1
|
Pavan C, Bianco P, Tammaro O, Castellino M, Marocco A, Petriglieri JR, Tomatis M, Pansini M, Esposito S, Turci F. Atmospheric environment shapes surface reactivity of Fe(0)-doped lunar dust simulant: Potential toxicological implications. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138096. [PMID: 40222059 DOI: 10.1016/j.jhazmat.2025.138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
The toxicity of lunar dust (LD), anecdotally reported by Apollo astronauts, raises concerns for future missions involving prolonged human presence on the Moon. LD toxicity is thought to involve oxidative stress driven by nanophase metallic iron (np-Fe0), a peculiar feature of LD. In life-supporting lunar habitat, np-Fe0 embedded in the amorphous phases of LD may react with O2 prior to accessing the lung, complicating toxicity assessments. Due to limited availability of real LD samples, toxicological evaluations rely on lunar dust simulants (LDS). A novel Simulant Moon Agglutinate (SMA), composed of a glassy matrix with np-Fe0, was produced and ball milled in an inert atmosphere to expose non-oxidized Fe0 surface centers and to obtain a dust with respirable particle size. Physicochemical properties, oxidative activity, and iron release in simulated body fluids were assessed on selected SMA samples. SMA were aged in air, and the kinetics of free radical generation revealed a strong redox activity that decreased with aging. After an oxidative ageing of 1 month, SMA was still active in generating free radicals, to a higher extent that other LD simulants like JSC-1A-vf, highlighting the key role of np-Fe0 in eliciting LD peculiar reactivity. In vitro tests showed that SMA caused no cell membrane damage, suggesting that LD toxicity mechanisms might involve free radicals and may differ from terrestrial toxic dust, such as quartz.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Turin, via P. Giuria 7, Torino 10125, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy; Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain, Brussels 1200, Belgium
| | - Piero Bianco
- Department of Chemistry, University of Turin, via P. Giuria 7, Torino 10125, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology and INSTM Unit of Torino, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology and INSTM Unit of Torino, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Antonello Marocco
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, Cassino, FR 03043, Italy
| | - Jasmine Rita Petriglieri
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy; Department of Earth Sciences, University of Turin, Turin 10125, Italy
| | - Maura Tomatis
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy; Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, Grugliasco, TO, Italy
| | - Michele Pansini
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, Cassino, FR 03043, Italy
| | - Serena Esposito
- Department of Applied Science and Technology and INSTM Unit of Torino, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| | - Francesco Turci
- Department of Chemistry, University of Turin, via P. Giuria 7, Torino 10125, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy.
| |
Collapse
|
2
|
Gureev AP, Nesterova VV, Sadovnikova IS. Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique. DNA Repair (Amst) 2025; 146:103812. [PMID: 39848024 DOI: 10.1016/j.dnarep.2025.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.
Collapse
Affiliation(s)
- Artem P Gureev
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Veronika V Nesterova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Irina S Sadovnikova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
3
|
Wang J, Lei M, Xue Y, Tan Q, He X, Guan J, Song W, Ma H, Wu B, Cui X. Assessment of toxicity changes induced by exposure of human cells to lunar dust simulant. Sci Rep 2024; 14:24781. [PMID: 39433758 PMCID: PMC11494017 DOI: 10.1038/s41598-024-69259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 10/23/2024] Open
Abstract
The toxicity of lunar dust (LD) to astronauts' health has been confirmed in the Apollo missions and subsequent biological experiments. Therefore, it is crucial to understand the biological toxicity of lunar dust for future human missions to the Moon. In this study, we exposed human lung epithelial cells (BEAS-2B) and peripheral blood B lymphocytes (AHH-1) to varying concentrations (0, 500, 1000, and 1500 μg/ml) of a lunar dust simulant (LDS) called CLDS-i for 24 and 48 h. The results provided the following key findings: (1) LDS induction of cell damage occurred through oxidative stress, with the levels of reactive oxygen species (ROS) in BEAS-2B cells being dependent on the duration of exposure. (2) Necrosis and early apoptosis were observed in BEAS-2B cells and AHH-1 cells, respectively. In addition, both cells showed lysosomal damage. (3) Genes CXCL1, SPP1, CSF2, MMP1, and POSTN are implicated in immune response and cytoskeletal arrangement regulation in BEAS-2B cells. Considering the similarities in composition and properties between CLDS-i and real lunar dust, our findings not only enhance the understanding of LDS toxicity, but also contribute to a better comprehension of the genomic alterations and molecular mechanisms underlying cellular toxicity induced by LD. These insights will contribute to the development of a biotoxicology framework aimed at safeguarding the health of astronauts and, consequently, facilitating future human missions to the Moon.
