1
|
Qiu Y, Luo Y, Guo G, Meng J, Bao N, Jiang H. BMSCs-derived exosomes carrying miR-668-3p promote progression of osteoblasts in osteonecrosis of the femoral head: Expression of proteins CD63 and CD9. Int J Biol Macromol 2024; 280:136177. [PMID: 39357704 DOI: 10.1016/j.ijbiomac.2024.136177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, exosomes that are derived from bone marrow mesenchymal stem cells (BMSCs) have garnered considerable interest due to their significant roles in the processes of bone regeneration and repair. Among the various molecular components present within these exosomes, miR-668-3p has emerged as a pivotal microRNA that may be instrumental in modulating the function and proliferation of osteoblasts, the cells responsible for bone formation. The primary objective of this research was to examine the enhancing effects of BMSC-derived exosomes that are enriched with miR-668-3p on the advancement of osteoblasts in the context of osteonecrosis of the femoral head. Furthermore, the study aimed to analyze how the expression of specific exosomal proteins, namely CD63 and CD9, influences this biological process. To conduct the investigation, BMSCs were isolated from healthy rat models, followed by the extraction of their secreted exosomes. The subsequent phase of the study involved assessing the proliferation and differentiation of osteoblasts by introducing the exosomes enriched with miR-668-3p into an experimental setup representing osteonecrosis of the femoral head. The findings revealed that exosomes derived from BMSCs, which contained miR-668-3p, significantly enhanced the proliferation of osteoblasts as well as the expression of key osteogenic marker genes. Notably, the levels of CD63 and CD9 proteins were markedly increased in the treated groups, indicating that the mechanisms underlying this promotion might involve cell adhesion and the endocytic uptake of exosomes.
Collapse
Affiliation(s)
- Yang Qiu
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yibin Luo
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Guodong Guo
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jia Meng
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Nirong Bao
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Hui Jiang
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
2
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Huang K, Wang Q, Qu H, Hu X, Niu W, Hultgårdh-Nilsson A, Nilsson J, Liang C, Chen Y. Effect of acidosis on adipose-derived stem cell impairment and gene expression. Regen Ther 2024; 25:331-343. [PMID: 38333090 PMCID: PMC10850859 DOI: 10.1016/j.reth.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Based on disappointing results of stem cell-based application in clinical trials for patients with critical limb ischemia, we hypothesized that the acidic environment might be the key factor limiting cell survival and function. In the present study, we used microdialysis to determine presence of acidosis and metabolic imbalance in critical ischemia. Moreover, we explored the effect of extracellular acidosis on adipose-derived stem cells (ADSCs) at molecular and transcriptional level. Our data demonstrate that low pH negatively regulates cell proliferation and survival, also, it results in cell cycle arrest, mitochondrial dynamics disorder, DNA damage as well as the impairment of proangiogenic function in a pH-dependent manner. Further transcriptome profiling identified the pivotal signaling pathways and hub genes in response to acidosis. Collectively, these findings provide strong evidences for a critical role of acidosis in ADSCs impairment with ischemic condition and suggest treatments focus on tissue pH balance and acidosis-mediated hub genes may have therapeutic potential in stem cell-based application.
Collapse
Affiliation(s)
- Kun Huang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Qinqin Wang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Huilong Qu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, Netherlands
| | - Wenhao Niu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, 20502 Malmö, Sweden
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
| | - Yihong Chen
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, 200003 Shanghai, China
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
4
|
Zhang X, Li Z, Xu X, Liu Z, Hao Y, Yang F, Li X, Zhang N, Hou Y, Zhang X. Huogu injection protects against SONFH by promoting osteogenic differentiation of BMSCs and preventing osteoblast apoptosis. Cell Tissue Res 2024; 395:63-79. [PMID: 38040999 PMCID: PMC10774174 DOI: 10.1007/s00441-023-03846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
To investigate the effect and mechanism of Huogu injection (HG) on steroid-induced osteonecrosis of the femoral head (SONFH), we established a SONFH model in rabbits using horse serum and dexamethasone (DEX) and applied HG locally at the hip joint. We evaluated the therapeutic efficacy at 4 weeks using scanning electron microscopy (SEM), micro-CT, and qualitative histology including H&E, Masson's trichrome, ALP, and TUNEL staining. In vitro, we induced osteogenic differentiation of bone marrow stromal cells (BMSCs) and performed analysis on days 14 and 21 of cell differentiation. The findings, in vivo, including SEM, micro-CT, and H&E staining, showed that HG significantly maintained bone quality and trabecular number. ALP staining indicated that HG promoted the proliferation of bone cells. Moreover, the results of Masson's trichrome staining demonstrated the essential role of HG in collagen synthesis. Additionally, TUNEL staining revealed that HG reduced apoptosis. ALP and ARS staining in vitro confirmed that HG enhanced osteogenic differentiation and mineralization, consistent with the WB and qRT-PCR analysis. Furthermore, Annexin V-FITC/PI staining verified that HG inhibited osteoblast apoptosis, in agreement with the WB and qRT-PCR analyses. Furthermore, combined with the UPLC analysis, we found that naringin enhanced the osteogenic differentiation and accelerated the deposition of calcium phosphate. Salvianolic acid B protected osteoblasts derived from BMSCs against GCs-mediated apoptosis. Thus, this study not only reveals the mechanism of HG in promoting osteogenesis and anti-apoptosis of osteoblasts but also identifies the active-related components in HG, by which we provide the evidence for the application of HG in SONFH.
