1
|
Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel) 2020; 9:E743. [PMID: 32823544 PMCID: PMC7463655 DOI: 10.3390/antiox9080743] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease, are a global public health burden with poorly understood aetiology. Neuroinflammation and oxidative stress (OS) are undoubtedly hallmarks of neurodegeneration, contributing to disease progression. Protein aggregation and neuronal damage result in the activation of disease-associated microglia (DAM) via damage-associated molecular patterns (DAMPs). DAM facilitate persistent inflammation and reactive oxygen species (ROS) generation. However, the molecular mechanisms linking DAM activation and OS have not been well-defined; thus targeting these cells for clinical benefit has not been possible. In microglia, ROS are generated primarily by NADPH oxidase 2 (NOX2) and activation of NOX2 in DAM is associated with DAMP signalling, inflammation and amyloid plaque deposition, especially in the cerebrovasculature. Additionally, ROS originating from both NOX and the mitochondria may act as second messengers to propagate immune activation; thus intracellular ROS signalling may underlie excessive inflammation and OS. Targeting key kinases in the inflammatory response could cease inflammation and promote tissue repair. Expression of antioxidant proteins in microglia, such as NADPH dehydrogenase 1 (NQO1), is promoted by transcription factor Nrf2, which functions to control inflammation and limit OS. Lipid droplet accumulating microglia (LDAM) may also represent a double-edged sword in neurodegenerative disease by sequestering peroxidised lipids in non-pathological ageing but becoming dysregulated and pro-inflammatory in disease. We suggest that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation. Finally, we discuss recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Dominic S. A. Simpson
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L. Oliver
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
2
|
BoseDasgupta S, Pieters J. Striking the Right Balance Determines TB or Not TB. Front Immunol 2014; 5:455. [PMID: 25339950 PMCID: PMC4189424 DOI: 10.3389/fimmu.2014.00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis continues to be one of the most successful pathogens on earth. Upon inhalation of M. tuberculosis by a healthy individual, the host immune system will attempt to eliminate these pathogens using a combination of immune defense strategies. These include the recruitment of macrophages and other phagocytes to the site of infection, production of cytokines that enhance the microbicidal capacity of the macrophages, as well as the activation of distinct subsets of leukocytes that work in concert to fight the infection. However, being as successful as it is, M. tuberculosis has evolved numerous strategies to subvert host immunity at virtual every level. As a consequence, one third of the world inhabitants carry M. tuberculosis, and tuberculosis continuous to cause disease in more than 8 million people with deadly consequences in well over 1 million patients each year. In this review, we discuss several of the strategies that M. tuberculosis employs to circumvent host immunity, as well as describe some of the mechanisms that the host uses to counter such subversive strategies. As for many other infectious diseases, the ultimate outcome is usually defined by the relative strength of the virulence strategies employed by the tubercle bacillus versus the arsenal of immune defense mechanisms of the infected host.
Collapse
Affiliation(s)
| | - Jean Pieters
- Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
3
|
Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 2007; 28:317-21. [PMID: 17823800 DOI: 10.1007/s00296-007-0452-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 08/19/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to evaluate the total antioxidant status (TAS), total oxidative status (TOS) and oxidative stress index (OSI) in patients with postmenopausal osteoporosis. We also investigate the relation between bone mineral density and oxidative/antioxidative parameters. Thirty-nine patients with osteoporosis and 26 healthy controls were included in the study. Plasma TAS, TOS levels were determined by using a novel automated methods. Plasma TOS and OSI value were significantly higher, and plasma TAS level was lower in patients than in healthy controls (P < 0.001 for all). There was a significant negative correlation between OSI and BMD in lumbar and femoral neck region (r = -0.63, P < 0.001; r = 0.40, P = 0.018). The results of this study indicated that increased osteoclastic activity and decreased osteoblastic activity may be associated with an imbalance between oxidant and antioxidant status in postmenopausal osteoporosis. Therefore, supplementation of antioxidant-enriched diet to the therapy might shed light on the development of novel therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Ozlem Altindag
- Department of Physical Medicine and Rehabilitation, Harran University Faculty of Medicine, Sanliurfa, Turkey.
