1
|
Yan Z, Shi Y, Yang R, Xue J, Fu C. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways. J Zhejiang Univ Sci B 2024; 25:341-353. [PMID: 38584095 PMCID: PMC11009446 DOI: 10.1631/jzus.b2300033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024]
Abstract
Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-β1 (TGF-β1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.
Collapse
Affiliation(s)
- Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Nady ME, Abd El-Raouf OM, El-Sayed ESM. Linagliptin Mitigates TGF-β1 Mediated Epithelial-Mesenchymal Transition in Tacrolimus-Induced Renal Interstitial Fibrosis via Smad/ERK/P38 and HIF-1α/LOXL2 Signaling Pathways. Biol Pharm Bull 2024; 47:1008-1020. [PMID: 38797693 DOI: 10.1248/bpb.b23-00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The dipeptidyl peptidase-4 (DPP-4) inhibitors, a novel anti-diabetic medication family, are renoprotective in diabetes, but a comparable benefit in chronic non-diabetic kidney diseases is still under investigation. This study aimed to elucidate the molecular mechanisms of linagliptin's (Lina) protective role in a rat model of chronic kidney injury caused by tacrolimus (TAC) independent of blood glucose levels. Thirty-two adult male Sprague Dawley rats were equally randomized into four groups and treated daily for 28 d as follows: The control group; received olive oil (1 mL/kg/d, subcutaneously), group 2; received Lina (5 mg/kg/d, orally), group 3; received TAC (1.5 mg/kg/d, subcutaneously), group 4; received TAC plus Lina concomitantly in doses as the same previous groups. Blood and urine samples were collected to investigate renal function indices and tubular injury markers. Additionally, signaling molecules, epithelial-mesenchymal transition (EMT), and fibrotic-related proteins in kidney tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis, immunohistochemical and histological examinations. Tacrolimus markedly induced renal injury and fibrosis as indicated by renal dysfunction, histological damage, and deposition of extracellular matrix (ECM) proteins. It also increased transforming growth factor β1 (TGF-β1), Smad4, p-extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P38/P38 mitogen-activated protein kinase (MAPK) protein levels. These alterations were markedly attenuated by the Lina administration. Moreover, Lina significantly inhibited EMT, evidenced by inhibiting Vimentin and α-smooth muscle actin (α-SMA) and elevating E-cadherin. Furthermore, Lina diminished hypoxia-related protein levels with a subsequent reduction in Snail and Twist expressions. We concluded that Lina may protect against TAC-induced interstitial fibrosis by modulating TGF-β1 mediated EMT via Smad-dependent and independent signaling pathways.
Collapse
Affiliation(s)
- Mohamed E Nady
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Ola M Abd El-Raouf
- Pharmacology Department, Egyptian Drug Authority (EDA), formerly known as National Organization for Drug Control and Research (NODCAR)
| | - El-Sayed M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
3
|
Vishwakarma VK, Shah S, Kaur T, Singh AP, Arava SK, Kumar N, Yadav RK, Yadav S, Arora T, Yadav HN. Effect of vinpocetine alone and in combination with enalapril in experimental model of diabetic cardiomyopathy in rats: possible involvement of PDE-1/TGF-β/ Smad 2/3 signalling pathways. J Pharm Pharmacol 2023; 75:1198-1211. [PMID: 37229596 DOI: 10.1093/jpp/rgad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DC) is one of the severe secondary complications of diabetes mellitus in humans. Vinpocetine is an alkaloid having pleiotropic pharmacological effects. The present study is designed to investigate the effect of vinpocetine in DC in rats. METHODS Rats were fed a high-fat diet for nine weeks along with single dose of streptozotocin after the second week to induce DC. The haemodynamic evaluation was performed to assess the functional status of rats using the Biopac system. Cardiac echocardiography, biochemical, oxidative stress parameters and inflammatory cytokine level were analysed in addition to haematoxylin-eosin and Masson's trichome staining to study histological changes, cardiomyocyte diameter and fibrosis, respectively. Phosphodiesterase-1 (PDE-1), transforming growth factor-β (TGF-β) and p-Smad 2/3 expression in cardiac tissues were quantified using western blot/RT-PCR. KEY FINDING Vinpocetine treatment and its combination with enalapril decreased the glucose levels compared to diabetic rats. Vinpocetine improved the echocardiographic parameters and cardiac functional status of rats. Vinpocetine decreased the cardiac biochemical parameters, oxidative stress, inflammatory cytokine levels, cardiomyocyte diameter and fibrosis in rats. Interestingly, expressions of PDE-1, TGF-β and p-Smad 2/3 were ameliorated by vinpocetine alone and in combination with enalapril. CONCLUSIONS Vinpocetine is a well-known inhibitor of PDE-1 and the protective effect of vinpocetine in DC is exerted by inhibition of PDE-1 and subsequent inhibition of the expression of TGF-β/Smad 2/3.
Collapse
Affiliation(s)
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Tajpreet Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Niraj Kumar
- Department of Neuroanesthesiogy and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Raj Kanwar Yadav
- Department Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Yadav
- Department of Obstetrics and Gynaecology, SHKM Government Medical College, Nuh, Haryana, India
| | - Taruna Arora
- RBMCH, ICMR-Head Quarter's Ansari Nagar, New Delhi, India
| | | |
Collapse
|
4
|
Kraehling JR, Benardeau A, Schomber T, Popp L, Vienenkoetter J, Ellinger-Ziegelbauer H, Pavkovic M, Hartmann E, Siudak K, Freyberger A, Hagelschuer I, Mathar I, Hueser J, Hahn MG, Geiss V, Eitner F, Sandner P. The sGC Activator Runcaciguat Has Kidney Protective Effects and Prevents a Decline of Kidney Function in ZSF1 Rats. Int J Mol Sci 2023; 24:13226. [PMID: 37686032 PMCID: PMC10488129 DOI: 10.3390/ijms241713226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).