Collapse
Affiliation(s)
- Xin Zhang
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, 471002, Henan, China
| | - Ziyu Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, China
| | - Xilin Xu
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, China
| | - Zhao Liu
- The First Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yuanyuan Hao
- Shijiazhuang Yiling Pharmaceuticalco., ltd, Shijiazhuang, 050000, Hebei, China
| | - Fubiao Yang
- Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, China
| | - Xiaodong Li
- Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, China
| | - Ning Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, China
| | - Yunlong Hou
- Shijiazhuang Yiling Pharmaceuticalco., ltd, Shijiazhuang, 050000, Hebei, China.
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050000, Hebei, China.
| | - Xiaofeng Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
5
|
Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. As potential inhibitors of human glutathione reductase. J Biomol Struct Dyn 2023:1-20. [PMID: 38109166 DOI: 10.1080/07391102.2023.2294181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Cellular infections are central to the etiology of various diseases, notably cancer and malaria. Counteracting cellular oxidative stress via the inhibition of glutathione reductase (GR) has emerged as a promising therapeutic strategy. Houttuynia cordata, a medicinal plant known for its potent antioxidant properties, has been the focus of our investigation. In this study, we conducted comprehensive in silico analyses involving the phytochemical constituents of H. cordata to identify potential natural GR inhibitors. Our methodological approach encompassed multiple in silico techniques, including molecular docking, molecular dynamics simulations, MMPBSA analysis, and dynamic cross-correlation analysis. Out of 13 docked phytochemicals, Quercetin, Quercitrin, and Sesamin emerged as particularly noteworthy due to their exceptional binding affinities for GR. Notably, our investigation demonstrated that Quercetin and Sesamin exhibited promising outcomes compared to the well-established pharmaceutical agent N-acetylcysteine (NAC). Molecular dynamics analyses provided insights into the ability of these phytochemicals to induce structural compaction and stabilization of the GR protein, as evidenced by changes in radius of gyration and solvent-accessible surface area. Moreover, MMPBSA analysis highlighted the crucial roles of specific residues, namely Gly27, Gly28, Ser51, His52, and Val61, in mediating essential interactions with these phytochemicals. Furthermore, an assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) profiles underscored the favourable drug-like attributes of these phytochemicals. Thus, the current findings underscore the immense potential of Houttuynia cordata phytochemicals as potent antioxidants with the capacity to combat a spectrum of maladies, including malaria and cancer. This study not only unveils novel therapeutic avenues but also underscores the distinctive outcomes and paramount significance of harnessing H. cordata phytochemicals for their efficacious antioxidant properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
- CompObelisk, Mirzapur, India
| | - Arshad Khan
- CompObelisk, Mirzapur, India
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, India
| |
Collapse
|
6
|
Shen Y, Jiang B, Lu W, Luo B, Zhou Y, Qian G. Dexamethasone-induced mitochondrial ROS-mediated inhibition of AMPK activity facilitates osteoblast necroptosis. Toxicol Res (Camb) 2023; 12:922-929. [PMID: 37915480 PMCID: PMC10615823 DOI: 10.1093/toxres/tfad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023] Open
Abstract
Long-term or high-dose glucocorticoid use can lead to serious orthopedic complications, including femoral head necrosis. Both basic and clinical studies have shown that high doses dexamethasone (Dex) can directly induce osteoblasts death. This study investigated the mechanism underlying Dex induced osteoblast death. In this study, we showed that Dex induces osteoblast necroptosis, rather than apoptosis, through the inhibition of AMP-activated protein kinase (AMPK) activity. We also demonstrated that inactivation of AMPK-mediated necroptosis is through receptor-interacting protein kinase 3 (RIP3), but not RIP1. Furthermore, we found that Dex-induced necroptosis is dependent on mitochondrial reactive oxygen species (ROS) following with directly activation of RIP1 and inactivation of AMPK. These findings provide new insights into the mechanism of Dex-induced osteoblast death and may have implications for the development of new therapies for osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Wei Lu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Yuan Zhou