| | | | | | | | | |
Collapse
|
4
|
Davis DA, Read-Connole E, Pearson K, Fales HM, Newcomb FM, Moskovitz J, Yarchoan R. Oxidative modifications of kynostatin-272, a potent human immunodeficiency virus type 1 protease inhibitor: potential mechanism for altered activity in monocytes/macrophages. Antimicrob Agents Chemother 2002; 46:402-8. [PMID: 11796349 PMCID: PMC127045 DOI: 10.1128/aac.46.2.402-408.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) are less active at blocking viral replication in HIV-1 infected peripheral blood monocytes/macrophages (M/M) than in HIV-1-infected T cells. We explored the hypothesis that oxidative modification and/or metabolism of the PIs in M/M might account for this reduced potency. We first tested the susceptibility of several PIs (kynostatin-272 [KNI-272], saquinavir, indinavir, ritonavir, or JE-2147) to oxidation after exposure to hydrogen peroxide (H(2)O(2)): only KNI-272 was highly susceptible to oxidation. Treatment of KNI-272 with low millimolar concentrations of H(2)O(2) resulted in mono-oxidation of the sulfur in the S-methyl cysteine (methioalanine) moiety, as determined by reversed-phase high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS). Higher concentrations of H(2)O(2) led to an additional oxidation of the sulfur in the thioproline moiety of KNI-272. None of the PIs were metabolized or oxidized when added to T cells and cultured for up to 12 days. However, when KNI-272 was added to M/M, the concentration of the original KNI-272 steadily decreased with a corresponding increase in the production of three KNI-272 metabolites as identified by RP-HPLC/MS. The structures of these metabolites were different from those produced by H(2)O(2) treatment. The two major products of M/M metabolism of KNI-272 were identified as isomeric forms of KNI-272 oxidized solely on the thioproline ring. Both metabolites had reduced capacities to inhibit HIV-1 protease activity when tested in a standard HIV-1 protease assay. These studies demonstrate that antiviral compounds can be susceptible to oxidative modification in M/M and that this can affect their antiviral potency.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem 2000; 209:89-96. [PMID: 10942205 DOI: 10.1023/a:1007079802459] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) isolated from flaxseed has antioxidant activity and has been shown to prevent hypercholesterolemic atherosclerosis. An investigation was made of the effects of SDG on the development of diabetes in diabetic prone BioBreeding rats (BBdp rats), a model of human type I diabetes [insulin dependent diabetes mellitus (IDDM)] to determine if this type of diabetes is due to oxidative stress and if SDG can prevent the incidence of diabetes. The rats were divided into three groups: Group I, BioBreeding normal rats (BBn rats) (n = 10); group II, BBdp untreated (n = 11); and group III, BBdp treated with SDG 22 mg/kg body wt, orally) (n = 14). Oxidative stress was determined by measuring lipid peroxidation product malondialdehyde (MDA) an index of level of reactive oxygen species in blood and pancreas; and pancreatic chemiluminescence (Pancreatic-CL), a measure of antioxidant reserve. Incidence of diabetes was 72.7% in untreated and 21.4% in SDG-treated group as determined by glycosuria and hyperglycemia. SDG prevented the development of diabetes by approximately 71%. Development of diabetes was associated with an increase in serum and pancreatic MDA and a decrease in antioxidant reserve. Prevention in development of diabetes by SDG was associated with a decrease in serum and pancreatic-MDA and an increase in antioxidant reserve. These results suggest that IDDM is mediated through oxidative stress and that SDG prevents the development of diabetes.
Collapse
Affiliation(s)
- K Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Prasad K, Mantha SV, Muir AD, Westcott ND. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol Cell Biochem 2000; 206:141-9. [PMID: 10839204 DOI: 10.1023/a:1007018030524] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Reactive oxygen species (ROS) have been implicated in the development of streptozotocin (STZ)-induced diabetes mellitus. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed is an antioxidant. An investigation was made of the effects of SDG on the development of STZ-induced diabetes in rat, to determine if SDG can prevent/reduce the development of diabetes and if this prevention/reduction is associated with reduction in oxidative stress. DESIGN AND METHODS The rats were divided into 4 groups: Group I, Control; Group II, SDG (22 mg/kg body wt, orally) for 24 days; Group III, STZ (80 mg/kg intraperitoneally); Group IV, SDG in the dose similar to Group II three days prior to STZ and 21 days thereafter. Oxidative stress was assessed by measuring serum and pancreatic lipid peroxidation product malondialdehyde (MDA), pancreatic antioxidant reserve (pancreatic-CL) and oxygen free radical producing activity of white blood cells (WBC-CL). A diagnosis of diabetes was made on the basis of glucosuria and was confirmed at the time of sacrifice (21 days after STZ treatment) by the presence of hyperglycemia. At the end of the protocol blood samples were collected for estimation of glucose, MDA and WBC-CL, and pancreas were removed for estimation of MDA and antioxidant reserve. RESULTS Incidence of diabetes was 100% in Group III and 25% in Group IV. SDG prevented the development of diabetes by 75%. Development of diabetes was associated with an increase in serum and pancreatic MDA, and in WBC-CL, and a decrease in pancreatic antioxidant reserve. Prevention of diabetes by SDG was associated with a decrease in serum and pancreatic MDA and WBC-CL and an increase in pancreatic antioxidant reserve. CONCLUSIONS These results suggest that STZ-induced diabetes is mediated through oxidative stress and that SDG is effective in reducing the STZ-induced diabetes mellitus.