Collapse
Affiliation(s)
- Jintao Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Lei
- China Astronaut Research and Training Center, Beijing, China
| | - Yuan Xue
- China Astronaut Research and Training Center, Beijing, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxing He
- China Astronaut Research and Training Center, Beijing, China
| | - Jian Guan
- Aier Eye Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Song
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Ma
- China Astronaut Research and Training Center, Beijing, China.
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China.
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Gorman M, Ruan X, Ni R. Electrostatic interactions between rough dielectric particles. Phys Rev E 2024; 109:034902. [PMID: 38632820 DOI: 10.1103/physreve.109.034902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/23/2024] [Indexed: 04/19/2024]
Abstract
From colloid suspension to particle aggregation in protoplanetary formation, electrostatic attraction and repulsion between particles is a key mechanism behind the aggregation and clustering of particles. Although most studies have focused on canonical spherical particles, it remains unclear how nonspherical and rough dielectric particles interact and whether the complicated interplay between roughness and charge distribution affects their force couplings. Here a boundary-element method model was leveraged to study electrostatic interactions between charged dielectric particles with modular, axisymmetric surface features. Charge accumulation at convex surface asperities decreases the strength of electrostatic interactions between particles, and the sensitivity of the electrostatic force to the particle surface roughness and orientation is especially apparent at small particle separations. Surface interactions between the particle near-contact regions were isolated to determine the degree that near-contact interactions dictate the relationship between the net electrostatic force and the particle roughness and orientation. A correction factor ΔF is introduced to recover higher order dielectric effects from a low order analytical model. Finally, implications of surface charge asymmetries produced for different particle orientations and surface roughnesses on the long-standing problem of triboelectrification are discussed.
Collapse
Affiliation(s)
- Matthew Gorman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xuan Ruan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rui Ni
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Chang JHM, Xue Z, Bauer J, Wehle B, Hendrix DA, Catalano T, Hurowitz JA, Nekvasil H, Demple B. Artificial Space Weathering to Mimic Solar Wind Enhances the Toxicity of Lunar Dust Simulants in Human Lung Cells. GEOHEALTH 2024; 8:e2023GH000840. [PMID: 38312735 PMCID: PMC10835080 DOI: 10.1029/2023gh000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
During NASA's Apollo missions, inhalation of dust particles from lunar regolith was identified as a potential occupational hazard for astronauts. These fine particles adhered tightly to spacesuits and were unavoidably brought into the living areas of the spacecraft. Apollo astronauts reported that exposure to the dust caused intense respiratory and ocular irritation. This problem is a potential challenge for the Artemis Program, which aims to return humans to the Moon for extended stays in this decade. Since lunar dust is "weathered" by space radiation, solar wind, and the incessant bombardment of micrometeorites, we investigated whether treatment of lunar regolith simulants to mimic space weathering enhanced their toxicity. Two such simulants were employed in this research, Lunar Mare Simulant-1 (LMS-1), and Lunar Highlands Simulant-1 (LHS-1), which were added to cultures of human lung epithelial cells (A549) to simulate lung exposure to the dusts. In addition to pulverization, previously shown to increase dust toxicity sharply, the simulants were exposed to hydrogen gas at high temperature as a proxy for solar wind exposure. This treatment further increased the toxicity of both simulants, as measured by the disruption of mitochondrial function, and damage to DNA both in mitochondria and in the nucleus. By testing the effects of supplementing the cells with an antioxidant (N-acetylcysteine), we showed that a substantial component of this toxicity arises from free radicals. It remains to be determined to what extent the radicals arise from the dust itself, as opposed to their active generation by inflammatory processes in the treated cells.