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| | - Guiying Qian
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Changshu, Jiangsu 215500, China
| |
Collapse
|
7
|
Huovinen J, Palosaari S, Pesonen P, Huhtakangas JA, Lehenkari P. 1,25(OH) 2D 3 and its analogue calcipotriol inhibit the migration of human synovial and mesenchymal stromal cells in a wound healing model - A comparison with glucocorticoids. J Steroid Biochem Mol Biol 2023; 233:106373. [PMID: 37558005 DOI: 10.1016/j.jsbmb.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Vitamin D analogue calcipotriol is currently used in the local treatment of psoriasis. However, it also has antiproliferative and anti-inflammatory effects in the cells of the joint - suggesting a possible benefit in local treatment of arthritis. In this study, calcipotriol was studied in different in vitro methods to find out its effect on synovial and mesenchymal stromal cells. Primary human cell lines of osteoarthritis or rheumatoid arthritis patients (five mesenchymal stromal cells, MSC, and four synovial stromal cells, SSC) were cultured to study migration and proliferation of the cells in a wound healing model. The media was supplemented with calcipotriol, 1,25(OH)2D3, dexamethasone, betamethasone, methylprednisolone or control solution in 1-100 nM concentrations. To see possible toxic effects of calcipotriol, concentrations up to 10 µM in SSCs and MSCs were studied in apoptosis and necrosis assays in four cell lines. Calcipotriol and 1,25(OH)2D3, as well as the three glucocorticoids, reduced the migration of both SSCs and MSCs. In SSCs, the effect of calcipotriol and 1,25(OH)2D3 was at least as effective as with glucocorticoids, while with MSCs, the glucocorticoids were stronger inhibitors of migration. The antimigratory of calcipotriol and 1,25(OH)2D3 was consistently maintained in 10 µM and 1 µM. Calcipotriol was not toxic to MSCs and SSCs up to concentrations of 10 µM. Calcipotriol, as well as 1,25(OH)2D3, exerts antimigratory and antiproliferative effects on human SSCs and MSCs of the joint. These effects are not caused by apoptosis or necrosis. Both calcipotriol and 1,25(OH)2D3 have similar effects as glucocorticoids without apparent toxicity, suggesting that calcipotriol might be an eligible candidate to the local treatment of arthritis with a broad therapeutic window.
Collapse
Affiliation(s)
- Jere Huovinen
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland.
| | - Sanna Palosaari
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland
| | - Paula Pesonen
- Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Johanna A Huhtakangas
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland; Kuopio University Hospital, Division of Rheumatology, KYS, BOX 100, 70029 Kuopio, Finland
| | - Petri Lehenkari
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland; Division of Operative Care, Oulu University Hospital and University of Oulu, Finland
| |
Collapse
|
8
|
Liu Q, Wu Y, Li S, Yoon S, Zhang J, Wang X, Hu L, Su C, Zhang C, Wu Y. Ursolic acid alleviates steroid-induced avascular necrosis of the femoral head in mouse by inhibiting apoptosis and rescuing osteogenic differentiation. Toxicol Appl Pharmacol 2023; 475:116649. [PMID: 37536651 DOI: 10.1016/j.taap.2023.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear. Nevertheless, Osteogenic dysfunction is considered to be one of the crucial pathobiological mechanisms in the development of SANFH, which involves mouse bone marrow mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation disorder. Ursolic acid (UA), an important component of the Chinese medicine formula Yougui Yin, has a wide range of pharmacological properties such as anti-tumor, anti-inflammatory and bone remodeling. Due to the positive effect of Yougui Yin on bone remodeling, the purpose of this study was to investigate the effects of UA on dexamethasone (DEX)-induced SANFH in vitro and vivo. In vitro, we demonstrated that UA can promote mouse BMSCs proliferation and resist DEX-induced apoptosis by CCK8, Western blotting, TUNEL and so on. In addition, vitro experiments such as ALP and Alizarin red staining assay showed that UA had a beneficial effect on the osteogenic differentiation of mouse BMSCs. In vivo, the results of H&E staining, immunohistochemistry staining, Elisa and micro-CT analysis showed that UA had a bone repair-promoting effect in SANFH model. Moreover, the results of Western blot and TUNEL experiments showed that UA could delay the disease progression of SANFH in mice by inhibiting apoptosis. Overall, our study suggests that UA is a potential compound for the treatment of SANFH.
