1
|
Zhou K, Tang M, Zhang W, Chen Y, Guan Y, Huang R, Duan J, Liu Z, Ji X, Jiang Y, Hu Y, Zhang X, Zhou J, Chen M. Exposure to Molybdate Results in Metabolic Disorder: An Integrated Study of the Urine Elementome and Serum Metabolome in Mice. TOXICS 2024; 12:288. [PMID: 38668511 PMCID: PMC11053804 DOI: 10.3390/toxics12040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
The increasing use of molybdate has raised concerns about its potential toxicity in humans. However, the potential toxicity of molybdate under the current level of human exposure remains largely unknown. Endogenous metabolic alterations that are caused in humans by environmental exposure to pollutants are associated with the occurrence and progression of many diseases. This study exposed eight-week-old male C57 mice to sodium molybdate at doses relevant to humans (0.01 and 1 mg/kg/day) for eight weeks. Inductively coupled plasma mass spectrometry (ICP-MS) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) were utilized to assess changes in urine element levels and serum metabolites in mice, respectively. A total of 838 subjects from the NHANES 2017-2018 population database were also included in our study to verify the associations between molybdenum and cadmium found in mice. Analysis of the metabolome in mice revealed that four metabolites in blood serum exhibited significant changes, including 5-aminolevulinic acid, glycolic acid, l-acetylcarnitine, and 2,3-dihydroxypropyl octanoate. Analysis of the elementome revealed a significant increase in urine levels of cadmium after molybdate exposure in mice. Notably, molybdenum also showed a positive correlation with cadmium in humans from the NHANES database. Further analysis identified a positive correlation between cadmium and 2,3-dihydroxypropyl octanoate in mice. In conclusion, these findings suggest that molybdate exposure disrupted amino acid and lipid metabolism, which may be partially mediated by molybdate-altered cadmium levels. The integration of elementome and metabolome data provides sensitive information on molybdate-induced metabolic disorders and associated toxicities at levels relevant to human exposure.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Miaomiao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Zhang
- Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China; (W.Z.); (Y.H.)
| | - Yanling Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zibo Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhui Hu
- Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China; (W.Z.); (Y.H.)
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing 211166, China;
| | - Jingjing Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (K.Z.); (M.T.); (Y.C.); (Y.G.); (R.H.); (J.D.); (Z.L.); (X.J.); (Y.J.); (J.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Otaka Y, Kanai K, Mori A, Okada D, Nagai N, Yamashita Y, Ichikawa Y, Tajima K. 5-ALA/SFC Ameliorates Endotoxin-Induced Ocular Inflammation in Rats by Inhibiting the NF-κB Signaling Pathway and Activating the HO-1/Nrf2 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108653. [PMID: 37239995 DOI: 10.3390/ijms24108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sodium ferrous citrate (SFC) is involved in the metabolism of 5-aminolevulinic acid (5-ALA) and enhances its anti-inflammatory effects. The effects of 5-ALA/SFC on inflammation in rats with endotoxin-induced uveitis (EIU) have yet to be elucidated. In this study, during lipopolysaccharide injection, 5-ALA/SFC (10 mg/kg 5-ALA plus 15.7 mg/kg SFC) or 5-ALA (10 or 100 mg/kg) was administered via gastric gavage, wherein we saw that 5-ALA/SFC ameliorated ocular inflammation in EIU rats by suppressing clinical scores; by infiltrating cell counts, aqueous humor protein, and inflammatory cytokine levels; and by improving histopathological scores to the same extent as 100 mg/kg 5-ALA. Immunohistochemistry showed that 5-ALA/SFC suppressed iNOS and COX-2 expression, NF-κB activation, IκB-α degradation, and p-IKKα/β expression, and activated HO-1 and Nrf2 expression. Therefore, this study has investigated how 5-ALA/SFC reduces inflammation and revealed the pathways involved in EIU rats. 5-ALA/SFC is shown to inhibit ocular inflammation in EIU rats by inhibiting NF-κB and activating the HO-1/Nrf2 pathways.
Collapse
Affiliation(s)
- Yuya Otaka
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Arisa Mori
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Daiki Okada
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yohei Yamashita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Yoichiro Ichikawa
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazuki Tajima
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| |
Collapse
|
3
|
Kitamura N, Zhang S, Morel JD, Nagano U, Taworntawat T, Hosoda S, Nakamura A, Ogawa Y, Benegiamo G, Auwerx J, Tsubota K, Yokoyama Y, Watanabe M. Sodium ferrous citrate and 5-aminolevulinic acid improve type 2 diabetes by maintaining muscle and mitochondrial health. Obesity (Silver Spring) 2023; 31:1038-1049. [PMID: 36823345 DOI: 10.1002/oby.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 02/25/2023]
Abstract
OBJECTIVE Improving mitochondrial function is a promising strategy for intervention in type 2 diabetes mellitus. This study investigated the preventive effects of sodium ferrous citrate (SFC) and 5-aminolevulinic acid phosphate (ALA) on several metabolic dysfunctions associated with obesity because they have been shown to alleviate abnormal glucose metabolism in humans. METHODS Six-week-old male C57BL/6J mice were fed with a normal diet, a high-fat diet, or a high-fat diet supplemented with SFC and ALA for 15 weeks. RESULTS The simultaneous supplementation of SFC + ALA to high-fat diet-fed mice prevented loss of muscle mass, improved muscle strength, and reduced obesity and insulin resistance. SFC + ALA prevented abnormalities in mitochondrial morphology and reverted the diet effect on the skeletal muscle transcriptome, including the expression of glucose uptake and mitochondrial oxidative phosphorylation-related genes. In addition, SFC + ALA prevented the decline in mitochondrial DNA copy number by enhancing mitochondrial DNA maintenance and antioxidant transcription activity, both of which are impaired in high-fat diet-fed mice during long-term fasting. CONCLUSIONS These findings suggest that SFC + ALA supplementation exerts its preventive effects in type 2 diabetes mellitus via improved skeletal muscle and mitochondrial health, further validating its application as a promising strategy for the prevention of obesity-induced metabolic disorders.
