1
|
Isomura T, Kamizawa S, Takada K, Mori Y, Sakae T. Real-time measurement of two-dimensional LET distributions of proton beams using scintillators. Phys Med Biol 2024; 69:215017. [PMID: 39383888 DOI: 10.1088/1361-6560/ad8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.The linear energy transfer (LET) of proton therapy beams increases rapidly from the Bragg peak to the end of the beam. Although the LET can be determined using analytical or computational methods, a technique for efficiently measuring its spatial distribution has not yet been established. Thus, the purpose of this study is to develop a technique to measure the two-dimensional LET distribution in proton therapy in real time using a combination of multiple scintillators with different quenching.Approach.Inorganic and organic scintillator sheets were layered and irradiated with proton beams. Two-color signals of the CMOS sensor were obtained from the scintillation light and calibration curves were generated using LET. LET was calculated using Monte Carlo simulations asLETtandLETdweighted by fluence and dose, respectively. The accuracy of the calibration curve was evaluated by comparing the calculated and measured LET values for the 200 MeV monoenergetic and spread-out Bragg peak (SOBP) beams. LET distributions were obtained from the calibration curves.Main results.The deviation between the calculated and measured LET values was evaluated. For bothLETtandLETd, the deviation in the plateau region of the monoenergetic and SOBP beams tended to be larger than those in the peak region. The deviation was smaller forLETd. In the obtainedLETddistribution, the deviation between the calculated and measured values agreed within 3% in the peak region, while the deviation was larger in other regions.Significance.The LET distribution can be measured with a single irradiation using two scintillator sheets. This method may be effective for verifying LET in daily clinical practice and for quality control.
Collapse
Affiliation(s)
- Taiki Isomura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Medipolis Proton Therapy and Research Center, 4423, Higashikata, Ibusuki, Kagoshima 891-0403, Japan
- Shin Nippon Biomedical Laboratories, 2438 Miyanoura, Kagoshima, Kagoshima 891-1394, Japan
| | - Satoshi Kamizawa
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Kenta Takada
- Gunma Prefectural College of Health Sciences, 323-1, Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Yutaro Mori
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeji Sakae
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Frelin AM, Daviau G, Bui MHH, Fontbonne C, Fontbonne JM, Lebhertz D, Mainguy E, Moignier C, Thariat J, Vela A. Development of a three-dimensional scintillation detector for pencil beam verification in proton therapy patient-specific quality assurance. Med Phys 2024. [PMID: 39255360 DOI: 10.1002/mp.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Pencil Beam Scanning proton therapy has many advantages from a therapeutic point of view, but raises technical constraints in terms of treatment verification. The treatment relies on a large number of planned pencil beams (PB) (up to thousands), whose delivery is divided in several low-intensity pulses delivered a high frequency (1 kHz in this study). PURPOSE The purpose of this study was to develop a three-dimensional quality assurance system allowing to verify all the PBs' characteristics (position, energy, intensity in terms of delivered monitor unit-MU) of patient treatment plans on a pulse-by-pulse or a PB-by-PB basis. METHODS A system named SCICOPRO has been developed. It is based on a 10 × 10 × 10 cm3 scintillator cube and a fast camera, synchronized with beam delivery, recording two views (direct and using a mirror) of the scintillation distribution generated by the pulses. A specific calibration and analysis process allowed to extract the characteristics of all the pulses delivered during the treatment, and consequently of all the PBs. The system uncertainties, defined here as average value + standard deviation, were characterized with a customized irradiation plan at different PB intensities (0.02, 0.1, and 1 MU) and with two patient's treatment plans of three beams each. The system's ability to detect potential treatment delivery problems, such as positioning errors of the treatment table in this work (1° rotations and a 2 mm translation), was assessed by calculating the confidence intervals (CI) for the different characteristics and evaluating the proportion of PBs within these intervals. RESULTS The performances of SCICOPRO were evaluated on a pulse-by-pulse basis. They showed a very good signal-to-noise ratio for all the pulse intensities (between 2 × 10-3 MU and 150 × 10-3 MU) allowing uncertainties smaller than 580 µm for the position, 180 keV for the energy and 3% for the intensity on patients treatment plans. The position and energy uncertainties were found to be little dependent from the pulse intensities whereas the intensity uncertainty depends on the pulses number and intensity distribution. Finally, treatment plans evaluations showed that 98% of the PBs were within the CIs with a nominal positioning against 83% or less with the table positioning errors, thus proving the ability of SCICOPRO to detect this kind of errors. CONCLUSION The high acquisition rate and the very high sensitivity of the system developed in this work allowed to record pulses of intensities as low as 2 × 10-3 MU. SCICOPRO was thus able to measure all the characteristics of the spots of a treatment (position, energy, intensity) in a single measurement, making it possible to verify their compliance with the treatment plan. SCICOPRO thus proved to be a fast and accurate tool that would be useful for patient-specific quality assurance (PSQA) on a pulse-by-pulse or PB-by-PB verification basis.