Collapse
Affiliation(s)
- Jan R. Kraehling
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Agnes Benardeau
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Novo Nordisk A/S, Global Drug Discovery, T1D-Kidney Disease, 2760 Måløv, Denmark
| | - Tibor Schomber
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Vincerx Pharma GmbH, 40789 Monheim, Germany
| | - Laura Popp
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Julia Vienenkoetter
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | | | - Mira Pavkovic
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Elke Hartmann
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Krystyna Siudak
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Alexius Freyberger
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Ina Hagelschuer
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Ilka Mathar
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Joerg Hueser
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Michael G. Hahn
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Volker Geiss
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Frank Eitner
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52062 Aachen, Germany
| | - Peter Sandner
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Department of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Rubio K, Molina-Herrera A, Pérez-González A, Hernández-Galdámez HV, Piña-Vázquez C, Araujo-Ramos T, Singh I. EP300 as a Molecular Integrator of Fibrotic Transcriptional Programs. Int J Mol Sci 2023; 24:12302. [PMID: 37569677 PMCID: PMC10418647 DOI: 10.3390/ijms241512302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Tania Araujo-Ramos
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Patel R, Fu Y, Khang S, Benardeau AM, Thomson SC, Vallon V. Responses in Blood Pressure and Kidney Function to Soluble Guanylyl Cyclase Stimulation or Activation in Normal and Diabetic Rats. Nephron Clin Pract 2022; 147:281-300. [PMID: 36265461 PMCID: PMC10115913 DOI: 10.1159/000526934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Agonists of soluble guanylate cyclase (sGC) are being developed as treatment for cardiovascular disease. Most effects of nitric oxide (NO) on glomerular and tubular function are mediated through sGC but whether sGC agonists mimic these effects is unknown. Methods: Renal clearance and micropuncture studies were performed in Wistar-Froemter rats (WF), with or without streptozotocin diabetes (STZ-WF), and in Goto-Kakizaki rats (GK) with mild type-2 diabetes to test for acute effects of the sGC “stimulator” BAY 41-2272, which synergizes with endogenous NO, and the “activator” runcaciguat, which generates cGMP independent of NO. Results: Both sGC agonists reduced arterial blood pressure (MAP). For MAP reductions <10% the drugs increased GFR in WF and STZ-WF but not in GK. Larger MAP reductions outweighed this effect and GFR declined, with better preserved GFR in STZ-WF. Changes in GFR could not be accounted for by changes in RBF, suggesting parallel changes in ultrafiltration pressure and/or ultrafiltration coefficient. The doses chosen for micropuncture in WF and GK reduced MAP by 2–10% and the net effect on single nephron GFR and ultrafiltration pressure was neutral. Effects of the drugs on tubular reabsorption were dominated by declining MAP and no natriuretic effect observed at any dose. Discussion/Conclusion: sGC agonists impact kidney function directly and because they reduce MAP. The direct tendency to increase GFR is most apparent for MAP reductions <10%. The direct effect is otherwise subtle and overridden when MAP declines more. Effects of sGC agonists on tubular reabsorption are dominated by effects on MAP.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Yiling Fu
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Ser Khang
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | | | - Scott C. Thomson
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| |
Collapse
|
7
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
8
|
Zhou J, Zhou H, Liu Y, Liu C. Inhibition of CTCF-regulated miRNA-185-5p mitigates renal interstitial fibrosis of chronic kidney disease. Epigenomics 2021; 13:859-873. [PMID: 33977784 DOI: 10.2217/epi-2020-0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: The present study aimed to elucidate the effect of CTCF on renal interstitial fibrosis in chronic kidney disease (CKD) and underlying mechanisms. Materials & methods: We measured NPHS2 expression and investigated its function in a unilateral ureteral obstruction-induced mouse model of CKD. Results: NPHS2 was poorly expressed in CKD mice. miR-185-5p targeted NPHS2 and reduced its expression, leading to increased α-SMA and COL I/III expression, increased renal interstitial fibrosis area and elevated phosphorylated vasodilator-stimulated phosphoprotein/vasodilator-stimulated phosphoprotein ratio. Co-treatment with CTCF downregulated miR-185-5p expression and abolished its effects in the CKD model. Conclusion: CTCF suppressed miR-185-5p and upregulated its target NPHS2, with a net effect of alleviating renal interstitial fibrosis in CKD.