Collapse
Affiliation(s)
- Naho Kitamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Shiyang Zhang
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Jean-David Morel
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Utana Nagano
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Tanon Taworntawat
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Shotaro Hosoda
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Anna Nakamura
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Giorgia Benegiamo
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kazuo Tsubota
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Yoko Yokoyama
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
| | - Mitsuhiro Watanabe
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Kanagawa, Japan
- Department of Environment and Information Studies, Keio University, Kanagawa, Japan
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
5
|
Nakai Y, Tatsumi Y, Hori S, Morizawa Y, Iida K, Onishi K, Miyake M, Oda Y, Owari T, Fujii T, Onishi S, Tanaka N, Fujimoto K. 5‑Aminolevurinic acid inhibits the proliferation of bladder cancer cells by activating heme synthesis. Oncol Rep 2022; 48:186. [PMID: 36082808 PMCID: PMC9478956 DOI: 10.3892/or.2022.8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Iron is an essential nutrient that facilitates cell proliferation and growth, and it can contribute to tumor growth. Although iron chelators have shown great potential in preclinical cancer models, they can cause adverse side-effects. The aim of the present study was to determine whether treatment with 5-aminolevurinic acid (5-ALA) has antitumor effects in bladder cancer, by reduction of mitochondrial iron without using an iron chelator, through activation of heme synthesis. T24 and MGH-U3 cells were treated with 5-ALA. Ferrochelatase uses iron to convert protoporphyrin IX into heme, thus additional groups of T24 and MGH-U3 cells were transfected with synthesized ferrochelatase small interfering RNA (siRNA) either to silence ferrochelatase or to provide a negative siRNA control group, and then cell viability, apoptosis, mitochondrial Fe2+, the cell cycle, and ferritin expression were analyzed in all groups and compared. As an in vivo assessment, mice with orthotopic bladder cancer induced using N-butyl-N-(4-hydro-oxybutyl) were treated with 5-ALA. Bladder weight and pathological findings were evaluated, and immunohistochemical analysis was performed for ferritin and proliferating cell nuclear antigen (PCNA). In the cells treated with 5-ALA, proliferation was decreased compared with the controls, and apoptosis was not detected. In addition, the expression of Fe2+ in mitochondria was decreased by 5-ALA, expression of ferritin was also reduced by 5-ALA, and the percentage of cells in the S phase of the cell cycle was significantly increased by 5-ALA. In T24 and MGH-U3 cells with silenced ferrochelatase, the inhibition of cell proliferation, decreased expression of Fe2+ in mitochondria, reduced expression of ferritin, and increased percentage of cells in the S phase by treatment with 5-ALA were weakened. In vivo, no mouse treated with 5-ALA developed muscle-invasive bladder cancer. The expression of ferritin was weaker in mice treated with 5-ALA and that of PCNA was higher than that in mice treated without 5-ALA. It was concluded that 5-ALA inhibited proliferation of bladder cancer cells by activating heme synthesis.