Collapse
Affiliation(s)
- Qian Liu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyang Wu
- School of the 1st Clinical Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sisi Li
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiaxin Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyi Wang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoshuang Hu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenying Su
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunwu Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yungang Wu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Liu X, Xie Y, Gao W, Zhan L, Hu L, Zuo L, Li Y. Experimental study of dexamethasone-loaded hollow hydroxyapatite microspheres applied to direct pulp capping of rat molars. Front Endocrinol (Lausanne) 2023; 14:1192420. [PMID: 37600685 PMCID: PMC10435764 DOI: 10.3389/fendo.2023.1192420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Dexamethasone (DEX) exerts anti-inflammatory and osteogenic effects. Hydroxyapatite is commonly used in bone repair due to its osteoconductivity, osseointegration, and osteogenesis induction. Hollow hydroxyapatite (HHAM) is often used as a drug carrier. Objective This study aimed to investigate the histological responses of exposed dental pulp when dexamethasone-loaded nanohydroxyapatite microspheres (DHHAM) were used as a direct capping agent. Methods Cavities were created in the left maxillary first molar of Wistar rats and filled with Dycal, HHAM, and DHHAM. No drug was administered to the control group. The rats were sacrificed at 1, 2, and 4 weeks after the procedure. The molars were extracted for fixation, demineralization, dehydration, embedding, and sectioning. H&E staining was performed to detect the formation of reparative dentin. H&E and CD45 immunohistochemical staining were performed to detect pulp inflammation. Immunohistochemical staining was performed to assess the expressions of dentin matrix protein 1 (DMP-1), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β. Results The results of H&E and CD45 immunohistochemical staining showed that the degree of inflammation in the DHHAM group was less than that in the Control and HHAM groups at 1, 2, and 4 weeks after capping of the rat molar teeth (p<0.01). The H&E staining showed that the percentage of reparative dentin formed in the DHHAM group was higher than that in the Control, HHAM (p<0.001), and Dycal groups (p<0.01) at 1 and 2 weeks, and was significantly higher than that in the Control group (p<0.001) and the HHAM group (p<0.01) at 4 weeks. The immunohistochemical staining showed a lower range and intensity of expression of IL-1β, IL-6, and TNF-α and high expression levels of DMP-1 in the DHHAM group at 1, 2, and 4 weeks after pulp capping relative to the Control group. Conclusions DHHAM significantly inhibited the progression of inflammation and promoted reparative dentin formation.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Weijia Gao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Luoning Zhan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Ling Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Linjing Zuo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Zhai ZH, Li J, You Z, Cai Y, Yang J, An J, Zhao DP, Wang HJ, Dou MM, Du R, Qin J. Feline umbilical cord-derived mesenchymal stem cells: isolation, identification, and antioxidative stress role through NF-κB signaling pathway. Front Vet Sci 2023; 10:1203012. [PMID: 37303730 PMCID: PMC10249476 DOI: 10.3389/fvets.2023.1203012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
At present, the differentiation potential and antioxidant activity of feline umbilical cord-derived mesenchymal stem cells (UC-MSCs) have not been clearly studied. In this study, feline UC-MSCs were isolated by tissue adhesion method, identified by flow cytometry detection of cell surface markers (CD44, CD90, CD34, and CD45), and induced differentiation toward osteogenesis and adipogenesis in vitro. Furthermore, the oxidative stress model was established with hydrogen peroxide (H2O2) (100 μM, 300 μM, 500 μM, 700 μM, and 900 μM). The antioxidant properties of feline UC-MSCs and feline fibroblasts were compared by morphological observation, ROS detection, cell viability via CCK-8 assay, as well as oxidative and antioxidative parameters via ELISA. The mRNA expression of genes related to NF-κB pathway was detected via quantitative real-time polymerase chain reaction, while the levels of NF-κB signaling cascade-related proteins were determined via Western Blot. The results showed that feline UC-MSCs highly expressed CD44 and CD90, while negative for CD34 and CD45 expression. Feline UC-MSCs cultured under osteogenic and adipogenic conditions showed good differentiation capacity. After being exposed to different concentrations of H2O2 for eight hours, feline UC-MSCs exhibited the significantly higher survival rate than feline fibroblasts. A certain concentration of H2O2 could up-regulate the activities of SOD2 and GSH-Px in feline UC-MSCs. The expression levels of p50, MnSOD, and FHC mRNA in feline UC-MSCs stimulated by 300 μM and 500 μM H2O2 significantly increased compared with the control group. Furthermore, it was observed that 500 μM H2O2 significantly enhanced the protein levels of p-IκB, IκB, p-p50, p50, MnSOD, and FHC, which could be reversed by BAY 11-7,082, a NF-κB signaling pathway inhibitor. In conclusion, it was confirmed that feline UC-MSCs, with good osteogenesis and adipogenesis abilities, had better antioxidant property which might be related to NF-κB signaling pathway. This study lays a foundation for the further application of feline UC-MSCs in treating the various inflammatory and oxidative injury diseases of pets.