Collapse
Affiliation(s)
- J. H. M. Chang
- Department of Pharmacological SciencesRenaissance School of MedicineStony Brook UniversityStony BrookNYUSA
| | - Z. Xue
- Department of Pharmacological SciencesRenaissance School of MedicineStony Brook UniversityStony BrookNYUSA
| | - J. Bauer
- Department of Pharmacological SciencesRenaissance School of MedicineStony Brook UniversityStony BrookNYUSA
| | - B. Wehle
- Department of Pharmacological SciencesRenaissance School of MedicineStony Brook UniversityStony BrookNYUSA
| | - D. A. Hendrix
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFLUSA
| | - T. Catalano
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
| | - J. A. Hurowitz
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
| | - H. Nekvasil
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
| | - B. Demple
- Departments of Pharmacological Sciences and of Radiation OncologyRenaissance School of MedicineStony Brook UniversityStony BrookNYUSA
| |
Collapse
|
6
|
Lam CW, Castranova V, Driscoll K, Warheit D, Ryder V, Zhang Y, Zeidler-Erdely P, Hunter R, Scully R, Wallace W, James J, Crucian B, Nelman M, McCluskey R, Gardner D, Renne R, McClellan R. A review of pulmonary neutrophilia and insights into the key role of neutrophils in particle-induced pathogenesis in the lung from animal studies of lunar dusts and other poorly soluble dust particles. Crit Rev Toxicol 2023; 53:441-479. [PMID: 37850621 PMCID: PMC10872584 DOI: 10.1080/10408444.2023.2258925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 10/19/2023]
Abstract
The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.
Collapse
Affiliation(s)
- Chiu-wing Lam
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kevin Driscoll
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | - Valerie Ryder
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Ye Zhang
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Utilization and Life Sciences Office, Kennedy Space Center, Merritt Island, FL, USA
| | - Patti Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Robert Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Robert Scully
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | - William Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | - John James
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Brian Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Mayra Nelman
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | | | | | - Roger Renne
- Roger Renne ToxPath Consulting Inc., Sumner, WA, USA
| | - Roger McClellan
- Toxicology and Human Health Risk Analysis, Albuquerque, NM, USA
| |
Collapse
|
7
|
Miranda S, Marchal S, Cumps L, Dierckx J, Krüger M, Grimm D, Baatout S, Tabury K, Baselet B. A Dusty Road for Astronauts. Biomedicines 2023; 11:1921. [PMID: 37509559 PMCID: PMC10377461 DOI: 10.3390/biomedicines11071921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
The lunar dust problem was first formulated in 1969 with NASA's first successful mission to land a human being on the surface of the Moon. Subsequent Apollo missions failed to keep the dust at bay, so exposure to the dust was unavoidable. In 1972, Harrison Schmitt suffered a brief sneezing attack, red eyes, an itchy throat, and congested sinuses in response to lunar dust. Some additional Apollo astronauts also reported allergy-like symptoms after tracking dust into the lunar module. Immediately following the Apollo missions, research into the toxic effects of lunar dust on the respiratory system gained a lot of interest. Moreover, researchers believed other organ systems might be at risk, including the skin and cornea. Secondary effects could translocate to the cardiovascular system, the immune system, and the brain. With current intentions to return humans to the moon and establish a semi-permanent presence on or near the moon's surface, integrated, end-to-end dust mitigation strategies are needed to enable sustainable lunar presence and architecture. The characteristics and formation of Martian dust are different from lunar dust, but advances in the research of lunar dust toxicity, mitigation, and protection strategies can prove strategic for future operations on Mars.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Lina Cumps
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Astronomy, Faculty of Science, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jenne Dierckx
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Astronomy, Faculty of Science, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
8
|
Pohlen M, Carroll D, Prisk GK, Sawyer AJ. Overview of lunar dust toxicity risk. NPJ Microgravity 2022; 8:55. [PMID: 36460679 PMCID: PMC9718825 DOI: 10.1038/s41526-022-00244-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Lunar dust (LD), the component of lunar regolith with particle sizes less than 20 μm, covers the surface of the Moon. Due to its fineness, jagged edges, and electrostatic charge, LD adheres to and coats almost any surface it contacts. As a result, LD poses known risks to the proper functioning of electronic and mechanical equipment on the lunar surface. However, its mechanical irritancy and chemical reactivity may also pose serious health risks to humans by a number of mechanisms. While Apollo astronauts reported mild short-lived respiratory symptoms, the spectrum of health effects associated with high-dose acute exposure or chronic low-dose exposure are not yet well-understood. This paper explores known and potential human risks of exposure to LD which are thought to be important in planning upcoming lunar missions and planetary surface work.