Collapse
Affiliation(s)
- Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Yoshihiro Tatsumi
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Kenta Onishi
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Yuki Oda
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Takuya Owari
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Tomomi Fujii
- Department of Pathology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Sayuri Onishi
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| |
Collapse
|
6
|
5 ALA Is a Potent Lactate Dehydrogenase Inhibitor But Not a Substrate: Implications for Cell Glycolysis and New Avenues in 5 ALA-Mediated Anticancer Action. Cancers (Basel) 2022; 14:cancers14164003. [PMID: 36010996 PMCID: PMC9406570 DOI: 10.3390/cancers14164003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary In the present work, we found that 5-ALA, a natural precursor of heme, can hinder cell glycolysis, which is the main path of energy production for most cancer cells. More specifically, we found that 5-ALA can block an enzyme involved in glycolysis, called lactate dehydrogenase (LDH). We found that 5-ALA has a potency of LDH inhibition comparable to other established LDH inhibitors, such as oxamate or tartronic acid. Nevertheless, 5-ALA has a high accumulation rate in cancers and specifically in the incurable brain cancer glioblastoma multiforme (GBM), which is an important advantage. In fact, because of its high specificity to GBM, 5-ALA is used in the clinic to accurately guide the resection of the tumours, through the light emission of its photoactive product protoporphyrin IX (PpIX). PpIX is the penultimate step in the heme production. Importantly, we show here that continuous administration of 5-ALA killed GBM cells according to their dependence on glycolysis. We additionally found that 20% of externally administered 5-ALA is engaged in the inhibition of LDH, as when LDH was pre-loaded by another inhibitor, tartronic acid, then the cell production of PpIX from 5-ALA was increased by 20%. Since PpIX is an important drug for photodynamic therapy of cancer (excitation by light of PpIX produces oxygen by-products that can kill cancer cells), we additionally discovered that preloading LDH with its inhibitor tartronic acid before performing 5-ALA PDT increases the cancer cell death by 15%. Abstract In a course of metabolic experiments, we determined that the addition of δ-aminolevulinic acid (5-ALA) to a panel of glioblastoma multiforme (GBM) cells caused a steep reduction in their glycolytic activity. This reduction was accompanied by a decrease in adenosine triphosphate (ATP) production from glycolysis. These results suggested that 5-ALA is an inhibitor of glycolysis; due to the structural similarity of 5-ALA to the established lactate dehydrogenase (LDH) inhibitors oxamate (OXM) and tartronate (TART), we initially investigated LDH inhibition by 5-ALA in silico. The modelling revealed that 5-ALA could indeed be a competitive inhibitor of LDH but not a substrate. These theoretical findings were corroborated by enzymatic and cell lysate assays in which 5-ALA was found to confer a potent LDH inhibition comparable to that of OXM and TART. We subsequently evaluated the effect of 5-ALA-induced glycolysis inhibition on the viability of GBM cells with diverse metabolic phenotypes. In the Warburg-type cell lines Ln18 and U87, incubation with 5-ALA elicited profound and irreversible cell death (90–98%) at 10 mM after merely 24 h. In T98G, however, which exhibited both high respiratory and glycolytic rates, LD95 was achieved after 72 h of incubation with 20 mM 5-ALA. We additionally examined the production of the 5-ALA photosensitive metadrug protoporphyrin IX (PpIX), with and without prior LDH inhibition by TART. These studies revealed that ~20% of the 5-ALA taken up by the cells was engaged in LDH inhibition. We subsequently performed 5-ALA photodynamic therapy (PDT) on Ln18 GBM cells, again with and without prior LDH inhibition with TART, and found a PDT outcome enhancement of ~15% upon LDH pre-inhibition. We expect our findings to have a profound impact on contemporary oncology, particularly for the treatment of otherwise incurable brain cancers such as GBM, where the specific accumulation of 5-ALA is very high compared to the surrounding normal tissue.
Collapse
|
7
|
Zhou Y, Mo M, Luo D, Yang Y, Hu J, Ye C, Lin L, Xu C, Chen W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics 2022; 14:pharmaceutics14071477. [PMID: 35890373 PMCID: PMC9320574 DOI: 10.3390/pharmaceutics14071477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has been extensively studied for its sustainability and broad-spectrum applications in medical research and theranostics, as well as other areas. It’s a precursor of protoporphyrin IX (PpIX), a sustainable endogenous and naturally-existing photosensitizer. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on 5-ALA research has not been reported so far, which would be of major importance to the relevant researchers. In this study, we collected all the research articles published in the last two decades from the Web of Science Core Collection database and employed bibliometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace. A total of 1595 articles were identified. The analysis results showed that China published the largest number of articles, and SBI Pharmaceuticals Co., Ltd. was the most productive institution that sponsored several of the most productive authors. The cluster analysis and burst detections indicated that the improvement of photodynamic efficacy theranostics is the up-to-date key direction in 5-ALA research. Furthermore, we emphatically studied nanotechnology involvement in 5-ALA delivery and theranostics research. We envision that our results will be beneficial for researchers to have a panorama of and deep insights into this area, thus inspiring further exploitations, especially of the nanomaterial-based systems for 5-ALA delivery and theranostic applications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Yi Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Jialin Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Chenqing Ye
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Longxiang Lin
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China;
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Correspondence: (C.X.); (W.C.)
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510182, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
- Correspondence: (C.X.); (W.C.)