Collapse
Affiliation(s)
- Zhu-Hui Zhai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhao You
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yang Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Yang
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Di-Peng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - He-Jie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min-Min Dou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
11
|
Curculigo orchioides polysaccharides extraction, characterization, and their protective effects against femoral head necrosis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Neufurth M, Wang S, Schröder HC, Al-Nawas B, Wang X, Müller WEG. 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink. Biofabrication 2021; 14. [PMID: 34852334 DOI: 10.1088/1758-5090/ac3f29] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing. Here a formulation of a bio-ink is described, which is enriched with polyphosphate (polyP), a metabolic energy providing physiological polymer. The bio-ink composed of a scaffold (N,O-carboxymethyl chitosan), a hydrogel (alginate) and a cell adhesion matrix (gelatin) as well as polyP substantially increases the viability and the migration propensity of mesenchymal stem cells (MSC). In addition, this ink stimulates not only the growth but also the differentiation of MSC to mineral depositing osteoblasts. Furthermore, the growth/aggregate pattern of MSC changes from isolated cells to globular spheres, if embedded in the polyP bio-ink. The morphogenetic activity of the MSC exposed to polyP in the bio-ink is corroborated by qRT-PCR data, which show a strong induction of the steady-state-expression of alkaline phosphatase, connected with a distinct increase in the expression ratio between RUNX2 and Sox2. We propose that polyP should become an essential component in bio-inks for the printing of cells that retain their regenerative activity.
Collapse
Affiliation(s)
- Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
13
|
Geniposide Ameliorated Dexamethasone-Induced Cholesterol Accumulation in Osteoblasts by Mediating the GLP-1R/ABCA1 Axis. Cells 2021; 10:cells10123424. [PMID: 34943934 PMCID: PMC8699812 DOI: 10.3390/cells10123424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Overexposure to glucocorticoid (GC) produces various clinical complications, including osteoporosis (OP), dyslipidemia, and hypercholesterolemia. Geniposide (GEN) is a natural iridoid compound isolated from Eucommia ulmoides. Our previous study found that GEN could alleviate dexamethasone (DEX)-induced differentiation inhibition of MC3T3-E1 cells. However, whether GEN protected against Dex-induced cholesterol accumulation in osteoblasts was still unclear. Methods: DEX was used to induce rat OP. Micro-CT data was obtained. The ALP activity and mineralization were determined by the staining assays, and the total intracellular cholesterol was determined by the ELISA kits. The protein expression was detected by western blot. Results: GEN ameliorated Dex-induced micro-structure damages and cell differentiation inhibition in the bone trabecula in rats. In MC3T3-E1 cells, Dex enhanced the total intracellular cholesterol, which reduced the activity of cell proliferation and differentiation. Effectively, GEN decreased DEX-induced cholesterol accumulation, enhanced cell differentiation, and upregulated the expression of the GLP-1R/ABCA1 axis. In addition, inhibition of ABAC1 expression reversed the actions of GEN. Treatment with Exendin9-39, a GLP-1R inhibitor, could abrogate the protective activity of GEN. Conclusions: GEN ameliorated Dex-induced accumulation of cholesterol and inhibition of cell differentiation by mediating the GLP-1R/ABCA1 axis in MC3T3-E1 cells.