Collapse
Affiliation(s)
| | - Danielle Carroll
- University of California, San Diego, USA
- University of California San Francisco, San Francisco, USA
- Translational Research Institute for Space Health (TRISH), Houston, USA
- Eastern Virginia Medical School, Norfolk, USA
| | | | - Aenor J Sawyer
- University of California San Francisco, San Francisco, USA.
- Translational Research Institute for Space Health (TRISH), Houston, USA.
- UC Space Health, University of California, San Francisco, USA.
| |
Collapse
|
9
|
Tran QD, Tran V, Toh LS, Williams PM, Tran NN, Hessel V. Space Medicines for Space Health. ACS Med Chem Lett 2022; 13:1231-1247. [PMID: 35978686 PMCID: PMC9377000 DOI: 10.1021/acsmedchemlett.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Scientists from around the world are studying the effects of microgravity and cosmic radiation via the "off-Earth" International Space Station (ISS) laboratory platform. The ISS has helped scientists make discoveries that go beyond the basic understanding of Earth. Over 300 medical experiments have been performed to date, with the goal of extending the knowledge gained for the benefit of humanity. This paper gives an overview of these numerous space medical findings, critically identifies challenges and gaps, and puts the achievements into perspective toward long-term space traveling and also adding benefits to our home planet. The medical contents are trifold structured, starting with the well-being of space travelers (astronaut health studies), followed by medical formulation research under space conditions, and then concluding with a blueprint for space pharmaceutical manufacturing. The review covers essential elements of our Earth-based pharmaceutical research such as drug discovery, drug and formulation stability, drug-organ interaction, drug disintegration/bioavailability/pharmacokinetics, pathogen virulence, genome mutation, and body's resistance. The information compiles clinical, medicinal, biological, and chemical research as well as fundamentals and practical applications.
Collapse
Affiliation(s)
- Quy Don Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
| | - Vienna Tran
- Adelaide
Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Li Shean Toh
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Philip M. Williams
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nam Nghiep Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- Department
of Chemical Engineering, Can Tho University, Can Tho 900000, Vietnam
| | - Volker Hessel
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Lam CW, Castranova V, Zeidler-Erdely PC, Renne R, Hunter R, McCluskey R, Scully RR, Wallace WT, Zhang Y, Ryder VE, Cooper B, McKay D, McClellan RO, Driscoll KE, Gardner DE, Barger M, Meighan T, James JT. Comparative pulmonary toxicities of lunar dusts and terrestrial dusts (TiO 2 & SiO 2) in rats and an assessment of the impact of particle-generated oxidants on the dusts' toxicities. Inhal Toxicol 2022; 34:51-67. [PMID: 35294311 DOI: 10.1080/08958378.2022.2038736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Humans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO2. We first isolated the respirable-size-fraction of an Apollo-14 regolith and ground two coarser samples to produce fine LDs with increased SR. SR measurements of these five respirable-sized dusts, determined by their in-vitro ability to generate hydroxyl radicals (•OH), showed that ground LDs > unground LD ≥ TiO2 ≥ quartz. Rats were each intratracheally instilled with 0, 1, 2.5, or 7.5 mg of a test dust. Toxicity biomarkers and histopathology were assessed up to 13 weeks after the bolus instillation. All dusts caused dose-dependent-increases in pulmonary lesions and toxicity biomarkers. The three LDs, which possessed mineral compositions/properties similar to Arizona volcanic ash, were moderately toxic. Despite a 14-fold •OH difference among these three LDs, their toxicities were indistinguishable. Quartz produced the lowest •OH amount but showed the greatest toxicity. Our results showed no correlation between the toxicity of mineral dusts and their ability to generate free radicals. We also showed that the amounts of oxidants per neutrophil increased with doses, time and the cytotoxicity of the dusts in the lung, which supports our postulation that dust-elicited neutrophilia is the major persistent source of oxidative stress. These results and the discussion of the crucial roles of the short-lived, continuously replenished neutrophils in dust-induced pathogenesis are presented.