| |
Collapse
|
8
|
Kuroda Y, Kamiya A, Ishii T, Ishizuka M, Yamashita Y, Ashida H. 5-Aminolevulinic acid combined with ferrous iron improves glucose tolerance in high-fat diet-fed mice via upregulation of glucose transporter 1. Exp Ther Med 2021; 22:1454. [PMID: 34737794 DOI: 10.3892/etm.2021.10889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Decreased mitochondrial metabolism suppresses glucose metabolism, resulting in obesity and diabetes. The present study aimed to investigate mechanisms underlying the 5-aminolevulinic acid (5-ALA) hydrochloride-mediated increase in glucose uptake in high-fat diet (HFD)-fed mice in vivo and C2C12 myotube cells in vitro. C57BL/6N male mice (20 weeks old) were fed either HFD or normal diet (ND) for 4 weeks. A total of five HFD-fed mice were orally administered with 300 mg/kg 5-ALA hydrochloride and 47.1 mg/kg sodium ferrous citrate (SFC; HFD + 5-ALA/SFC), whereas ND and other HFD-fed mice were orally administered with saline. After 4 weeks, these mice were intraperitoneally administered with 2 g/kg glucose and 3.2 mg/kg 2-deoxyglucose (2DG) for intraperitoneal glucose tolerance test (IPGTT) and glucose uptake test. Body weights, plasma glucose levels and the area under the curve of IPGTT were lower in mice treated with HFD + 5-ALA/SFC compared with in those treated with HFD alone. 2DG uptake in the gastrocnemius muscle and heart were more significantly improved in the HFD + 5-ALA/SFC mice compared with the HFD-fed mice. Furthermore, 5-ALA/SFC increased 2DG uptake in C2C12 cells to a similar level to the insulin-treated group. Moreover, it increased glucose transport (GLUT)1 translocation in the plasma membrane by 2.5-fold relative to the controls without affecting GLUT1 expression; however, it had no effect on GLUT4 translocation. Therefore, 5-ALA/SFC enhanced gastrocnemius and cardiac glucose uptake in HFD-fed mice, and upregulated GLUT1 translocation to the plasma membrane, but not GLUT4 in C2C12 myotube cells. Therefore, it could potentially be used as a novel drug for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Atsuko Kamiya
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | - Takuya Ishii
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | | | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
9
|
Hu X, Que W, Hirano H, Wang Z, Nozawa N, Ishii T, Ishizuka M, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Guo WZ, Li XK. 5-Aminolevulinic acid/sodium ferrous citrate enhanced the antitumor effects of programmed cell death-ligand 1 blockade by regulation of exhausted T cell metabolism in a melanoma model. Cancer Sci 2021; 112:2652-2663. [PMID: 33934440 PMCID: PMC8253271 DOI: 10.1111/cas.14930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are key cytoplasmic organelles. Their activation is critical for the generation of T cell proliferation and cytotoxicity. Exhausted tumor‐infiltrating T cells show a decreased mitochondrial function and mass. 5‐Aminolevulinic acid (5‐ALA), a natural amino acid that is only produced in the mitochondria, has been shown to influence metabolic functions. We hypothesized that 5‐ALA with sodium ferrous citrate (SFC) might provide metabolic support for tumor‐infiltrating T cells. In a mouse melanoma model, we found that 5‐ALA/SFC with a programmed cell death‐ligand 1 (PD‐L1) blocking Ab synergized tumor regression. After treatment with 5‐ALA/SFC and anti‐PD‐L1 Ab, tumor infiltrating lymphocytes (TILs) were not only competent for the production of cytolytic particles and cytokines (granzyme B, interleukin‐2, and γ‐interferon) but also showed enhanced Ki‐67 activity (a proliferation marker). The number of activated T cells (PD‐1+Tim‐3−) was also significantly increased. Furthermore, we found that 5‐ALA/SFC activated the mitochondrial functions, including the oxygen consumption rate, ATP level, and complex V expression. The mRNA levels of Nrf‐2, HO‐1, Sirt‐1, and PGC‐1α and the protein levels of Sirt‐1 were upregulated by treatment with 5‐ALA/SFC. Taken together, our findings revealed that 5‐ALA/SFC could be a key metabolic regulator in exhausted T cell metabolism and suggested that 5‐ALA/SFC might synergize with anti‐PD‐1/PD‐L1 therapy to boost the intratumoral efficacy of tumor‐specific T cells. Our study not only revealed a new aspect of immune metabolism, but also paved the way to develop a strategy for combined anti‐PD‐1/PD‐L1 cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Hasumi International Research Foundation, Tokyo, Japan
| | - Zhidan Wang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Nakamura Y, Haraguchi A, Shigeno R, Ito A, Horie I, Kawakami A, Abiru N. A single-arm, open-label, intervention study to investigate the improvement of glucose tolerance after administration of the 5-aminolevulinic acid (5-ALA) in the patients with mitochondrial diabetes mellitus. Medicine (Baltimore) 2021; 100:e25100. [PMID: 33725905 PMCID: PMC7969291 DOI: 10.1097/md.0000000000025100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Mitochondrial diabetes mellitus (MDM) is characterized by maternal inheritance, progressive neurosensory deafness, insulin secretory disorder, and progressive microvascular complications. Mitochondria are critical organelles that provide energy in the form of adenosine triphosphate (ATP). An impairment of ATP production in pancreatic β cells is regarded as the main cause of the insulin secretory disorder in patients with MDM, and these patients require insulin replacement therapy early after the diagnosis. The amino acid 5-aminolevulinic acid (5-ALA), a precursor of heme metabolites, is a non-proteinogenic δ amino acid synthesized in mitochondria. An addition of ferrous iron to 5-ALA enhances heme biosynthesis and increases ATP production through an upregulation of the respiratory complex. Several studies have reported that the administration of 5-ALA and ferrous iron to existing treatment improved the glycemic control in both patients with prediabetes and those with type 2 diabetes mellitus. The additional administration of 5-ALA and ferrous iron to MDM patients on insulin therapy may improve their insulin secretory capacity and glycemic control by improving their mitochondrial function. The findings of this study are expected to provide new treatment options for MDM and improve the patients' glycemic control and prognosis. METHODS/DESIGN This study is a single-arm, open-label pilot intervention study using clinical endpoints to investigate the effects of treatment with 5-ALA plus sodium ferrous citrate (SFC) to patients with MDM on their glucose tolerance. A total of 5 patients with MDM will be administered 5-ALA/SFC (200 mg/d) for 24 weeks. We will perform a 75-g oral glucose tolerance test before and at 24 weeks after the start of this 5-ALA/SFC treatment to evaluate glucose-dependent insulin responses. DISCUSSION To the best of our knowledge, this study will be the first assessment of the effects of 5-ALA/SFC in patients with MDM. This study will obtain an evidence regarding the effectiveness and safety of 5-ALA/SFC for patients with MDM. TRIAL REGISTRATION This study was registered with the University Hospital Medical Information Network (UMIN000040581) on July 1, 2020 and with the Japan Registry of Clinical Trials (jRCTs071200025) on August 3, 2020.
