-1541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/04/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Translational cancer research has seen an increasing interest in metabolomic profiling to decipher tumor phenotypes. However, the impact of post-surgical freezing delays on mass spectrometric metabolomic measurements of the cancer tissue remains elusive. OBJECTIVES To evaluate the impact of post-surgical freezing delays on cancer tissue metabolomics and to investigate changes per metabolite and per metabolic pathway. METHODS We performed untargeted metabolomics on three cortically located and bulk-resected glioblastoma tissues that were sequentially frozen as duplicates at up to six different time delays (0-180 min, 34 samples). RESULTS Statistical modelling revealed that 10% of the metabolome (59 of 597 metabolites) changed significantly after a 3 h delay. While carbohydrates and energy metabolites decreased, peptides and lipids increased. After a 2 h delay, these metabolites had changed by as much as 50-100%. We present the first list of metabolites in glioblastoma tissues that are sensitive to post-surgical freezing delays and offer the opportunity to define individualized fold change thresholds for future comparative metabolomic studies. CONCLUSION More researchers should take these pre-analytical factors into consideration when analyzing metabolomic data. We present a strategy for how to work with metabolites that are sensitive to freezing delays.
Collapse
Affiliation(s)
- Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Sakowitz
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology & Clinical Cooperation Unit Neuropathology, University Hospital Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
42
|
Calabrese F, Lunardi F, Pezzuto F, Fortarezza F, Vuljan SE, Marquette C, Hofman P. Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer? J Clin Med 2019; 8:jcm8030414. [PMID: 30917582 PMCID: PMC6463117 DOI: 10.3390/jcm8030414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most lethal malignancies worldwide, mainly due to its late diagnoses. The detection of molecular markers on samples provided from routine bronchoscopy including several liquid-based cytology tests (e.g., bronchoaspirate, bronchoalveolar lavage) and/or on easily obtained specimens such as sputum could represent a new approach to improve the sensitivity in lung cancer diagnoses. Recently growing interest has been reported for "noninvasive" liquid biopsy as a valuable source for molecular profiling. Unfortunately, a biomarker and/or composition of biomarkers capable of detecting early-stage lung cancer has yet to be discovered even if in the last few years there has been, through the use of revolutionary new technologies, an explosion of lung cancer biomarkers. Assay sensitivity and specificity need to be improved particularly when new approaches and/or tools are used. We have focused on the most important markers detected in tissue, and on several cytological specimens and liquid biopsies overall.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, 35121 Padova, Italy.
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, 35121 Padova, Italy.
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, 35121 Padova, Italy.
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, 35121 Padova, Italy.
| | - Stefania Edith Vuljan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, 35121 Padova, Italy.
| | - Charles Marquette
- University Côte d'Azur, University Nice Hospital, FHU OncoAge, Department of Pneumology, Pasteur Hospital, 06001 Nice, France.
- University Côte d'Azur, CNRS, INSERM, IRCAN, Team 4, FHU OncoAge, 06001 Nice, France.
| | - Paul Hofman
- University Côte d'Azur, CNRS, INSERM, IRCAN, Team 4, FHU OncoAge, 06001 Nice, France.
- University Côte d'Azur, University Nice Hospital, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, 06001 Nice, France.
- University Côte d'Azur, Biobank (BB-0033-00025), FHU OncoAge, Pasteur Hospital, 06001 Nice, France.
| |
Collapse
|
43
|
Defining Metabolic Rewiring in Lung Squamous Cell Carcinoma. Metabolites 2019; 9:metabo9030047. [PMID: 30866469 PMCID: PMC6468359 DOI: 10.3390/metabo9030047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/19/2023] Open
Abstract
Metabolomics based on untargeted flow infusion electrospray ionization high-resolution mass spectrometry (FIE-HRMS) can provide a snap-shot of metabolism in living cells. Lung Squamous Cell Carcinoma (SCC) is one of the predominant subtypes of Non-Small Cell Lung Cancers (NSCLCs), which usually shows a poor prognosis. We analysed lung SCC samples and matched histologically normal lung tissues from eight patients. Metabolites were profiled by FIE-HRMS and assessed using t-test and principal component analysis (PCA). Differentially accumulating metabolites were mapped to pathways using the mummichog algorithm in R, and biologically meaningful patterns were indicated by Metabolite Set Enrichment Analysis (MSEA). We identified metabolic rewiring networks, including the suppression of the oxidative pentose pathway and found that the normal tricarboxylic acid (TCA) cycle were decoupled from increases in glycolysis and glutamine reductive carboxylation. Well-established associated effects on nucleotide, amino acid and thiol metabolism were also seen. Novel aspects in SCC tissue were increased in Vitamin B complex cofactors, serotonin and a reduction of γ-aminobutyric acid (GABA). Our results show the value of FIE-HRMS as a high throughput screening method that could be exploited in clinical contexts.
Collapse
|