Collapse
Affiliation(s)
- Jiajun Zhou
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Han Zhou
- Queen Mary College of Nanchang University, Nanchang 330031, PR China
| | - Yong Liu
- Kidney Department, Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Caixin Liu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| |
Collapse
|
9
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Harloff M, Prüschenk S, Seifert R, Schlossmann J. Activation of soluble guanylyl cyclase signalling with cinaciguat improves impaired kidney function in diabetic mice. Br J Pharmacol 2021; 179:2460-2475. [PMID: 33651375 DOI: 10.1111/bph.15425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy is the leading cause for end-stage renal disease worldwide. Until now, there is no specific therapy available. Standard treatment with inhibitors of the renin-angiotensin system just slows down progression. However, targeting the NO/sGC/cGMP pathway using sGC activators does prevent kidney damage. Thus, we investigated if the sGC activator cinaciguat was beneficial in a mouse model of diabetic nephropathy, and we analysed how mesangial cells (MCs) were affected by related conditions in cell culture. EXPERIMENTAL APPROACH Type 1 diabetes was induced with streptozotocin in wild-type and endothelial NOS knockout (eNOS KO) mice for 8 or 12 weeks.. Half of these mice received cinaciguat in their chow for the last 4 weeks. Kidneys from the diabetic mice were analysed with histochemical assays and by RT-PCR and western blotting. . Additionally, primary murine MCs under diabetic conditions were stimulated with 8-Br-cGMP or cinaciguat to activate the sGC/cGMP pathway. KEY RESULTS The diabetic eNOS KO mice developed most characteristics of diabetic nephropathy, most marked at 12 weeks. Treatment with cinaciguat markedly improved GFR, serum creatinine, mesangial expansion and kidney fibrosis in these animals. We determined expression levels of related signalling proteins. Thrombospondin 1, a key mediator in kidney diseases, was strongly up-regulated under diabetic conditions and this increase was suppressed by activation of sGC/cGMP signalling. CONCLUSION AND IMPLICATIONS Activation of the NO/sGC/PKG pathway with cinaciguat was beneficial in a model of diabetic nephropathy. Activators of sGC might be an appropriate therapy option in patients with Type 1 diabetes.
Collapse
Affiliation(s)
- Manuela Harloff
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Sally Prüschenk
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.,Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jens Schlossmann
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Hanrahan JP, de Boer IH, Bakris GL, Wilson PJ, Wakefield JD, Seferovic JP, Chickering JG, Chien YT, Carlson K, Cressman MD, Currie MG, Milne GT, Profy AT. Effects of the Soluble Guanylate Cyclase Stimulator Praliciguat in Diabetic Kidney Disease: A Randomized Placebo-Controlled Clinical Trial. Clin J Am Soc Nephrol 2021; 16:59-69. [PMID: 33328269 PMCID: PMC7792638 DOI: 10.2215/cjn.08410520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Impaired nitric oxide signaling through soluble guanylate cyclase has been implicated in the pathophysiology of diabetic kidney disease. Praliciguat, a soluble guanylate cyclase stimulator that amplifies nitric oxide signaling, inhibited kidney inflammation and fibrosis in animal models. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In a phase 2 trial, 156 adults with type 2 diabetes, eGFR 30-75 ml/min per 1.73 m2, and urine albumin-creatinine ratio 200-5000 mg/g treated with renin-angiotensin system inhibitors were randomly allocated 1:1:1 to placebo, 20 mg praliciguat, or 40 mg praliciguat daily for 12 weeks. The primary efficacy and safety outcomes were change from baseline to weeks 8 and 12 in urine albumin-creatinine ratio and treatment-emergent adverse events, respectively. Other outcomes assessed were 24-hour ambulatory BP and metabolic parameters. RESULTS Of 156 participants randomized, 140 (90%) completed the study. The primary efficacy analysis demonstrated a mean change from baseline in urine albumin-creatinine ratio of -28% (90% confidence interval, -36 to -18) in the pooled praliciguat group and -15% (-28 to 0.4) in the placebo group (difference -15%; -31 to 4; P=0.17). Between-group decreases from baseline to week 12 for praliciguat versus placebo were seen in mean 24-hour systolic BP (-4 mm Hg; -8 to -1), hemoglobin A1c (-0.3%; -0.5 to -0.03), and serum cholesterol (-10 mg/dl; -19 to -1). The incidence of treatment-emergent adverse events was similar in the pooled praliciguat and placebo groups (42% and 44%, respectively). Serious adverse events, events leading to study drug discontinuation, and events potentially related to BP lowering were reported at higher frequency in the 40-mg group but were similar in 20-mg and placebo groups. CONCLUSIONS Praliciguat treatment for 12 weeks did not significantly reduce albuminuria compared with placebo in the primary efficacy analysis. Nonetheless, the observed changes in urine albumin-creatinine ratio, BP, and metabolic variables may support further investigation of praliciguat in diabetic kidney disease. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER A Study to Evaluate the Soluble Guanylate Cyclase (sGC) Stimulator IW-1973 in Diabetic Nephropathy/Diabetic Kidney Disease as Measured by Albuminuria, NCT03217591.
Collapse
Affiliation(s)
| | - Ian H. de Boer
- Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington
| | - George L. Bakris
- Department of Medicine, Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | | | | - G. Todd Milne
- Cyclerion Therapeutics, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
13
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
14
|
Friebe A, Englert N. NO-sensitive guanylyl cyclase in the lung. Br J Pharmacol 2020; 179:2328-2343. [PMID: 33332689 DOI: 10.1111/bph.15345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
In the late 1960s, several labatories identified guanylyl cyclase (GC) as the cGMP-producing enzyme. Subsequently, two different types of GC were described that differed in their cellular localization. Primarily found in the cytosol, nitric oxide (NO)-sensitive guanylyl cyclase (NO-GC) acts as receptor for the signalling molecule NO, in contrast the membrane-bound isoenzyme is activated by natriuretic peptides. The lung compared with other tissues exhibits the highest expression of NO-GC. The enzyme has been purified from lung for biochemical analysis. Although expressed in smooth muscle cells (SMCs) and in pericytes, the function of NO-GC in lung, especially in pericytes, is still not fully elucidated. However, pharmacological compounds that target NO-GC are available and have been implemented for the therapy of pulmonary arterial hypertension. In addition, NO-GC has been suggested as drug target for the therapy of asthma, acute respiratory distress syndrome and pulmonary fibrosis.