Collapse
Affiliation(s)
- Anne-Marie Frelin
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Gautier Daviau
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
- Normandie University, UNICAEN, Caen, France
| | - My Hoang Hoa Bui
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Cathy Fontbonne
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | | | - Dorothée Lebhertz
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Erwan Mainguy
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Cyril Moignier
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Juliette Thariat
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Anthony Vela
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
- Medical Physics Department, CLCC François Baclesse, Caen, France
| |
Collapse
|
3
|
Lin Y, Zhang H, Gu S, Shen L, Lv M, Zhang M, Chen Z. Proton beam spot size and position measurements using a multi-strip ionization chamber. Phys Med 2024; 123:103411. [PMID: 38906045 DOI: 10.1016/j.ejmp.2024.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE To develop and characterize a large-area multi-strip ionization chamber (MSIC) for efficient measurement of proton beam spot size and position at a synchrotron-based proton therapy facility. METHODS AND MATERIALS A 420 mm x 320 mm MSIC was designed with 240 vertical strips and 180 horizontal strips at 1.75 mm pitch. The MSIC was characterized by irradiating a grid of proton spots across 17 energies from 73.5 MeV to 235 MeV and comparing to simultaneous measurements made with a reference Gafchromic EBT3 film. Beam profiles, spot sizes, and positions were analyzed. Short term measurement stability and sensitivity were evaluated. RESULTS Excellent agreement was demonstrated between the MSIC and EBT3 film for both spot size and position measurements. Spot sizes agreed within ± 0.18 mm for all energies tested. Measured beam spot positions agreed within ± 0.17 mm. The detector showed good short term measurement stability and low noise performance. CONCLUSION The large-area MSIC enables efficient and accurate proton beam spot characterization across the clinical energy range. The results indicate the MSIC is suitable for pencil beam scanning proton therapy commissioning and quality assurance applications requiring fast spot size and position quantification.
Collapse
Affiliation(s)
- Ye Lin
- Department of Particle Beam Applications, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201200 Shanghai, China.
| | - Haiqun Zhang
- Department of Particle Beam Applications, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201200 Shanghai, China
| | - Shuaizhe Gu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liren Shen
- Department of General Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201200 Shanghai, China
| | - Ming Lv
- Department of Particle Beam Applications, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201200 Shanghai, China
| | - Manzhou Zhang
- Department of Particle Beam Applications, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201200 Shanghai, China
| | - Zhiling Chen
- Department of Particle Beam Applications, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201200 Shanghai, China
| |
Collapse
|
4
|
Goddu SM, Hao Y, Ji Z, Setianegara J, Liu F, Green W, Sobotka LG, Zhao T, Perkins S, Darafsheh A. High spatiotemporal resolution scintillation imaging of pulsed pencil beam scanning proton beams produced by a gantry-mounted synchrocyclotron. Med Phys 2024; 51:4996-5006. [PMID: 38748998 DOI: 10.1002/mp.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND A dosimeter with high spatial and temporal resolution would be of significant interest for pencil beam scanning (PBS) proton beams' characterization, especially when facing small fields and beams with high temporal dynamics. Optical imaging of scintillators has potential in providing sub-millimeter spatial resolution with pulse-by-pulse basis temporal resolution when the imaging system is capable of operating in synchrony with the beam-producing accelerator. PURPOSE We demonstrate the feasibility of imaging PBS proton beams as they pass through a plastic scintillator detector to simultaneously