Collapse
|
14
|
Chen L, Wang BZ, Xie J, Zhang RY, Jin C, Chen WK, Fang KH, Hong CX, Xu TH, Huang CB, Yang L, Weng SJ. Therapeutic effect of SIRT3 on glucocorticoid-induced osteonecrosis of the femoral head via intracellular oxidative suppression. Free Radic Biol Med 2021; 176:228-240. [PMID: 34260898 DOI: 10.1016/j.freeradbiomed.2021.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serious complication after long-term or excess administration of clinical glucocorticoids intervention, and the pathogenic mechanisms underlying have not been clarified yet. Oxidative stress is considered as a major cause of bone homeostasis disorder. This study is aimed to explore the potential relevance between SIRT3 and GIONFH, as well as the effect of resveratrol, which has been reported for its role in SIRT3 activation, on dexamethasone-induced oxidative stress and mitochondrial compromise in bone marrow stem cells (BMSCs). In this study, our data showed that SIRT3 level was declined in GIONFH rat femoral head, corresponding to a resultant decrease of SIRT3 expression in dexamethasone-treated BMSCs in vitro. We also found that dexamethasone could result in oxidative injury in BMSCs, and resveratrol treatment reduced this deleterious effect via a SIRT3-dependent manner. Moreover, our results demonstrated that rewarding effect of resveratrol on BMSCs osteogenic differentiation was via activation of AMPK/PGC-1α/SIRT3 axis. Meanwhile, resveratrol administration prevented the occurrence of GIONFH, enhanced SIRT3 expression and reduced oxidative level in GIONFH model rats. Therefore, our study provides basic evidence that SIRT3 may be a promising therapeutic target for GIONFH treatment and resveratrol could be an ideal agent for clinical uses.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Bing-Zhang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jun Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ri-Yan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chen Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Wei-Kai Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Kang-Hao Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Chen-Xuan Hong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tian-Hao Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Cheng-Bin Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China.
| | - She-Ji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Chauhan N, Gupta P, Arora L, Pal D, Singh Y. Dexamethasone-loaded, injectable pullulan-poly(ethylene glycol) hydrogels for bone tissue regeneration in chronic inflammatory conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112463. [PMID: 34702538 DOI: 10.1016/j.msec.2021.112463] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023]
Abstract
Chronic inflammation, infection, and fixation stability disrupts bone tissue regeneration by implants. The elevated levels of inflammatory markers and reactive oxygen species (ROS) damage tissues, inhibit osteoblastic differentiation, and promote bone resorption. Activation of local and chronic inflammatory responses due to the implantable biomaterial poses a high risk of implant failure and compromised bone repair in several pathological conditions. Not much progress has been made in the development of biomaterials that can counter inflammation and ROS along with inducing osteogenic activities for managing bone defects/injuries. We have developed, for the first time, injectable polymeric hydrogels by crosslinking oxidized pullulan (OP, 1% w/v) and 8-arm PEG hydrazine (PEG-HY, 10% w/v) using pH-sensitive and dynamic hydrazone linkages at 37 °C in buffer. The hydrogels were loaded with dexamethasone (Dex), an anti-inflammatory corticosteroid and osteogenic inducer, by covalently linking it to PEG-HY by hydrazone linkages, and their morphological, injectability, viscoelastic, self-healing, swelling, and drug-release properties were investigated. The hydrogels provided a pH-sensitive sustained release of PEG-Dex conjugate (3.62 wt%, 9.22 × 10-5 mol of Dex/gram) for 28 days, with 74.54 and 55.15% PEG-Dex conjugate being released at pH 6.5 and 7.4. ABTS assay showed that hydrogels inhibited 68% radicals within 1 h, and treatment with hydrogel releasates inhibited the pro-inflammatory markers, IL-6 and IL-1β, and elevated the anti-inflammatory marker, TGF-β, in murine osteoblast precursor cells (MC3T3-E1). The hydrogels were found suitable for cell encapsulation and they exhibited 110% viability on treatment with releasates. Finally, the osteogenic activities of hydrogels were ascertained by alkaline phosphatase (ALP) activities, alizarin red S staining, and osteogenic gene expressions- RUNX2, Col-I, OPN, and IBSP. Overall, PEG-Dex conjugate released from hydrogels improved the cell viability and proliferation, and induced the osteoblastic differentiation. The hydrogels with their promising antioxidant and anti-inflammatory properties along with the osteogenic activities show a strong potential as an injectable, extracellular matrix (ECM)-mimicking implantable drug-depot for bone repair applications in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Neelam Chauhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Priya Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Leena Arora
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
16
|
Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021; 10:1907-1931. [PMID: 34296386 PMCID: PMC8298044 DOI: 10.1007/s40121-021-00500-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the global healthcare community has raced to find effective therapeutic agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, dexamethasone is the first and an important therapeutic to significantly reduce the risk of death in COVID-19 patients with severe disease. Due to powerful anti-inflammatory and immunosuppressive effects, dexamethasone could attenuate SARS-CoV-2-induced uncontrolled cytokine storm, severe acute respiratory distress syndrome and lung injury. Nevertheless, dexamethasone treatment is a double-edged sword, as numerous studies have revealed that it has significant adverse impacts later in life. In this article, we reviewed the literature regarding the adverse effects of dexamethasone administration on different organ systems as well as related disease pathogenesis in an attempt to clarify the potential harms that may arise in COVID-19 patients receiving dexamethasone treatment. Overall, taking the threat of COVID19 pandemic into account, we think it is necessary to apply dexamethasone as a pharmaceutical therapy in critical patients. However, its adverse side effects cannot be ignored. Our review will help medical professionals in the prognosis and follow-up of patients treated with dexamethasone. In addition, given that a considerable amount of uncertainty, confusion and even controversy still exist, further studies and more clinical trials are urgently needed to improve our understanding of the parameters and the effects of dexamethasone on patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| | - Lanting Hao
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xinyuan Yang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Wenhao Shi
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Kai Zheng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Tenger Wang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Huiran Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| |
Collapse
|
17
|
Lithium chloride prevents glucocorticoid-induced osteonecrosis of femoral heads and strengthens mesenchymal stem cell activity in rats. Chin Med J (Engl) 2021; 134:2214-2222. [PMID: 34224402 PMCID: PMC8478381 DOI: 10.1097/cm9.0000000000001530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Accumulating evidence suggests that lithium influences mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. As decreased bone formation in femoral heads is induced by glucocorticoids (GCs), we hypothesized that lithium has a protective effect on GC-induced osteonecrosis of femoral heads (ONFH). Methods: A rat ONFH model was induced by methylprednisolone (MP) and the effect of lithium chloride on the models was evaluated. Micro-computed tomography (CT)-based angiography and bone scanning were performed to analyze the vessels and bone structure in the femoral heads. Hematoxylin and eosin and immunohistochemical staining were performed to evaluate the trabecular structure and osteocalcin (OCN) expression, respectively. Bone marrow-derived MSCs were isolated from the models, and their proliferative and osteogenic ability was evaluated. Western blotting and quantitative real-time polymerase chain reaction were performed to detect osteogenic-related proteins including Runx2, alkaline phosphatase, and Collagen I. Results: Micro-CT analysis showed a high degree of osteonecrotic changes in the rats that received only MP injection. Treatment with lithium reduced this significantly in rats that received lithium (MP + Li group); while 18/20 of the femoral heads in the MP showed severe osteonecrosis, only 5/20 in the MP + Li showed mild osteonecrotic changes. The MP + Li group also displayed a higher vessel volume than the MP group (0.2193 mm3vs. 0.0811 mm3, P < 0.05), shown by micro-CT-based angiography. Furthermore, histological analysis showed better trabecular structures and more OCN expression in the femoral heads of the MP + Li group compared with the MP group. The ex vivo investigation indicated higher proliferative and osteogenic ability and upregulated osteogenic-related proteins in MSCs extracted from rats in the MP + Li group than that in the MP group. Conclusions: We concluded that lithium chloride has a significant protective effect on GC-induced ONFH in rats and that lithium also enhances MSC proliferation and osteogenic differentiation in rats after GC administration.
Collapse
|
18
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao H, Liang X, Li M, Xu Y, Chen L, Zhang L, Huang L, Geng D. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med 2021; 11:e447. [PMID: 34185425 PMCID: PMC8167863 DOI: 10.1002/ctm2.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Houyi Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineChangshuChina
| | - Weicheng Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hongzhi Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Xiaolong Liang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lixin Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
19
|
Feng X, Ma L, Liang H, Liu X, Lei J, Li W, Wang K, Song Y, Wang B, Li G, Li S, Yang C. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS OMEGA 2020; 5:26655-26666. [PMID: 33110992 PMCID: PMC7581231 DOI: 10.1021/acsomega.0c03489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 05/02/2023]
Abstract