Collapse
Affiliation(s)
- Andreas Friebe
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Nils Englert
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Brusilovskaya K, Königshofer P, Lampach D, Szodl A, Supper P, Bauer D, Beer A, Stift J, Timelthaler G, Oberhuber G, Podesser BK, Seif M, Zinober K, Rohr-Udilova N, Trauner M, Reiberger T, Schwabl P. Soluble guanylyl cyclase stimulation and phosphodiesterase-5 inhibition improve portal hypertension and reduce liver fibrosis in bile duct-ligated rats. United European Gastroenterol J 2020; 8:1174-1185. [PMID: 32878579 PMCID: PMC7724531 DOI: 10.1177/2050640620944140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In cirrhosis, the nitric oxide-soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway is impaired, which contributes to increased intrahepatic vascular resistance (IHVR) and fibrogenesis. We investigated if sGC stimulation (riociguat (RIO)), sGC activation (cinaciguat (CINA)) or phosphodiesterase (PDE)-5 inhibition (tadalafil (TADA)) improves portal hypertension (PHT) and liver fibrosis. METHODS Fifty male Sprague-Dawley rats underwent bile-duct ligation (BDL) or sham operation. RIO (0.5 mg/kg), CINA (1 mg/kg), TADA (1.5 mg/kg) or vehicle (VEH) was administered from weeks 2 to 4 after BDL. At week 4, invasive haemodynamic measurements were performed, and liver fibrosis was assessed by histology (chromotrope-aniline blue (CAB), Picro-Sirius red (PSR)) and hepatic hydroxyproline content. RESULTS Cirrhotic bile duct-ligated rats presented with PHT (13.1 ± 1.0 mmHg) and increased IHVR (4.9 ± 0.5 mmHg⋅min/mL). Both RIO (10.0 ± 0.7 mmHg, p = 0.021) and TADA (10.3 ± 0.9 mmHg, p = 0.050) decreased portal pressure by reducing IHVR (RIO: -41%, p = 0.005; TADA: -21%, p = 0.199) while not impacting heart rate, mean arterial pressure and portosystemic shunting. Hepatic cGMP levels increased upon RIO (+239%, p = 0.006) and TADA (+32%, p = 0.073) therapy. In contrast, CINA dosed at 1 mg/kg caused weight loss, arterial hypotension and hyperlactataemia in bile duct-ligated rats. Liver fibrosis area was significantly decreased by RIO (CAB: -48%, p = 0.011; PSR: -27%, p = 0.121) and TADA (CAB: -21%, p = 0.342; PSR: -52%, p = 0.013) compared to VEH-treated bile duct-ligated rats. Hepatic hydroxyproline content was reduced by RIO (from 503 ± 20 to 350 ± 30 µg/g, p = 0.003) and TADA (282 ± 50 µg/g, p = 0.003), in line with a reduction of the hepatic stellate cell activation markers smooth-muscle actin and phosphorylated moesin. Liver transaminases decreased under RIO (AST: -36%; ALT: -32%) and TADA (AST: -24%; ALT: -27%) treatment. Hepatic interleukin 6 gene expression was reduced in the RIO group (-56%, p = 0.053). CONCLUSION In a rodent model of biliary cirrhosis, the sGC stimulator RIO and the PDE-5 inhibitor TADA improved PHT. The decrease of sinusoidal vascular resistance was paralleled by a reduction in liver fibrosis and hepatic inflammation, while systemic haemodynamics were not affected.