obtain multiple beam parameters, including proton range, pencil beam's widths at different depths, spot's size, and spot's position on a pulse-by-pulse basis with sub-millimeter resolution. MATERIALS AND METHODS A PBS synchrocyclotron was used for proton irradiation. A BC-408 plastic scintillator block with 30 × 30 × 5 cm3 size, and another block with 30 × 30 × 0.5 cm3 size, positioned in an optically sealed housing, were used sequentially to measure the proton range, and spot size/location, respectively. A high-speed complementary metal-oxide-semiconductor (CMOS) camera system synchronized with the accelerator's pulses through a gating module was used for imaging. Scintillation images, captured with the camera directly facing the 5-cm-thick scintillator, were corrected for background (BG), and ionization quenching of the scintillator to obtain the proton range. Spots' position and size were obtained from scintillation images of the 0.5-cm-thick scintillator when a 45° mirror was used to reflect the scintillation light toward the camera. RESULTS Scintillation images with 0.16 mm/pixel resolution corresponding to all proton pulses were captured. Pulse-by-pulse analysis showed that variations of the range, spots' position, and size were within ± 0.2% standard deviation of their average values. The absolute ranges were within ± 1 mm of their expected values. The average spot-positions were mostly within ± 0.8 mm and spots' sigma agreed within 0.2 mm of the expected values. CONCLUSION Scintillation-imaging PBS beams with high-spatiotemporal resolution is feasible and may help in efficient and cost-effective acceptance testing and commissioning of existing and even emerging technologies such as FLASH, grid, mini-beams, and so forth.
Collapse
Affiliation(s)
- S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zhen Ji
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jufri Setianegara
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Fengwei Liu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Winter Green
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lee G Sobotka
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Stephanie Perkins
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Han JH, Jo K. Development of a digital star-shot analysis system for comparing radiation and imaging isocenters of proton treatment machine. J Appl Clin Med Phys 2024; 25:e14320. [PMID: 38454657 PMCID: PMC11087181 DOI: 10.1002/acm2.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE To directly compare the radiation and imaging isocenters of a proton treatment machine, we developed and evaluated a real-time radiation isocenter verification system. METHODS The system consists of a plastic scintillator (PI-200, Mitsubishi Chemical Corporation, Tokyo, Japan), an acrylic phantom, a steel ball on the detachable plate, Raspberry Pi 4 (Raspberry Pi Foundation, London, UK) with camera module, and analysis software implemented through a Python-based graphical user interface (GUI). After kV imaging alignment of the steel ball, the imaging isocenter defined as the position of the steel ball was extracted from the optical image. The proton star-shot was obtained by optical camera because the scintillator converted proton beam into visible light. Then the software computed both the minimum circle radius and the radiation isocenter position from the star-shot. And the deviation between the imaging isocenter and radiation isocenter was calculated. We compared our results with measurements obtained by Gafchromic EBT3 film (Ashland, NJ, USA). RESULTS The minimum circle radii were averaged 0.29 and 0.41 mm while the position deviations from the radiation isocenter to the laser marker were averaged 0.99 and 1.07 mm, for our system and EBT3 film, respectively. Furthermore, the average position difference between the radiation isocenter and imaging isocenter was 0.27 mm for our system. Our system reduced analysis time by 10 min. CONCLUSIONS Our system provided automated star-shot analysis with sufficient accuracy, and it is cost-effective alternative to conventional film-based method for radiation isocenter verification.