Polyetheretherketone (PEEK) constitutes a preferred alternative material for orthopedic implants owing to its good mechanical properties and biocompatibility. However, the poor osseointegration property of PEEK implants has limited their clinical applications. To address this issue, in this study, we investigated the mechanical and biological properties of fully porous PEEK scaffolds with different pore sizes both in vitro and in vivo. PEEK scaffolds with designed pore sizes of 300, 450, and 600 μm and a porosity of 60% were manufactured via fused deposition modeling (FDM) to explore the optimum pore size. Smooth solid PEEK cylinders (PEEK-S) were used as the reference material. The mechanical, cytocompatibility, proliferative, and osteogenic properties of PEEK scaffolds were characterized in comparison to those of PEEK-S. In vivo dynamic contrast-enhanced magnetic resonance imaging, microcomputed tomography, and histological observation were performed after 4 and 12 weeks of implantation to evaluate the microvascular perfusion and bone formation afforded by the various PEEK implants using a New Zealand white rabbit model with distal femoral condyle defects. Results of in vitro testing supported the good biocompatibility of the porous PEEK scaffolds manufactured via FDM. In particular, the PEEK-450 scaffolds were most beneficial for cell adhesion, proliferation, and osteogenic differentiation. Results of in vivo analysis further indicated that PEEK-450 scaffolds exhibited preferential potential for bone ingrowth and vascular perfusion. Together, our findings support that porous PEEK implants designed with a suitable pore size and fabricated via three-dimensional printing constitute promising alternative biomaterials for bone grafting and tissue engineering applications with marked potential for clinical applications.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Liang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department
of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqiang Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
20
|
Ren L, Chen X, Chen X, Li J, Cheng B, Xia J. Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells. Front Cell Dev Biol 2020; 8:580070. [PMID: 33178694 PMCID: PMC7593605 DOI: 10.3389/fcell.2020.580070] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are pivotal to tissue homeostasis, repair, and regeneration due to their potential for self-renewal, multilineage differentiation, and immune modulation. Mitochondria are highly dynamic organelles that maintain their morphology via continuous fission and fusion, also known as mitochondrial dynamics. MSCs undergo specific mitochondrial dynamics during proliferation, migration, differentiation, apoptosis, or aging. Emerging evidence suggests that mitochondrial dynamics are key contributors to stem cell fate determination. The coordination of mitochondrial fission and fusion is crucial for cellular function and stress responses, while abnormal fission and/or fusion causes MSC dysfunction. This review focuses on the role of mitochondrial dynamics in MSC commitment under physiological and stress conditions. We highlight mechanistic insights into modulating mitochondrial dynamics and mitochondrial strategies for stem cell-based regenerative medicine. These findings shed light on the contribution of mitochondrial dynamics to MSC fate and MSC-based tissue repair.
Collapse
Affiliation(s)
- Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
E LL, Cheng T, Li CJ, Zhang R, Zhang S, Liu HC, Zheng WJ. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). Stem Cells Dev 2020; 29:1215-1228. [PMID: 32674666 DOI: 10.1089/scd.2020.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising alternative source of mesenchymal stem cells (MSCs) that are enormously attractive for clinical use. This study was designed to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) and/or osteogenic media (OMD) on bone regeneration of hUC-MSCs seeded on nanohydroxyapatite/collagen/poly(l-lactide) (nHAC/PLA) in a rabbit model. The characteristics of stem cells were analyzed by plastic adherence, cell phenotype, and multilineage differentiation potential. Cell proliferation was examined using cell counting kit-8 assay. Osteogenic differentiation was evaluated by quantitative Ca2+ concentration, PO43- concentration, alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralized matrix formation. Bone regeneration was investigated in jaw bone defect repair in rabbit by microcomputed tomography, fluorescent labeling, and hematoxylin and eosin staining. Except for initial stress response, OMD and OMD + rhBMP-7 inhibited the proliferation of hUC-MSCs seeded on nHAC/PLA; rhBMP-7 inhibited cell proliferation in the nonlogarithmic phase and attenuated the inhibitory effect of OMD on cell proliferation. The inhibitory effects of OMD, rhBMP-7, and OMD + rhBMP-7 on cell proliferation were ranked as OMD > OMD + rhBMP-7 > rhBMP-7. OMD, rhBMP-7, and OMD + rhBMP-7 promoted Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation of hUC-MSCs seeded on nHAC/PLA. The promoting effects of OMD, rhBMP-7, and OMD+rhBMP-7 on Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation were ranked as rhBMP-7 > OMD > OMD + rhBMP-7, OMD > OMD + rhBMP-7 > rhBMP-7, OMD > rhBMP-7 > OMD + rhBMP-7, rhBMP-7 > OMD + rhBMP-7 > OMD, and OMD > rhBMP-7 > OMD + rhBMP-7, respectively. In rabbit jaw bone defect repair, OMD, rhBMP-7, and OMD + rhBMP-7 enhanced bone regeneration of hUC-MSCs seeded on nHAC/PLA, but the largest bone mineral apposition rate and bone formation were presented in cultures with rhBMP-7. These findings suggested that the combined use of rhBMP-7 and OMD may have no ideal synergistic effect on bone regeneration of hUC-MSCs seeded on nHAC/PLA in rabbit jaw bone defect.
Collapse
Affiliation(s)
- Ling-Ling E
- Department of Chemistry, Jinan University, Guangzhou, China.,Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tao Cheng
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuan-Jie Li
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuo Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hong-Chen Liu
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wen-Jie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|