Collapse
Affiliation(s)
- Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| | - Daniel Lampach
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
| | - Adrian Szodl
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
| | - Paul Supper
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Andrea Beer
- Department of Pathology, Medical University of Vienna, Vienna,
Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna,
Austria
| | - Gerald Timelthaler
- The Institute of Cancer Research, Department of Medicine I,
Medical University of Vienna, Vienna, Austria
| | | | - Bruno Karl Podesser
- Center for Biomedical Research, Medical University of Vienna,
Vienna, Austria
| | - Martha Seif
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Kerstin Zinober
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| |
Collapse
|
16
|
Bragina ME, Costa-Fraga F, Sturny M, Ebadi B, Ruoccolo RT, Santos RAS, Fraga-Silva RA, Stergiopulos N. Characterization of the Renin-Angiotensin System in Aged Cavernosal Tissue and its Role in Penile Fibrosis. J Sex Med 2020; 17:2129-2140. [PMID: 32943375 DOI: 10.1016/j.jsxm.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The renin-angiotensin system (RAS) plays an important role in erectile function. The RAS contains 2 major axes: one deleterious, composed of ACE-Ang II-AT1 receptor, and another protective, composed of ACE2-Ang-(1-7)-Mas receptor. While aging is a well-known cause for development of male sexual disorders, little is known about local regulation of the RAS in age-related erectile dysfunction (ED). AIM The present study aimed to assess regulation of the RAS in aging-associated ED rat model and evaluate possible options for disease management through pharmacological modulation of the RAS. METHODS Penile tissues were harvested from 3-, 12-, and 24-month-old Wistar rats. Local expression of major RAS components and ED markers was measured by RT-PCR. Protein expression of RAS components was assessed by western blot. Collagen deposition was measured by Sirius Red and immunohistochemical staining. Evaluation of collagen content was also performed in penile sections of Mas-knockout mice by Sirius Red and Masson's trichrome stainings. Finally, the effect of Ang-(1-7) pretreatment on TGF-β-induced myofibroblast activation was studied in primary cavernosal and immortalized fibroblasts. OUTCOMES Experimental results highlighted the essential role of the RAS in modulation of cavernosal fibrosis. RESULTS The present study demonstrates local expression of angiotensinogen mRNA alongside with major RAS components, which suggests local autonomous functioning of the RAS within penile tissue. Gene expression analysis revealed strong positive correlation between ACE-Ang II-AT1 axis with markers for inflammation and fibrosis. While corpus cavernosum from 24-month-old rats was characterized by increased collagen deposition, protein expression of ACE, AT1, and Mas was shown to be upregulated in the penile tissue of this group. At the same time, penile sections from Mas-knockout mice (FVB/N background) were also shown to have increased collagen deposition. Finally, it was demonstrated that Ang-(1-7) treatment of primary cavernosal and immortalized fibroblasts was able to alleviate TGF-β-induced fibroblast-to-myofibroblast transition. CLINICAL TRANSLATION The present study suggests Ang-(1-7) treatment as a possible strategy for pharmacological management of fibrosis-associated ED in aging. STRENGTHS & LIMITATIONS The link between the RAS and penile fibrosis, indicated by a holistic screening of different ED markers, was confirmed by in vivo and in vitro data. However, results, presented in the manuscript, need to be further reinforced by human data. Important to note, the main goal of the study was to characterize RAS regulation in aging condition rather than state any causal relationships. CONCLUSION Present study characterizes RAS regulation in aging-associated ED and indicates its important role in cavernosal fibrosis. Bragina ME, Costa-Fraga F, Sturny M, et al. Characterization of the Renin-Angiotensin System in Aged Cavernosal Tissue and its Role in Penile Fibrosis. J Sex Med 2020;17:2129-2140.
Collapse
Affiliation(s)
- Maiia E Bragina
- Laboratory of Hemodynamics and Cardiovascular Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Fabiana Costa-Fraga
- Laboratory of Hemodynamics and Cardiovascular Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Mikaël Sturny
- Laboratory of Hemodynamics and Cardiovascular Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Babak Ebadi
- Laboratory of Hemodynamics and Cardiovascular Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Rafael T Ruoccolo
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo A Fraga-Silva
- Laboratory of Hemodynamics and Cardiovascular Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Das S, Neelamegam K, Peters WN, Periyasamy R, Pandey KN. Depletion of cyclic-GMP levels and inhibition of cGMP-dependent protein kinase activate p21 Cip1 /p27 Kip1 pathways and lead to renal fibrosis and dysfunction. FASEB J 2020; 34:11925-11943. [PMID: 32686172 PMCID: PMC7540536 DOI: 10.1096/fj.202000754r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Cell-cycle regulatory proteins (p21Cip1 /p27Kip1 ) inhibit cyclin and cyclin-dependent kinase (CDK) complex that promotes fibrosis and hypertrophy. The present study examined the role of CDK blockers, p21Cip1 /p27Kip1 in the progression of renal fibrosis and dysfunction using Npr1 (encoding guanylyl cyclase/natriuretic peptide receptor-A, GC-A/NPRA) gene-knockout (0-copy; Npr1-/- ), 2-copy (Npr1+/+ ), and 4-copy (Npr1++/++ ) mice treated with GC inhibitor, A71915 and cGMP-dependent protein kinase (cGK) inhibitor, (Rp-8-Br-cGMPS). A significant decrease in renal cGMP levels and cGK activity was observed in 0-copy mice and A71915- and Rp-treated 2-copy and 4-copy mice compared with controls. An increased phosphorylation of Erk1/2, p38, p21Cip1 , and p27Kip1 occurred in 0-copy and A71915-treated 2-copy and 4-copy mice, while Rp treatment caused minimal changes than controls. Pro-inflammatory (TNF-α, IL-6) and pro-fibrotic (TGF-β1) cytokines were significantly increased in plasma and kidneys of 0-copy and A71915-treated 2-copy mice, but to lesser extent in 4-copy mice. Progressive renal pathologies, including fibrosis, mesangial matrix expansion, and tubular hypertrophy were observed in 0-copy and A71915-treated 2-copy and 4-copy mice, but minimally occurred in Rp-treated mice compared with controls. These results indicate that Npr1 has pivotal roles in inhibiting renal fibrosis and hypertrophy and exerts protective effects involving cGMP/cGK axis by repressing CDK blockers p21Cip1 and p27Kip1 .