Collapse
Affiliation(s)
- Yuta Nakamura
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ai Haraguchi
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Riyoko Shigeno
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayako Ito
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Hospital
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
11
|
Naraoka Y, Hu A, Yamaguchi T, Saga N, Kobayashi H. 5-Aminolevulinic Acid Improves Water Content and Reduces Skin Wrinkling. Health (London) 2020. [DOI: 10.4236/health.2020.127052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liu C, Fujino M, Zhu S, Isaka Y, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Li X. 5-ALA/SFC enhances HO-1 expression through the MAPK/Nrf2 antioxidant pathway and attenuates murine tubular epithelial cell apoptosis. FEBS Open Bio 2019; 9:1928-1938. [PMID: 31495071 PMCID: PMC6823284 DOI: 10.1002/2211-5463.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclosporin A (CsA) is a common immunosuppressant, but its use is limited as it can cause chronic kidney injury. Oxidative stress and apoptosis play a key role in CsA-induced nephrotoxicity. This study investigated the protective effect of 5-aminolevulinic acid and iron (5-ALA/SFC) on CsA-induced injury in murine proximal tubular epithelial cells (mProx24). 5-ALA/SFC significantly inhibited apoptosis in CsA-treated mProx24 cells with increases in heme oxygenase (HO)-1, nuclear factor E2-related factor 2 (Nrf2), and p38, and Erk-1/2 phosphorylation. Moreover, 5-ALA/SFC suppressed production of reactive oxygen species in CsA-exposed cells and inhibition of HO-1 suppressed the protective effects of 5-ALA/SFC. In summary, 5-ALA/SFC may have potential for development into a treatment for the anti-nephrotoxic/apoptotic effects of CsA.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Masayuki Fujino
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- AIDS Research CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Shuoji Zhu
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Yoshitaka Isaka
- Department of NephrologyOsaka University Graduate School of MedicineJapan
| | | | | | | | | | - Ping Zhu
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Xiao‐Kang Li
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
13
|
Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases. Sci Rep 2019; 9:10549. [PMID: 31332208 PMCID: PMC6646320 DOI: 10.1038/s41598-019-46772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial respiratory chain complexes II, III, and IV and cytochrome c contain haem, which is generated by the insertion of Fe2+ into protoporphyrin IX. 5-Aminolevulinic acid (ALA) combined with sodium ferrous citrate (SFC) was reported to enhance haem production, leading to respiratory complex and haem oxygenase-1 (HO-1) upregulation. Here, we investigated the effects of different concentrations of ALA and SFC alone or in combination (ALA/SFC) on fibroblasts from 8 individuals with mitochondrial diseases and healthy controls. In normal fibroblasts, expression levels of oxidative phosphorylation (OXPHOS) complex subunits and corresponding genes were upregulated only by ALA/SFC. Additionally, the increased oxygen consumption rate (OCR) and ATP levels in normal fibroblasts were more obvious after treatment with ALA/SFC than after treatment with ALA or SFC. OXPHOS complex proteins were enhanced by ALA/SFC, whereas OCR and ATP levels were increased in 6 of the 8 patient-derived fibroblasts. Further, HO-1 protein and mRNA levels were enhanced by ALA/SFC in all fibroblasts. The relative mtDNA copy number was increased by ALA/SFC. Thus, our findings indicate that ALA/SFC is effective in elevating OXPHOS, HO-1 protein, and mtDNA copy number, resulting in an increase in OCR and ATP levels, which represents a promising therapeutic option for mitochondrial diseases.