Collapse
Affiliation(s)
- Chiu-Wing Lam
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Human Health and Performance Contract, KBR, Houston, TX, USA.,Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Roger Renne
- Roger Renne ToxPath Consulting Inc, Sumner, WA, USA
| | - Robert Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX, USA
| | | | - Robert R Scully
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Human Health and Performance Contract, KBR, Houston, TX, USA
| | - William T Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Human Health and Performance Contract, KBR, Houston, TX, USA
| | - Ye Zhang
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Utilization & Life Sciences Office, NASA Kennedy Space Center, FL, USA
| | - Valerie E Ryder
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Bonnie Cooper
- Astromaterials Research and Exploration Systems, NASA Johnson Space Center, Houston, TX, USA
| | - David McKay
- Astromaterials Research and Exploration Systems, NASA Johnson Space Center, Houston, TX, USA
| | | | - Kevin E Driscoll
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | - Mark Barger
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Terence Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - John T James
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
11
|
Hendrix DA, Hurowitz JA, Glotch TD, Schoonen MAA. Olivine Dissolution in Simulated Lung and Gastric Fluid as an Analog to the Behavior of Lunar Particulate Matter Inside the Human Respiratory and Gastrointestinal Systems. GEOHEALTH 2021; 5:e2021GH000491. [PMID: 34849441 PMCID: PMC8609536 DOI: 10.1029/2021gh000491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
With the Artemis III mission scheduled to land humans on the Moon in 2025, work must be done to understand the hazards lunar dust inhalation would pose to humans. In this study, San Carlos olivine was used as an analog of lunar olivine, a common component of lunar dust. Olivine was dissolved in a flow-through apparatus in both simulated lung fluid and 0.1 M HCl (simulated gastric fluid) over a period of approximately 2 weeks at physiological temperature, 37°C. Effluent samples were collected periodically and analyzed for pH, iron, silicon, and magnesium ion concentrations. The dissolution rate data derived from our measurements allow us to estimate that an inhaled 1.0 μm diameter olivine particle would take approximately 24 years to dissolve in the human lungs and approximately 3 weeks to dissolve in gastric fluid. Results revealed that inhaled olivine particles may generate the toxic chemical, hydroxyl radical, for up to 5-6 days in lung fluid. Olivine dissolved in 0.1 M HCl for 2 weeks transformed to an amorphous silica-rich solid plus the ferric iron oxy-hydroxide ferrihydrite. Olivine dissolved in simulated lung fluid shows no detectable change in composition or crystallinity. Equilibrium thermodynamic models indicate that olivine in the human lungs can precipitate secondary minerals with fibrous crystal structures that have the potential to induce detrimental health effects similar to asbestos exposure. Our work indicates that inhaled lunar dust containing olivine can settle in the human lungs for years and could induce long-term potential health effects like that of silicosis.
Collapse
Affiliation(s)
| | | | | | - Martin A. A. Schoonen
- Environment, Biology, Nuclear Science, & NonproliferationBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|
12
|
Georgiou CD, McKay CP, Quinn RC, Kalaitzopoulou E, Papadea P, Skipitari M. The Oxygen Release Instrument: Space Mission Reactive Oxygen Species Measurements for Habitability Characterization, Biosignature Preservation Potential Assessment, and Evaluation of Human Health Hazards. Life (Basel) 2019; 9:E70. [PMID: 31461989 PMCID: PMC6789740 DOI: 10.3390/life9030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022] Open
Abstract
We describe the design of an instrument, the OxR (for Oxygen Release), for the enzymatically specific and non-enzymatic detection and quantification of the reactive oxidant species (ROS), superoxide radicals (O2•-), and peroxides (O22-, e.g., H2O2) on the surface of Mars and Moon. The OxR instrument is designed to characterize planetary habitability, evaluate human health hazards, and identify sites with high biosignature preservation potential. The instrument can also be used for missions to the icy satellites of Saturn's Titan and Enceladus, and Jupiter's Europa. The principle of the OxR instrument is based on the conversion of (i) O2•- to O2 via its enzymatic dismutation (which also releases H2O2), and of (ii) H2O2 (free or released by the hydrolysis of peroxides and by the dismutation of O2•-) to O2 via enzymatic decomposition. At stages i and ii, released O2 is quantitatively detected by an O2 sensor and stoichiometrically converted to moles of O2•- and H2O2. A non-enzymatic alternative approach is also designed. These methods serve as the design basis for the construction of a new small-footprint instrument for specific oxidant detection. The minimum detection limit of the OxR instrument for O2•- and O22- in Mars, Lunar, and Titan regolith, and in Europa and Enceladus ice is projected to be 10 ppb. The methodology of the OxR instrument can be rapidly advanced to flight readiness by leveraging the Phoenix Wet Chemical Laboratory, or microfluidic sample processing technologies.