Collapse
Affiliation(s)
- K Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
7
|
Rosenberg L. Clinical islet cell transplantation. Are we there yet? INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1998; 24:145-68. [PMID: 9873950 DOI: 10.1007/bf02788418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is perhaps the most devastating chronic disease of all time. A brief history of the evolution of treatment modalities is provided, culminating in the rationale for the physiologic replacement of a functioning beta-cell mass by transplantation. Vascularized pancreas transplantation is discussed briefly as an introduction to the transplantation of the isolated islet. A detailed review of the current state of human islet transplantation for the cure of diabetes is then described. Finally, areas for future development are highlighted.
Collapse
Affiliation(s)
- L Rosenberg
- Department of Surgery, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Mink JH, Deutsch AL, Goldstein TB, Bray R, Pashman R, Armstrong II, Sinel M, Gart A. Spinal Imaging and Intervention: 1998. Phys Med Rehabil Clin N Am 1998. [DOI: 10.1016/s1047-9651(18)30263-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 1998. [PMID: 9526014 DOI: 10.1523/jneurosci.18-08-02974.1998] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several cytokines and their receptors are identified in brain; one of these is the proinflammatory cytokine interleukin-1beta that is synthesized and released from neurons and glia in response to stress or insult. Among the actions of interleukin-1beta is its ability to inhibit long-term potentiation in the hippocampus in vitro, an action that mimics one of the consequences of stress and age. It has been shown that the concentration of interleukin-1beta in brain tissue is increased in neurodegenerative conditions, and recent evidence from our laboratory has indicated an increase in the concentration of interleukin-1beta in the hippocampus of aged rats. These observations led us to consider that the underlying common cause of impaired long-term potentiation in aged and stressed rats might be increased endogenous interleukin-1beta concentration in hippocampus. The data presented here indicate that there was an inverse relationship between concentration of interleukin-1beta in the dentate gyrus and long-term potentiation in perforant path-->granule cell synapses in aged rats, stressed rats, and rats pretreated with interleukin-1beta. The evidence suggested that the cytokine induces formation of reactive oxygen species that triggers lipid peroxidation in vivo, as well as in vitro, and that these changes lead to depletion of membrane arachidonic acid that correlates with impaired long-term potentiation. We propose that three theories of aging, the glucocorticoid theory, the membrane theory, and the free radical theory, constitute three facets of age with one underlying trigger: an increase in the endogenous concentration of interleukin-1beta in hippocampus.
Collapse
|
10
|
Dent G, Rabe KF, Magnussen H. Relationship between bronchoalveolar lavage neutrophil numbers and lavage fluid elastase and antielastase activities. Lung 1995; 173:165-75. [PMID: 7616758 DOI: 10.1007/bf00175657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elastase and antielastase activities were measured in bronchoalveolar lavage fluid (BALF) and their relationship to bronchoalveolar lavage (BAL) neutrophil numbers was assessed in order to determine whether the elevated BAL neutrophil count can predict a shift in the elastase/antielastase balance. BAL samples were obtained from 133 randomly selected patients undergoing diagnostic bronchoscopy with BAL. Elastase and antielastase activities were determined using the synthetic substrate MeO-Suc-Ala-Ala-Pro-Val-pNA. In a random subset of 24 samples, the antioxidant capacity was measured as the inhibition of peroxyl radical-mediated oxidation of B-phycoerythrin. Only 7 of the BAL samples exhibited measurable elastase activity and all but one of these had a BAL neutrophil count greater than 100 x 10(3)/ml. Antielastase activity was measurable in 124 samples exhibiting no free elastase activity. There was a tendency for lower antielastase activity to be associated with higher neutrophil numbers, but this did not translate into a statistically significant correlation over all samples. There was no significant correlation between antioxidant capacity and either the neutrophil number or antielastase activity. It is concluded that BAL neutrophil numbers do not, in general, predict the status of elastase/antielastase balance in the epithelial lining fluid and that the antioxidant mechanisms in the epithelial lining fluid do not appear to be related to the antielastase capacity.