Collapse
|
14
|
Liu C, Zhu P, Fujino M, Zhu S, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhuang J, Li XK. 5-ALA/SFC Attenuated Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats. Alcohol Clin Exp Res 2019; 43:1651-1661. [PMID: 31141180 DOI: 10.1111/acer.14117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aimed to investigate the protective effect of 5-aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) against binge alcohol-induced gut leakiness and inflammatory liver disease in HIV transgenic (TG) rats. METHODS TG rats were treated with 3 consecutive doses of binge ethanol (EtOH) with or without 5-ALA/SFC. Blood and liver tissue samples were collected at 6 hours following the last dose of EtOH. RESULTS Compared with the wild-type (WT) rats, the TG rats showed increased sensitivity to alcohol-mediated inflammation, as evidenced by the significantly elevated levels of serum endotoxin, AST, ALT, ED1, and ED2 staining in liver. In contrast, 5-ALA/SFC improved the above biochemical and histochemical profiles. 5-ALA/SFC also attenuated the up-regulated mRNA expression of leptin and CCL2. Furthermore, down-regulated intestinal ZO-1 protein expression was also inhibited by 5-ALA/SFC. Moreover, the expressions of HO-1, HO-2, Sirt1, and related signal transduction molecules in liver were increased by 5-ALA/SFC. These results demonstrated that 5-ALA/SFC treatment ameliorated binge alcohol exposure liver injury in a rat model of HIV-infected patients by reducing macrophage activation and expression of inflammatory cytokines/chemokines, and by inducing HO-1, HO-2, and Sirt1 expression. CONCLUSIONS Taken together, these findings suggested that treatment with 5-ALA/SFC has a potential therapeutic effect for binge alcohol exposure liver injury in HIV-infected patients.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
15
|
Rehani PR, Iftikhar H, Nakajima M, Tanaka T, Jabbar Z, Rehani RN. Safety and Mode of Action of Diabetes Medications in comparison with 5-Aminolevulinic Acid (5-ALA). J Diabetes Res 2019; 2019:4267357. [PMID: 31781665 PMCID: PMC6874935 DOI: 10.1155/2019/4267357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a delta amino acid naturally present in every living cell of the human body. 5-ALA is produced in the mitochondria as the first product of the porphyrin synthesis pathway and composes heme; exogenously supplemented 5-ALA helps in upregulating mitochondrial functions. Mitochondrial dysfunction has been associated with the pathophysiology of diabetes mellitus. Thus, in this review, we evaluate the mechanisms of action and adverse effects of common medications used to treat type 2 diabetes mellitus as well as 5-ALA including its mechanism and possible use in diabetes management.
Collapse
|
16
|
Pedrosa-Gerasmio IR, Tanaka T, Sumi A, Kondo H, Hirono I. Effects of 5-Aminolevulinic Acid on Gene Expression, Immunity, and ATP Levels in Pacific White Shrimp, Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:829-843. [PMID: 30145744 DOI: 10.1007/s10126-018-9852-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
With the emergence of several infectious diseases in shrimp aquaculture, there is a growing interest in the use of feed additives to enhance shrimp immunity. Recently, the use of 5-aminolevulinic acid (5-ALA), a non-protein amino acid that plays a rate-limiting role in heme biosynthesis, has received attention for its positive effect on immunity in livestock animals. To evaluate the effect of 5-ALA in the Pacific white shrimp, Litopenaeus vannamei, we conducted microarray analysis, a Vibrio parahaemolyticus immersion challenge test, an ATP level assay, and gene expression analysis of some hemoproteins and genes associated with heme synthesis and degradation. Out of 15,745 L. vannamei putative genes on the microarray, 101 genes were differentially expressed by more than fourfold (p < 0.05) between 5-ALA-supplemented and control shrimp hepatopancreas. 5-ALA upregulated 99 of the 101 genes, 41 of which were immune- and defense-related genes based on sequence homology. Compared to the control, the 5-ALA-supplemented group had a higher survival rate in the challenge test, higher transcript levels of porphobilinogen synthase, ferrochelatase, catalase, nuclear receptor E75, and heme oxygenase-1 and higher levels of ATP. These findings suggest that dietary 5-ALA enhanced the immune response of L. vannamei to V. parahaemolyticus, upregulated immune- and defense-related genes, and enhanced aerobic energy metabolism, respectively. Further studies are needed to elucidate the extent of 5-ALA use in shrimp culture.
Collapse
Affiliation(s)
- Ivane R Pedrosa-Gerasmio
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
17
|
Kamiya A, Hara T, Tsuda M, Tsuru E, Kuroda Y, Ota U, Karashima T, Fukuhara H, Inoue K, Ishizuka M, Nakajima M, Tanaka T. 5-Aminolevulinic acid with ferrous iron improves early renal damage and hepatic steatosis in high fat diet-induced obese mice. J Clin Biochem Nutr 2018; 64:59-65. [PMID: 30705513 PMCID: PMC6348406 DOI: 10.3164/jcbn.18-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/11/2018] [Indexed: 01/22/2023] Open
Abstract
5-Aminolevulinic acid, a natural amino acid, activates mitochondrial respiration and induces heme oxygenase-1 expression. Obesity and type 2 diabetes mellitus are associated with age-related mitochondrial respiration defect, oxidative stress and inflammation. The aim of this study is to investigate the effects of 5-aminolevulinic acid with sodium ferrous citrate on early renal damage and hepatic steatosis. 7-Month-old C57BL/6 mice were fed with a standard diet or high fat diet for 9 weeks, which were orally administered 300 mg/kg 5-aminolevulinic acid combined with 47 mg/kg sodium ferrous citrate (5-aminolevulinic acid/sodium ferrous citrate) or vehicle for the last 5 weeks. We observed that 5-aminolevulinic acid/sodium ferrous citrate significantly decreased body weight, fat weight, hepatic lipid deposits and improved levels of blood glucose and oral glucose tolerance test. In addition, 5-aminolevulinic acid/sodium ferrous citrate suppressed increased glomerular tuft area in high fat diet-fed mice, which was associated with increased heme oxygenase-1 protein expression. Our findings demonstrate additional evidence that 5-aminolevulinic acid/sodium ferrous citrate could improve glucose and lipid metabolism in diabetic mice. 5-Aminolevulinic acid/sodium ferrous citrate has potential application in obesity or type 2 diabetes mellitus-associated disease such as diabetic nephropathy and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Atsuko Kamiya