Collapse
Affiliation(s)
| | | | - Richard C Quinn
- SETI Institute, Carl Sagan Center, Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
13
|
Li M, Thompson KK, Nissen JC, Hendrix D, Hurowitz JA, Tsirka SE. Lunar soil simulants alter macrophage survival and function. J Appl Toxicol 2019; 39:1413-1423. [PMID: 31319435 DOI: 10.1002/jat.3827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 11/10/2022]
Abstract
Lunar regolith samples collected during previous Apollo missions were found to contain components that were established to be toxic to humans; however, the health effects due to inhalation of lunar soil as a whole are still unknown. Macrophages residing in the alveolar sacs of the lungs constitute one of the last lines of defense against inhaled particulates before entry into the bloodstream. Here, we examine the macrophage response to lunar simulants that are similar in chemical composition to the lunar regolith. We assess cytotoxicity, cellular morphology, phagocytosis of simulants and expression of inflammatory markers. Overall, the exposure of macrophages to lunar simulants results in moderate cytotoxicity and marked alteration of cell morphology and uptake of the simulants. Interestingly, simulant exposure decreased proinflammatory gene expression, but may induce an anti-inflammatory phenotype in the cells. These results illustrate that although macrophages phagocytose lunar simulants as a protective response, the simulants do induce a degree of macrophage cell death. Our study reveals some toxicity associated with lunar simulants and supports further evaluation of the inhalation of lunar regolith to understand the risks of exposure fully.
Collapse
Affiliation(s)
- Melvin Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Kaitlyn K Thompson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Jillian C Nissen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.,Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, New York
| | - Donald Hendrix
- Department of Geosciences, Stony Brook University, Stony Brook, New York
| | - Joel A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
14
|
Hendrix DA, Port ST, Hurowitz JA, Schoonen MA. Measurement of OH* Generation by Pulverized Minerals Using Electron Spin Resonance Spectroscopy and Implications for the Reactivity of Planetary Regolith. GEOHEALTH 2019; 3:28-42. [PMID: 32159020 PMCID: PMC7007094 DOI: 10.1029/2018gh000175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 06/10/2023]
Abstract
Mineral analogs to silicate phases common to planetary regolith, including olivine; the pyroxenes augite and diopside; the plagioclase feldspars labradorite, bytownite, and albite; the Johnson Space Center-1A lunar regolith simulant; as well as quartz (used as a reference), were subjected to mechanical pulverization by laboratory milling for times ranging from 5 to 45 min. Pulverized minerals were then incubated in an aqueous solution containing the free radical spin trapping compound 5,5-Dimethyl-1-Pyrroline-N-Oxide for times ranging from 5 to 30 min. These slurries were then analyzed by Electron Paramagnetic Resonance spectroscopy to quantify the amount of hydroxyl radical (the neutral charge form of the hydroxide ion, denoted as OH*) formed in solution. We find that all tested materials generate an Electron Paramagnetic Resonance spectrum indicating the formation of OH* with concentrations ranging between 0.1 and 1.5 μM. We also find that, in general, mineral pulverization time is inversely correlated to OH* generation, while OH* generation is positively correlated to mineral fluid incubation time for phases that have iron in their nominal chemical formulae, suggesting the possible action of Fenton reaction as a cofactor in increasing the reactivity of these phases. Our results add to a body of literature that indicates that the finely comminuted minerals and rocks present in planetary regolith are capable of generating highly reactive and highly oxidizing radical species in solution. The results provide the foundation for further in vitro and in vivo toxicological studies to evaluate the possible health risks that future explorers visiting the surfaces of planetary bodies may face from these reactive regolith materials.
Collapse
Affiliation(s)
- Donald A. Hendrix
- Department of GeosciencesState University of New York at Stony BrookStony BrookNYUSA
| | - Sara T. Port
- Department of GeosciencesState University of New York at Stony BrookStony BrookNYUSA
- Arkansas Center for Space and Planetary SciencesUniversity of ArkansasFayettevilleARUSA
| | - Joel A. Hurowitz
- Department of GeosciencesState University of New York at Stony BrookStony BrookNYUSA
| | - Martin A. Schoonen
- Department of GeosciencesState University of New York at Stony BrookStony BrookNYUSA
- Environment, Biology, Nuclear Science & NonproliferationBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|