Collapse
Affiliation(s)
- Subhankar Das
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kandasamy Neelamegam
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Whitney N Peters
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Ramu Periyasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| |
Collapse
|
18
|
Wang C, Pinar AA, Widdop RE, Hossain MA, Bathgate RAD, Denton KM, Kemp-Harper BK, Samuel CS. The anti-fibrotic actions of relaxin are mediated through AT 2 R-associated protein phosphatases via RXFP1-AT 2 R functional crosstalk in human cardiac myofibroblasts. FASEB J 2020; 34:8217-8233. [PMID: 32297670 DOI: 10.1096/fj.201902506r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Fibrosis is a hallmark of several cardiovascular diseases. The relaxin family peptide receptor 1 (RXFP1) agonist, relaxin, has rapidly occurring anti-fibrotic actions which are mediated through RXFP1 and angiotensin II receptor crosstalk on renal and cardiac myofibroblasts. Here, we investigated whether this would allow relaxin to indirectly activate angiotensin II type 2 receptor (AT2 R)-specific signal transduction in primary human cardiac myofibroblasts (HCMFs). The anti-fibrotic effects of recombinant human relaxin (RLX; 16.8 nM) or the AT2 R-agonist, Compound 21 (C21; 1 μM), were evaluated in TGF-β1-stimulated HCMFs, in the absence or presence of an RXFP1 antagonist (1 μM) or AT2 R antagonist (0.1 μM) to confirm RXFP1-AT2 R crosstalk. Competition binding for RXFP1 was determined. Western blotting was performed to determine which AT2 R-specific protein phosphatases were expressed by HCMFs; then, the anti-fibrotic effects of RLX and/or C21 were evaluated in the absence or presence of pharmacological inhibition (NSC95397 (1 μM) for MKP-1; okadaic acid (10 nM) for PP2A) or siRNA-knockdown of these phosphatases after 72 hours. The RLX- or C21-induced increase in ERK1/2 and nNOS phosphorylation, and decrease in α-SMA (myofibroblast differentiation) and collagen-I expression by HCMFs was abrogated by pharmacological blockade of RXFP1 or the AT2 R, confirming RXFP1-AT2 R crosstalk in these cells. HCMFs were found to express AT2 R-dependent MKP-1 and PP2A phosphatases, while pharmacological blockade or siRNA-knockdown of either phosphatase also abolished RLX and/or C21 signal transduction in HCMFs (all P < .05 vs RLX or C21 alone). These findings demonstrated that RLX can indirectly activate AT2 R-dependent phosphatase activity in HCMFs by signaling through RXFP1-AT2 R crosstalk, which have important therapeutic implications for its anti-fibrotic actions.
Collapse
Affiliation(s)
- Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Mohammed A Hossain
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
20
|
Chu S, Zhang X, Sun Y, Liang Y, Sun J, Lu M, Huang J, Jiang M, Ma L. Atrial natriuretic peptide inhibits epithelial-mesenchymal transition (EMT) of bronchial epithelial cells through cGMP/PKG signaling by targeting Smad3 in a murine model of allergic asthma. Exp Lung Res 2019; 45:245-254. [PMID: 31496319 DOI: 10.1080/01902148.2019.1660734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Atrial natriuretic peptide (ANP) inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) in human airway cells. We aim to explore the role and mechanism of ANP on EMT of bronchial epithelial cells from murine model of allergic asthma in vitro. Methods: Murine model of allergic asthma was established with BALB/c mice using ovalbumin (OVA). Bronchial epithelial cells were isolated from OVA-exposed mice, and then were cocultured with TGF-β1, ANP, natriuretic peptide receptor A antagonist, cGMP analog, cGMP inhibitor or/and protein kinase G (PKG) inhibitor, respectively. We assessed expressions of E-Cadherin, α-SMA, cGMP, Smad3 and p-Smad3 in the murine cells before and after Smad3 silence. Results: Compared with bronchial epithelial cells from controls and OVA-exposed mice without additional stimulation, the mRNA and protein expressions of E-Cadherin were decreased but α-SMA expressions were increased in cells with TGF-β1 stimulation from OVA-exposed mice in vitro. That could be reversed by ANP. The effect of ANP could be mimicked by the cGMP analog, which could be reversed by cGMP or PKG inhibitor. Moreover, the phosphorylated Smad3 expression was consistent with that of α-SMA. When Smad3 was silenced, Smad3 was mostly expressed in cytoplasm. In contrast, it is mostly expressed in nucleus of non-silenced cells during EMT. Conclusions: In a murine model of allergic asthma, ANP could inhibit TGF-β1-induced EMT of bronchial epithelial cells through cGMP/PKG signaling, targeting TGF-β1/Smad3 via attenuating phosphorylation of Smad3 in vitro, which may provide potential of ANP in treating allergic asthma with airway remodeling.
Collapse
Affiliation(s)
- Shuyuan Chu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University , Haikou , Hainan , China
| | - Yabing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Yaxi Liang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Jingyi Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Minyan Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Jianwei Huang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Ming Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University , Guilin , Guangxi , China.,Institute of Respiratory Diseases, Guilin Medical University , Guilin , Guangxi , China.,Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region , Guilin , Guangxi , China
| |
Collapse
|
21
|
Ng HH, Shen M, Samuel CS, Schlossmann J, Bennett RG. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Mol Cell Endocrinol 2019; 487:59-65. [PMID: 30660699 PMCID: PMC7384500 DOI: 10.1016/j.mce.2019.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is associated with accumulation of excess fibrillar collagen, leading to tissue dysfunction. Numerous processes, including inflammation, myofibroblast activation, and endothelial-to-mesenchymal transition, play a role in the establishment and progression of fibrosis. Relaxin is a peptide hormone with well-known antifibrotic properties that result from its action on numerous cellular targets to reduce fibrosis. Relaxin activates multiple signal transduction pathways as a mechanism to suppress inflammation and myofibroblast activation in fibrosis. In this review, the general mechanisms underlying fibrotic diseases are described, along with the current state of knowledge regarding cellular targets of relaxin. Finally, an overview is presented summarizing the signaling pathways activated by relaxin and other relaxin family peptide receptor agonists to suppress fibrosis.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Matthew Shen
- Cardiovascular Disease Theme, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Theme, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, Australia.