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Takeshi Hara
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Emi Tsuru
- Institute for Laboratory Animal Research, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Yasushi Kuroda
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Masahiro Ishizuka
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Tohru Tanaka
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| |
Collapse
|
18
|
Liu C, Yang X, Zhu P, Fujino M, Ito H, Takahashi K, Nakajima M, Tanaka T, Wang J, Zhuang J, Zou H, Li XK. Combination of 5-aminolevulinic acid and iron prevents skin fibrosis in murine sclerodermatous graft-versus-host disease. Exp Dermatol 2018; 27:1104-1111. [PMID: 29978518 DOI: 10.1111/exd.13730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/01/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023]
Abstract
Scleroderma or systemic sclerosis (SSc) is a clinically heterogeneous rheumatological autoimmune disease affecting the skin, internal organs and blood vessels. There is at present no effective treatment for this condition. Our study investigated the effects of 5-aminolevulinic acid (5-ALA), which is a precursor of haem synthesis, on graft-vs-host disease (GvHD)-induced SSc murine model. Lymphocytes were intravenously injected from donor mice (B10.D2) into recipient BALB/c mice (recombination-activating gene 2 (Rag-2)-null mice) deficient in mature T and B cells to induce sclerodermatous GvHD (scl-GvHD). To investigate the effect of 5-ALA on scl-GvHD, combination of 5-ALA and sodium ferrous citrate (SFC) was orally administered to the recipient mice for 9 weeks. 5-ALA/SFC treatment significantly reduced progressive inflammation and fibrosis in the skin and ears. Furthermore, 5-ALA/SFC suppressed mRNA expression of transforming growth factor-β, type I collagen and inflammatory cytokines. These results indicate that the 5-ALA/SFC combination treatment has a protective effect against tissue fibrosis and inflammation in a murine scl-GvHD-induced skin and ear inflammation and fibrosis. Furthermore, the efficacy of 5-ALA/SFC suggests important implications of HO-1 protective activity in autoimmune diseases, and therefore, 5-ALA/SFC may have promising clinical applications. These findings suggested that the 5-ALA/SFC treatment may be the potential strategies for SSc.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue Yang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | - Jiucun Wang
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hejian Zou
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Aquino RK, Perez M, Sil P, Shintani T, Harrigan R, Rodriguez B. The Relationship of 5-Aminolevulinic Acid on Mood and Coping Ability in Prediabetic Middle Aged and Older Adults. Geriatrics (Basel) 2018; 3. [PMID: 29862247 PMCID: PMC5976501 DOI: 10.3390/geriatrics3020017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In 2010, approximately 79 million Americans had prediabetes and about 50 percent of those individuals were 65 years and older. The most effective diabetes prevention method in prediabetic adults is lifestyle modification. However, despite the benefits of lifestyle change, diabetes prevalence continues to increase. Maintaining a regular exercise routine and a healthy eating plan may be difficult because of the negative emotional barriers (i.e., stress, mood) that a prediabetic individual faces. This is particularly evident in older individuals when you combine that with decreases in mobility and geriatric syndromes. A potential treatment for these emotional barriers is a natural supplement called 5-aminolevulinic acid (5-ALA). In the current study, the group included 154 participants, both men and women, ranging between the ages of 41 to 71 years old. The study design was a double-blind, randomized parallel-group study. The Psychosocial Depressive Symptoms Questionnaire (PDS) and the Perceived Stress Scale (PSS) were used to examine the effect of two doses of 5-ALA (15 mg and 50 mg) on various components of mood (i.e., hopefulness, loneliness, and motivation) and coping ability. Using SAS software, an ordered logistic regression model was used to analyze the association between the dose groups (control, 15 mg, and 50 mg) and the responses to the two questionnaires, the PDS and PSS, used in this study. An integrative literature review, using the PubMed database, searched for studies on the relationship between 5-ALA administration and mood and coping ability. Our literature review resulted in zero published articles. Next, we found that the intake of 5-ALA was significantly associated with improved coping ability (p = 0.004) and improved self-perception of effort spent (p = 0.002). Finally, we found a significant dose-dependent relationship for the association of 5-ALA intake on measures of effort (p = 0.003), loneliness (p = 0.006), and coping ability (p = 0.003). The 50 mg dose was more effective than the 15 mg dose in improving these measures. In conclusion, after 12 weeks of taking 5-ALA, we found significant improvements in self-perception of effort spent, loneliness, and coping ability in prediabetic middle age and older adults. Improved mood and coping ability may allow prediabetic individuals to overcome the emotional obstacles preventing them from maintaining a healthy lifestyle and ultimately, help them to avoid the development of diabetes.
Collapse
Affiliation(s)
- Rachael K. Aquino
- Department of Geriatrics and Department of Complementary and Alternative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (M.P.); (T.S.); (R.H.)