Collapse
Affiliation(s)
- G Dent
- Krankenhaus Grosshansdorf, Zentrum für Pneumologie und Thoraxchirurgie, LVA Hamburg, Germany
| | | | | |
Collapse
|
11
|
Benech PD, Sastry K, Iyer RR, Eichbaum QG, Raveh DP, Ezekowitz RA. Definition of interferon gamma-response elements in a novel human Fc gamma receptor gene (Fc gamma RIb) and characterization of the gene structure. J Exp Med 1992; 176:1115-23. [PMID: 1402657 PMCID: PMC2119393 DOI: 10.1084/jem.176.4.1115] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human Fc gamma RI (CD64) is a high affinity receptor for the Fc portion of immunoglobulin (Ig), and its constitutively low expression on the cell surface of monocyte/macrophage and neutrophils is selectively upregulated by interferon gamma (IFN-gamma) treatment (Perussia, B., E. T. Dayton, R. Lazarus, V. Fanning, and G. Trinchieri. 1983. J. Exp. Med. 158:1092). Three distinct cDNAs have been cloned and code for proteins that predict three extracellular Ig-like domains (Allen, J.M., and B. Seed. 1989. Science [Wash. DC]. 243:378). Several differences in the coding region of these cDNAs suggest that in addition to polymorphic differences a second Fc gamma RI gene could possibly exist. This alternative Fc gamma RI gene (Fc gamma RIb) was defined by the lack of a genomic HindIII restriction site (van der Winkel, J. G. J., L. U. Ernst, C. L. Anderson, and I. M. Chiu. 1991. J. Biol. Chem. 266:13449). We describe the characterization a second gene (Fc gamma RIb) that has a termination codon in the third extracellular domain and therefore predicts a soluble form of a termination codon in the third extracellular domain and therefore predicts a soluble form of the receptor. We also define two distinct IFN-gamma-responsive regions in the 5' flanking sequence of Fc gamma RIb that resemble motifs that have been defined in the class II major histocompatibility complex promoter. The Fc gamma RIb promoter does not possess canonical TATA or CCAAT boxes, but does possess a palindromic motif that closely resembles the initiator sequence identified in the terminal deoxynucleotidyl transferase/human leukocyte IFN/adeno-associated virus type II P5 gene promoters (Smale, S. T., and D. Baltimore. 1989. Cell. 57:103; Seto, E., Y. Shi, and T. Shenk. 1991. Nature [Lond.]. 354:241; Roy, A. L., M. Meisterernst, P. Pognonec, and R. C. Roeder. 1991. Nature [Lond.]. 354:245) virus type II P5 gene promoters raising interesting questions as to its role in the basal and myeloid-specific transcription of this gene.