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Regensburg, Germany.
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
22
|
Muraki Y, Naito T, Tohyama K, Shibata S, Kuniyeda K, Nio Y, Hazama M, Matsuo T. Improvement of pulmonary arterial hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of monocrotaline-induced pulmonary hypertension. Biosci Biotechnol Biochem 2019; 83:1000-1010. [PMID: 30835622 DOI: 10.1080/09168451.2019.1584520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening lung disease. PH with concomitant lung diseases, e.g., idiopathic pulmonary fibrosis, is associated with poor prognosis. Development of novel therapeutic vasodilators for treatment of these patients is a key imperative. We evaluated the efficacy of dual activation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) using an active, small-molecule phosphodiesterase (PDE4)/PDE5 dual inhibitor (Compound A). Compound A increased both cAMP and cGMP levels in WI-38 lung fibroblasts and suppressed the expressions of type-1 collagen α1 chain and fibronectin. Additionally, compound A reduced right ventricular weight/left ventricular weight+septal weight ratio, brain natriuretic peptide expression levels in right ventricle, C─C motif chemokine ligand 2 expression levels in lung, and plasma surfactant protein D. Our data indicate that dual activation of cAMP/cGMP pathways may be a novel treatment strategy for PH.
Collapse
Affiliation(s)
- Yo Muraki
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Takako Naito
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Kimio Tohyama
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Sachio Shibata
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Kanako Kuniyeda
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Yasunori Nio
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Masatoshi Hazama
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Takanori Matsuo
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| |
Collapse
|
23
|
Xianyuan L, Wei Z, Yaqian D, Dan Z, Xueli T, Zhanglu D, Guanyi L, Lan T, Menghua L. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:274-285. [PMID: 30668407 DOI: 10.1016/j.phymed.2018.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Renal fibrosis is the most common pathway leading to end-stage renal disease. It is characterized by excess extracellular matrix (ECM) accumulation and renal tissue damage, subsequently leading to kidney failure. Asperulosidic acid (ASPA), a bioactive iridoid glycoside, exerts anti-tumor, anti-oxidant, and anti-inflammatory activities, but its effects on renal fibrosis induced by unilateral ureteral obstruction (UUO) have not yet been investigated. PURPOSE This study aimed to investigate the protective effect of ASPA on renal fibrosis induced by UUO, and to explore its pharmacological mechanism. METHODS Thirty-six Sprague-Dawley (SD) rats were randomly divided into six groups: sham group, UUO model group, three ASPA treatment groups (10, 20, and 40 mg/kg), and captopril group (20 mg/kg). Rats were administered vehicle, ASPA or captopril intraperitoneally once a day for 14 consecutive days. Urea nitrogen (BUN), uric acid (UA) and inflammatory factors in serum samples were evaluated on the 7th, 10th, and 14th day after renal fibrosis induction. In addition, the 12 h urine was collected to test the content of urinary protein (upro) on the 14th day. The obstructive renal tissues were collected for pathological analysis (hematoxylin and eosion (H&E) staining and Masson's Trichrome staining) and immunohistochemical analysis on the 14th day after renal fibrosis induction. The mRNA expression of related factors and the protein levels of smad2, smad3, and smad4 were measured in UUO-induced rats by real time PCR and Western blot, respectively. RESULTS The levels of BUN, UA, and upro were elevated in UUO-induced rats, but ASPA treatment improved renal function by reducing the levels of BUN, UA, and upro. The protein levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, as well as the mRNA levels of TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), were decreased after ASPA administration (10, 20 and 40 mg/kg) in a dose-dependent manner. The ASPA exerted an alleviation effect on the inflammatory response through inhibition of nuclear factor-kappa B (NF-κB) pathway. In addition, reductions in α-smooth muscle actin (α-SMA), collagen III, and fibronectin expression were observed after ASPA administration at doses of 20 and 40 mg/kg. Furthermore, the renal expression of transforming growth factor-β1 (TGF-β1), smad2, smad3, and smad4 was down-regulated by ASPA treatment at doses of 20 and 40 mg/kg. CONCLUSION ASPA possessed protective effects on renal interstitial fibrosis in UUO-induced rats. These effects may be through inhibition of the activation of NF-κB and TGF-β1/smad2/smad3 signaling pathways.
Collapse
Affiliation(s)
- Lu Xianyuan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zou Wei
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China.
| | - Dong Yaqian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhou Dan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Tong Xueli
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dong Zhanglu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang Guanyi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Tang Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liu Menghua
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
24
|
Soji K, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T. Deubiquitinase inhibitor PR-619 reduces Smad4 expression and suppresses renal fibrosis in mice with unilateral ureteral obstruction. PLoS One 2018; 13:e0202409. [PMID: 30114247 PMCID: PMC6095583 DOI: 10.1371/journal.pone.0202409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) remove ubiquitin from their substrates and, together with ubiquitin ligases, play an important role in the regulation of protein expression. Although transforming growth factor (TGF)-β1-Smad signaling is a central pathway of renal fibrosis, the role of DUBs in the expression of TGF-β receptors and Smads during the development of renal fibrosis remains unknown. In this study, we investigated whether PR-619, a pan-DUB inhibitor, suppresses fibrosis in mice with unilateral ureteral obstruction (UUO) and TGF-β1-stimulated normal rat kidney (NRK)-49F cells, a rat renal fibroblast cell line. Either the vehicle (dimethyl sulfoxide) or PR-619 (100 μg) was intraperitoneally administered to mice after UUO induction once a day for 7 days. Administration of PR-619 attenuated renal fibrosis with downregulation of mesenchymal markers, extracellular matrix proteins, matrix metalloproteinases, apoptosis, macrophage infiltration, and the TGF-β1 mRNA level in UUO mice. Although type I TGF-β receptor (TGF-βRI), Smad2, Smad3, and Smad4 protein expression levels were markedly increased in mice with UUO, administration of PR-619 suppressed only Smad4 expression but not TGF-βRI, Smad2, or Smad3 expression. PR-619 also had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and reduced Smad4 levels in NRK-49F cells. Our results indicate that PR-619 ameliorates renal fibrosis, which is accompanied by the reduction of Smad4 expression.