- Correspondence: (R.K.A.); (B.R.); Tel.: +1-808-692-1468 (B.R.)
| | - Michael Perez
- Department of Geriatrics and Department of Complementary and Alternative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (M.P.); (T.S.); (R.H.)
| | - Payel Sil
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA;
| | - Terry Shintani
- Department of Geriatrics and Department of Complementary and Alternative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (M.P.); (T.S.); (R.H.)
| | - Rosanne Harrigan
- Department of Geriatrics and Department of Complementary and Alternative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (M.P.); (T.S.); (R.H.)
| | - Beatriz Rodriguez
- Department of Geriatrics and Department of Complementary and Alternative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (M.P.); (T.S.); (R.H.)
- Escuela de Medicina, Tecnologico de Monterrey, Monterrey, NL 64710, Mexico
- Correspondence: (R.K.A.); (B.R.); Tel.: +1-808-692-1468 (B.R.)
| |
Collapse
|
20
|
Yamada K, Sato D, Nakamura T, Amano H, Morimoto Y. Unknown biological effects of L-glucose, ALA, and PUFA. J Physiol Sci 2017; 67:539-548. [PMID: 28560575 PMCID: PMC10717498 DOI: 10.1007/s12576-017-0544-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/17/2017] [Indexed: 01/22/2023]
Abstract
Key substrates including glucose, amino acids, and fatty acids play core roles in nutrient metabolism. In this review, we describe phenomena observed when key substrates are applied to cells. We focused on three promising substrates: L-glucose derivatives, 5-aminolevulinic acid, and polyunsaturated fatty acid. Since they are assumed to give a specific reaction when they are transported into cells or metabolized in cells, they are expected to be applied in a clinical setting. We provide the latest knowledge regarding their behaviors and effects on cells.
Collapse
Affiliation(s)
- Katsuya Yamada
- Department of Physiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Daisuke Sato
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| | - Takao Nakamura
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | - Hizuru Amano
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Morimoto
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
21
|
Ota U, Hara T, Nakagawa H, Tsuru E, Tsuda M, Kamiya A, Kuroda Y, Kitajima Y, Koda A, Ishizuka M, Fukuhara H, Inoue K, Shuin T, Nakajima M, Tanaka T. 5-aminolevulinic acid combined with ferrous ion reduces adiposity and improves glucose tolerance in diet-induced obese mice via enhancing mitochondrial function. BMC Pharmacol Toxicol 2017; 18:7. [PMID: 28132645 PMCID: PMC5278573 DOI: 10.1186/s40360-016-0108-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Background Mitochondrial dysfunction is associated with obesity and various obesity-associated pathological conditions including glucose intolerance. 5-Aminolevulinic acid (ALA), a precursor of heme metabolites, is a natural amino acid synthesized in the mitochondria, and various types of cytochromes containing heme contribute to aerobic energy metabolism. Thus, ALA might have beneficial effects on the reduction of adiposity and improvement of glucose tolerance through its promotion of heme synthesis. In the present study, we investigated the effects of ALA combined with sodium ferrous citrate (SFC) on obesity and glucose intolerance in diet-induced obese mice. Methods We used 20-weeks-old male C57BL/6J diet-induced obesity (DIO) mice that had been fed high-fat diet from 4th week or wild-type C57BL/6J mice. The DIO mice were orally administered ALA combined with SFC (ALA/SFC) for 6 weeks. At the 4th and 5th week during ALA/SFC administration, mice were fasted for 5 h and overnight, respectively and used for oral glucose tolerance test. After the ALA/SFC administration, the plasma glucose levels, weight of white adipose tissue, and expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes were examined. Furthermore, the effects of ALA/SFC on lipid content and glucose uptake were examined in vitro. Results Oral administration of ALA/SFC for 6 weeks reduced the body weight by about 10% and the weight of white adipose tissues in these animals. In vitro, ALA/SFC reduced lipid content in mouse 3T3-L1 adipocytes in a dose dependent manner, and enhanced glucose uptake in 3T3-L1 adipocytes by 70–90% and rat L6 myoblasts by 30% at 6 h. Additionally, oral administration of ALA/SFC reduced plasma glucose levels and improved glucose tolerance in DIO mice. Furthermore, ALA/SFC enhanced the expression of OXPHOS complexes III, IV, and V by 40–70% in white adipose tissues of DIO mice, improving mitochondrial function. Conclusions Our findings indicate that ALA/SFC is effective in the reduction of adiposity and improvement of glucose tolerance, and that the induction of mitochondrial OXPHOS complex III, IV, and V by ALA/SFC might be an essential component of the molecular mechanisms underlying these effects. ALA/SFC might be a useful supplement for obesity and obesity-related metabolic disease such as type 2 diabetes mellitus. Electronic supplementary material The online version of this article (doi:10.1186/s40360-016-0108-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Urara Ota
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Takeshi Hara
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan.
| | - Hitoshi Nakagawa
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Emi Tsuru
- Institute for Laboratory Animal Research, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505, Japan
| | - Atsuko Kamiya
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Yasushi Kuroda
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Yuya Kitajima
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Aya Koda
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Masahiro Ishizuka
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505, Japan
| | - Taro Shuin
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| | - Tohru Tanaka
- SBI Pharmaceuticals Co. Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020, Japan
| |
Collapse
|