Collapse
Affiliation(s)
- P D Benech
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
12
|
Edwards CK, Ghiasuddin SM, Yunger LM, Lorence RM, Arkins S, Dantzer R, Kelley KW. In vivo administration of recombinant growth hormone or gamma interferon activities macrophages: enhanced resistance to experimental Salmonella typhimurium infection is correlated with generation of reactive oxygen intermediates. Infect Immun 1992; 60:2514-21. [PMID: 1316877 PMCID: PMC257190 DOI: 10.1128/iai.60.6.2514-2521.1992] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purified and recombinant forms of growth hormone (GH) as well as of recombinant rat gamma interferon (IFN-gamma) enhance the survival of rats deprived of endogenous pituitary GH secretion by hypophysectomy (HX rats) and infected with virulent Salmonella typhimurium. Macrophages obtained from rats with intact pituitaries (pituitary-intact rats) or HX rats that were treated in vivo with either GH or the closely related hormone prolactin released elevated (P less than 0.05) levels of superoxide anion (O2-) after in vitro opsonized-zymosan stimulation compared with those from placebo-treated animals. These levels of O2- release were similar in magnitude to those of macrophages from rats treated in vivo with IFN-gamma. In time course in vivo macrophage activation studies, both IFN-gamma and GH significantly increased O2- secretion within 24 h, with maximal secretion occurring at day 3. Macrophages obtained from pituitary-intact and HX rats injected in vivo with GH also released elevated (P less than 0.05) levels of hydrogen peroxide (H2O2) and displayed enhanced (P less than 0.01) phagocytic activity toward opsonized Listeria monocytogenes in vitro. The mechanism of action of GH in vivo is likely to be a direct one because resident peritoneal macrophages from rats could be primed in vitro for enhanced secretion of O2- following triggering of these cells with opsonized zymosan. These data show that in vivo administration of two closely related pituitary hormones, GH and prolactin, can effectively prime macrophages, which is consistent with the hypothesis that GH mediates resistance to S. typhimurium by a direct stimulatory action on macrophages.
Collapse
Affiliation(s)
- C K Edwards
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | | | | | | | | | | |
Collapse
|
13
|
Rabinovitch A, Suarez WL, Thomas PD, Strynadka K, Simpson I. Cytotoxic effects of cytokines on rat islets: evidence for involvement of free radicals and lipid peroxidation. Diabetologia 1992; 35:409-13. [PMID: 1521720 DOI: 10.1007/bf02342435] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously reported that oxygen free radical scavengers protect rat islet cells from damage by cytokines and we interpreted these findings as suggesting the involvement of oxygen free radicals but did not directly measure indices of free radical activity. In this study, we report on malondialdehyde, an end product of lipid peroxidation, in rat islets incubated with cytokines. The individual cytokines, interleukin 1 (1 U/ml), tumour necrosis factor (10(2) U/ml), and interferon gamma (10(2) U/ml) inhibited insulin release but did not increase islet malondialdehyde levels. Combination of these cytokines however, produced significant increases in islet malondialdehyde and this was accompanied by islet necrosis. Furthermore, an inhibitor of lipid peroxidation, U78518E, significantly decreased the cytokine-induced increase in islet malondialdehyde and protected islet Beta cells from destruction by the cytokine combination of interleukin 1, tumour necrosis factor and interferon gamma. These findings suggest that the cytotoxic action of cytokines on islet Beta cells may result from free radical production and lipid peroxidation in the islet cells.
Collapse
Affiliation(s)
- A Rabinovitch
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
14
|
Abstract
Macrophage deactivation factor (MDF) in P815 tumor cell-conditioned medium was assayed by its suppression of the ability of activated mouse peritoneal macrophages to release hydrogen peroxide. MDF displayed properties of a soluble protein(s) associated with both low (8-25,000) and high (greater than 450,000) Mr fractions. MDF was purified 6,140-fold by a seven-step procedure: extraction with acid-ethanol; precipitation with ether; and fractionation on gel filtration, anion-exchange, diphenyl reversed-phase and C4 reversed-phase HPLC columns, the last column twice. The final preparation contained two species: (a) a approximately 13,000 Mr band on reducing or nonreducing SDS-PAGE and on autoradiograms after radioiodination with chloramine T, and (b) a 66,000 Mr species ranging from approximately 5% to approximately 50% of the protein detectable by silver strain. The 66,000 Mr species was identified as albumin from its NH2-terminal amino acid sequence. However, no amino acid sequence could be obtained for the approximately 13,000 Mr species, either in fluid phase or after electroelution of the corresponding SDS-PAGE band. Thus, approximately 13,000 Mr MDF associates tightly with albumin through a variety of separation techniques, and may have a blocked NH2 terminus. Purified MDF afforded 50% inhibition of activated macrophage H2O2 releasing capacity at a concentration of 1-10 nM. Separation of MDF from most higher Mr moieties was associated with disproportionately small increases in specific activity, suggesting MDF might be partially inactivated by purification. As purified, MDF was approximately 1,000-fold less potent at deactivating macrophages than TGF-beta. Antibodies that neutralized the macrophage-deactivating effect of TGF-beta did not inhibit deactivation by MDF.