Collapse
Affiliation(s)
- Kotaro Soji
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
25
|
Hofmann F. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol 2018; 113:31. [PMID: 29934662 DOI: 10.1007/s00395-018-0690-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, Munich, Germany.
| |
Collapse
|
26
|
The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Int J Mol Sci 2018; 19:ijms19061712. [PMID: 29890734 PMCID: PMC6032334 DOI: 10.3390/ijms19061712] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.
Collapse
|
27
|
Mergia E, Thieme M, Hoch H, Daniil G, Hering L, Yakoub M, Scherbaum CR, Rump LC, Koesling D, Stegbauer J. Impact of the NO-Sensitive Guanylyl Cyclase 1 and 2 on Renal Blood Flow and Systemic Blood Pressure in Mice. Int J Mol Sci 2018; 19:ijms19040967. [PMID: 29570672 PMCID: PMC5979494 DOI: 10.3390/ijms19040967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S-nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.
Collapse
Affiliation(s)
- Evanthia Mergia
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Manuel Thieme
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Henning Hoch
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Georgios Daniil
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Mina Yakoub
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christina Rebecca Scherbaum
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Doris Koesling
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
28
|
Holland NA, Francisco JT, Johnson SC, Morgan JS, Dennis TJ, Gadireddy NR, Tulis DA. Cyclic Nucleotide-Directed Protein Kinases in Cardiovascular Inflammation and Growth. J Cardiovasc Dev Dis 2018; 5:E6. [PMID: 29367584 PMCID: PMC5872354 DOI: 10.3390/jcdd5010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease (CVD), including myocardial infarction (MI) and peripheral or coronary artery disease (PAD, CAD), remains the number one killer of individuals in the United States and worldwide, accounting for nearly 18 million (>30%) global deaths annually. Despite considerable basic science and clinical investigation aimed at identifying key etiologic components of and potential therapeutic targets for CVD, the number of individuals afflicted with these dreaded diseases continues to rise. Of the many biochemical, molecular, and cellular elements and processes characterized to date that have potential to control foundational facets of CVD, the multifaceted cyclic nucleotide pathways continue to be of primary basic science and clinical interest. Cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP) and their plethora of downstream protein kinase effectors serve ubiquitous roles not only in cardiovascular homeostasis but also in the pathogenesis of CVD. Already a major target for clinical pharmacotherapy for CVD as well as other pathologies, novel and potentially clinically appealing actions of cyclic nucleotides and their downstream targets are still being discovered. With this in mind, this review article focuses on our current state of knowledge of the cyclic nucleotide-driven serine (Ser)/threonine (Thr) protein kinases in CVD with particular emphasis on cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG). Attention is given to the regulatory interactions of these kinases with inflammatory components including interleukin 6 signals, with G protein-coupled receptor and growth factor signals, and with growth and synthetic transcriptional platforms underlying CVD pathogenesis. This article concludes with a brief discussion of potential future directions and highlights the importance for continued basic science and clinical study of cyclic nucleotide-directed protein kinases as emerging and crucial controllers of cardiac and vascular disease pathologies.
Collapse
Affiliation(s)
- Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Sean C Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Troy J Dennis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Nishitha R Gadireddy
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
29
|
Effect of Riociguat and Sildenafil on Right Heart Remodeling and Function in Pressure Overload Induced Model of Pulmonary Arterial Banding. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3293584. [PMID: 29511676 PMCID: PMC5817266 DOI: 10.1155/2018/3293584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/04/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and a rise in right ventricular (RV) afterload. The increased RV afterload leads to right ventricular failure (RVF) which is the reason for the high morbidity and mortality in PAH patients. The objective was to evaluate the therapeutic efficacy and antiremodeling potential of the phosphodiesterase type 5 (PDE5) inhibitor sildenafil and the soluble guanylate cyclase stimulator riociguat in a model of pressure overload RV hypertrophy induced by pulmonary artery banding (PAB). Mice subjected to PAB, one week after surgery, were treated with either sildenafil (100 mg/kg/d, n = 5), riociguat (30 mg/kg/d, n = 5), or vehicle (n = 5) for 14 days. RV function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometry. Both sildenafil and riociguat prevented the deterioration of RV function, as determined by a decrease in RV dilation and restoration of the RV ejection fraction (EF). Although both compounds did not decrease right heart mass and cellular hypertrophy, riociguat prevented RV fibrosis induced by PAB. Both compounds diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Treatment with either riociguat or sildenafil prevented the progression of pressure overload-induced RVF, representing a novel therapeutic approach.
Collapse
|