Collapse
Affiliation(s)
- S Srimal
- Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
15
|
Jesaitis AJ, Buescher ES, Harrison D, Quinn MT, Parkos CA, Livesey S, Linner J. Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. J Clin Invest 1990; 85:821-35. [PMID: 2312727 PMCID: PMC296500 DOI: 10.1172/jci114509] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Affinity-purified rabbit anti-neutrophil cytochrome b light or heavy chain antibodies were used to immunocytochemically and biochemically localize cytochrome b in neutrophils and eosinophils. The antibodies were monospecific, recognizing polypeptides of 91 and 22 kD, respectively, on Western blots of whole neutrophil extracts. The antibodies were used in Western blot analysis of subcellular fractions of purified neutrophils to confirm that the distribution of cytochrome b spectral absorbance matched that of the two subunits. Thin sections of cryofixed, molecular distillation-dried granulocytes were labeled with the anti-cytochrome b antibodies, followed by incubation with biotin-conjugated secondary antibody, and final labeling with streptavidin-conjugated colloidal gold. Electron microscopy revealed that the cytochrome b light and heavy chains were localized primarily (80%) to 0.1-0.2-micron round or elliptical granule-like structures in neutrophils and 0.4-0.5-micron granules in eosinophils. Approximately 20% of the cytochrome b was localized to the surface, confirming the subcellular fractionation studies. Double staining experiments on the neutrophils, using polyclonal rabbit anti-lactoferrin antibody, indicated that the cytochrome-bearing structures also contained lactoferrin and thus were specific granules. When the analysis was performed on neutrophils that had phagocytosed Staphylococcus aureus, cytochrome b was found in the phagosomal membrane adjoining the bacterial cell wall.
Collapse
Affiliation(s)
- A J Jesaitis
- Department of Chemistry, Montana State University, Bozeman 59717
| | | | | | | | | | | | | |
Collapse
|
16
|
Sumoski W, Baquerizo H, Rabinovitch A. Oxygen free radical scavengers protect rat islet cells from damage by cytokines. Diabetologia 1989; 32:792-6. [PMID: 2480259 DOI: 10.1007/bf00264909] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A possible role for oxygen free radicals in mediating the cytotoxic effects of cytokines in islets was sought by the use of agents that scavenge free radicals. Rat islet cell monolayer cultures were incubated for 6 days with t-butylhydroperoxide, alloxan, streptozotocin, or the cytokines, interleukin 1, tumour necrosis factor, and interferon gamma, without and together with the oxygen free radical scavenger combination of dimethylthiourea and citiolone, and islet cell lysis was measured in a 51chromium cytotoxicity assay. The free radical scavengers significantly inhibited the islet cell cytotoxic effects of t-butylhydroperoxide and alloxan, but not streptozotocin. Similarly, the cytotoxic effects of the cytokine combinations of interleukin 1 plus tumour necrosis factor, interferon gamma plus tumour necrosis factor, and interferon gamma plus interleukin 1 were significantly inhibited by the free radical scavenger combination of dimethylthiourea and citiolone. These results suggest that the cytokine products of macrophages and lymphocytes infiltrating islets in Type 1 (insulin-dependent) diabetes may contribute to B-cell damage by inducing the production of oxygen free radicals in the islet cells.
Collapse
Affiliation(s)
- W Sumoski
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
17
|
Wickramasinghe SN. Role of superoxide anion radicals in ethanol metabolism by blood monocyte-derived human macrophages. J Exp Med 1989; 169:755-63. [PMID: 2538545 PMCID: PMC2189258 DOI: 10.1084/jem.169.3.755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effects of a number of additives on the rate of conversion of ethanol (1 mg/ml; 21.7 mM) to acetate by monolayers of blood monocyte-derived human macrophages were investigated. The additives studied were superoxide dismutase (SOD; 1,500 U/ml), catalase (1,500 U/ml), tetrahydrofurane (20 mM), and PMA (20 nM), either singly or in various combinations. SOD, catalase, SOD plus catalase, tetrahydrofurane, and tetrahydrofurane plus SOD inhibited ethanol oxidation by 49.2, 12.1, 52.9, 60.4, and 66.8%, respectively. PMA caused a 4.0-8.3-fold increase in the rate of ethanol metabolism and this increase was completely suppressed in the presence of SOD. The data indicate that a substantial proportion of the ethanol metabolism by both unstimulated and PMA-stimulated blood monocyte-derived macrophages was dependent on the generation of superoxide anion radicals.
Collapse
Affiliation(s)
- S N Wickramasinghe
- Department of Haematology, St. Mary's Hospital Medical School, London, United Kingdom
| |
Collapse
|
18
|
Affiliation(s)
- R A Ezekowitz
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts
| | | |
Collapse
|
19
|
Expression of the X-CGD gene during induced differentiation of myeloid leukemia cell line HL-60. Mol Cell Biol 1988. [PMID: 3165493 DOI: 10.1128/mcb.8.7.2804] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the X-CGD gene, which encodes the heavy-chain subunit of the phagocyte cytochrome b, was studied during induced myeloid differentiation of HL-60 cells. Incubation of the cells with a combined regimen of retinoic acid and dimethyl formamide resulted in granulocytic morphological differentiation and acquisition of nitroblue tetrazolium reduction, a measure of superoxide generation. During the 5-day course of induced differentiation, the levels of X-CGD mRNA transcripts rose 13-fold, with a 2-fold increase detectable within 3 h of exposure to retinoic acid. Relative transcription rates for the X-CGD gene, determined by nuclear runoff, increased two- to eightfold after 24 to 72 h of induced differentiation. However, the greater change in X-CGD mRNA levels than that in transcription rates implies the involvement of posttranscriptional regulation as well. Fractionation by centrifugal elutriation into phases of the cell cycle showed expression of X-CGD transcripts predominantly in G1 cells before induction and in all phases of the cell cycle 24 h after induction. Thus the rapid increase in X-CGD expression in induced cells reflects the acquisition of functional competence and not the concomitant cessation of proliferation or shift in cell cycle distribution.
Collapse
|
20
|
Newburger PE, Ezekowitz RA, Whitney C, Wright J, Orkin SH. Induction of phagocyte cytochrome b heavy chain gene expression by interferon gamma. Proc Natl Acad Sci U S A 1988; 85:5215-9. [PMID: 2839835 PMCID: PMC281719 DOI: 10.1073/pnas.85.14.5215] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phagocytic cells, such as macrophages and polymorphonuclear leukocytes, produce a "respiratory burst" in which oxygen is reduced to superoxide and other active oxygen species responsible for many of the microbicidal, tumoricidal, and inflammatory activities of these cells. Interferon gamma has been shown to augment phagocyte superoxide production, but the molecular mechanisms underlying this effect have remained unknown. Recently a key component of the oxidase, phagocyte cytochrome b, has been characterized as a heterodimer of a 91-kDa glycoprotein and a 22-kDa polypeptide. The present studies examined the effects of human recombinant interferon gamma on the expression of the genes for these components of the cytochrome b. In vitro treatment with interferon gamma substantially increases the level of phagocyte cytochrome b heavy chain gene transcripts in normal polymorphonuclear leukocytes, normal monocyte-derived macrophages, and the monocytic leukemia cell line THP-1. Light chain gene transcripts are less affected. In monocyte-derived macrophages and THP-1 cells, the enhanced expression of the heavy chain gene appears in large part attributable to increased rates of transcription. Treatment of monocyte-derived macrophages with human recombinant interferon alpha (a down-regulator of the respiratory burst) decreased the heavy chain transcript levels; interferon beta produced no detectable change. These findings demonstrate the responsiveness of one essential component of the phagocyte oxidase system to activation by interferon gamma and provide a rationale for its use to augment phagocytic function in chronic granulomatous disease.
Collapse
Affiliation(s)
- P E Newburger
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655
| | | | | | | | | |
Collapse
|
21
|
Barker KA, Orkin SH, Newburger PE. Expression of the X-CGD gene during induced differentiation of myeloid leukemia cell line HL-60. Mol Cell Biol 1988; 8:2804-10. [PMID: 3165493 PMCID: PMC363499 DOI: 10.1128/mcb.8.7.2804-2810.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The expression of the X-CGD gene, which encodes the heavy-chain subunit of the phagocyte cytochrome b, was studied during induced myeloid differentiation of HL-60 cells. Incubation of the cells with a combined regimen of retinoic acid and dimethyl formamide resulted in granulocytic morphological differentiation and acquisition of nitroblue tetrazolium reduction, a measure of superoxide generation. During the 5-day course of induced differentiation, the levels of X-CGD mRNA transcripts rose 13-fold, with a 2-fold increase detectable within 3 h of exposure to retinoic acid. Relative transcription rates for the X-CGD gene, determined by nuclear runoff, increased two- to eightfold after 24 to 72 h of induced differentiation. However, the greater change in X-CGD mRNA levels than that in transcription rates implies the involvement of posttranscriptional regulation as well. Fractionation by centrifugal elutriation into phases of the cell cycle showed expression of X-CGD transcripts predominantly in G1 cells before induction and in all phases of the cell cycle 24 h after induction. Thus the rapid increase in X-CGD expression in induced cells reflects the acquisition of functional competence and not the concomitant cessation of proliferation or shift in cell cycle distribution.
Collapse
Affiliation(s)
- K A Barker
- Department of Pediatrics, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|
22
|
Abstract
Murine Kupffer cells (KCs), which constitute one of the largest populations of tissue macrophages, differ from most other cells of the myelomonocytic lineage in lacking the capacity for a respiratory burst. A collagenase perfusion technique followed by adherence to plastic at low temperature yielded pure cultures of KCs uniformly expressing receptors for Fc and C3bi, and containing virtually no morphologically detectable intracytoplasmic debris. Such KCs took up and oxidized glucose via the hexose monophosphate shunt about the same as peritoneal macrophages (PCs). Respiratory burst stimuli failed to enhance the hexose monophosphate shunt in KCs, probably because no H2O2 was produced. Detergent-permeabilized KCs generated no O2- in the presence of 1 mM NADPH, in striking contrast to all PC populations studied. Yet, KCs contained at least one component of the O2(-)-producing oxidase, cytochrome b559, in the same quantities as PCs and neutrophils. Cytochrome b559 was demonstrated by a novel double-reduction spectral technique that eliminated interference from hemoglobin and mitochondrial cytochromes. Consistent with the presence of the oxidase, KCs acquired normal respiratory burst capacity after prolonged incubation in vitro. The defect in triggering the respiratory burst in KCs was selective for the reduction of O2 by NADPH, in that reduction of O2 by endogenous arachidonate was readily demonstrate in response to zymosan. The percent of arachidonate released, the percent oxygenated, and the suppression of prostacyclin and leukotriene C production, as well as the pattern of LFA-1 expression, all resembled the pattern reported with PCs several days after exposure to bacteria. Indeed, exposure of PCs to low numbers of zymosan particles led gradually to complete suppression of respiratory burst capacity and refractoriness to its enhancement by rIFN-gamma, as evident in KCs both before and after their explanation. Thus, the modulation of oxidative metabolism that characterizes KCs probably arises from frequent endocytic encounters. This phenomenon may permit macrophages to act as scavengers without oxidative damage to bystander cells.
Collapse
Affiliation(s)
- A Ding
- Department of Hematology-Oncology, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
23
|
Ezekowitz RA, Orkin SH, Newburger PE. Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease. J Clin Invest 1987; 80:1009-16. [PMID: 2821069 PMCID: PMC442339 DOI: 10.1172/jci113153] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We examined the potential of interferon gamma (IFN-gamma) to ameliorate the physiologic defect of chronic granulomatous disease (CGD) by studying its effects on CGD phagocyte superoxide generation, NADPH oxidase kinetics, cytochrome b559 content, and expression of X-CGD (the gene for the X-linked disease). Granulocytes and macrophages from three patients in two kindreds with "variant" X-linked CGD (i.e., with very low, but detectable, baseline superoxide-generating activity) responded to IFN-gamma with enhanced nitroblue tetrazolium reduction and two- to eightfold increases in superoxide generation. IFN-gamma did not augment the respiratory burst activity of phagocytes from patients with "classic" CGD (i.e., no detectable baseline superoxide generation) or autosomal variant CGD. Incubation of a responding patient's granulocytes with IFN-gamma nearly doubled the maximal velocity for the NADPH oxidase, but did not change its abnormal Michaelis constant. Although the interferon-treated CGD granulocytes produced superoxide at a rate 40% of normal, the cytochrome b spectrum remained undetectable. IFN-gamma treatment of cultured monocytes from an IFN-gamma-responsive CGD patient increased the steady state level of RNA transcripts from the X-CGD gene from barely detectable up to approximately 5% of normal.
Collapse
Affiliation(s)
- R A Ezekowitz
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115
| | | | | |
Collapse
|
24
|
|