Collapse
Affiliation(s)
- Ji Hye Han
- Department of PhysicsEwha Womans UniversitySeoulSouth Korea
| | - Kwanghyun Jo
- Department of Radiation OncologySamsung Medical CenterSeoulSouth Korea
| |
Collapse
|
6
|
Ocampo J, Heyes G, Dehghani H, Scanlon T, Jolly S, Gibson A. Determination of output factor for CyberKnife using scintillation dosimetry and deep learning. Phys Med Biol 2024; 69:025024. [PMID: 38181420 DOI: 10.1088/1361-6560/ad1b69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Objective. Small-field dosimetry is an ongoing challenge in radiotherapy quality assurance (QA) especially for radiosurgery systems such as CyberKnifeTM. The objective of this work is to demonstrate the use of a plastic scintillator imaged with a commercial camera to measure the output factor of a CyberKnife system. The output factor describes the dose on the central axis as a function of collimator size, and is a fundamental part of CyberKnife QA and integral to the data used in the treatment planning system.Approach. A self-contained device consisting of a solid plastic scintillator and a camera was build in a portable Pelicase. Photographs were analysed using classical methods and with convolutional neural networks (CNN) to predict beam parameters which were then compared to measurements.Main results. Initial results using classical image processing to determine standard QA parameters such as percentage depth dose (PDD) were unsuccessful, with 34% of points failing to meet the Gamma criterion (which measures the distance between corresponding points and the relative difference in dose) of 2 mm/2%. However, when images were processed using a CNN trained on simulated data and a green scintillator sheet, 92% of PDD curves agreed with measurements with a microdiamond detector to within 2 mm/2% and 78% to 1%/1 mm. The mean difference between the output factors measured using this system and a microdiamond detector was 1.1%. Confidence in the results was enhanced by using the algorithm to predict the known collimator sizes from the photographs which it was able to do with an accuracy of less than 1 mm.Significance. With refinement, a full output factor curve could be measured in less than an hour, offering a new approach for rapid, convenient small-field dosimetry.
Collapse
Affiliation(s)
- Jeremy Ocampo
- UCL Physics and Astronomy, London, WC1E 6BT, United Kingdom
| | - Geoff Heyes
- Radiotherapy Physics, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, United Kingdom
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tim Scanlon
- UCL Physics and Astronomy, London, WC1E 6BT, United Kingdom
| | - Simon Jolly
- UCL Physics and Astronomy, London, WC1E 6BT, United Kingdom
| | - Adam Gibson
- UCL Medical Physics & Biomedical Engineering, London, WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Lee E, Cho B, Kwak J, Jeong C, Park MJ, Kim SW, Song SY, Goh Y. Deep learning proton beam range estimation model for quality assurance based on two-dimensional scintillated light distributions in simulations. Med Phys 2023; 50:7203-7213. [PMID: 37517077 DOI: 10.1002/mp.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Many studies have utilized optical camera systems with volumetric scintillators for quality assurances (QA) to estimate the proton beam range. However, previous analytically driven range estimation methods have the difficulty to derive the dose distributions from the scintillation images with quenching and optical effects. PURPOSE In this study, a deep learning method utilized to QA was used to predict the beam range and spread-out Bragg peak (SOBP) for two-dimensional (2D) map conversion from the scintillation light distribution (LD) into the dose distribution in a water phantom. METHODS The 2D residual U-net modeling for deep learning was used to predict the 2D water dose map from a 2D scintillation LD map. Monte Carlo simulations for dataset preparation were performed with varying monoenergetic proton beam energies, field sizes, and beam axis shifts. The LD was reconstructed using photons backpropagated from the aperture as a virtual lens. The SOBP samples were constructed based on monoenergetic dose distributions. The training set, including the validation set, consisted of 8659 image pairs of LD and water dose maps. After training, dose map prediction was performed using a 300 image pair test set generated under random conditions. The pairs of simulated and predicted dose maps were analyzed by Bragg peak fitting and gamma index maps to evaluate the model prediction. RESULT The estimated beam range and SOBP width resolutions were 0.02 and 0.19 mm respectively for varying beam conditions, and the beam range and SOBP width deviations from the reference simulation result were less than 0.1 and 0.8 mm respectively. The simulated and predicted distributions showed good agreement in the gamma analysis, except for rare cases with failed gamma indices in the proximal and field-marginal regions. CONCLUSION The deep learning conversion method using scintillation LDs in an optical camera system with a scintillator is feasible for estimating proton beam range and SOBP width with high accuracy.
Collapse
Affiliation(s)
- Eunho Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, Republic of Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jungwon Kwak
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Chiyoung Jeong
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Min-Jae Park
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Woo Kim
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngmoon Goh
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Boontueng P, Ritjoho N, Laojamnongwong N, Phumara P, Songmoolnak A, Saenpoowa J, Wantana N, Pinitkha N, Kim H, Sanghangthum T, Chanlek N, Limphirat A, Yan Y, Kothan S, Kaewkhao J, Kobdaj C. Synthesis and characterization of Ce3+-doped barium-gadolinium-fluoroborate glasses for proton beam diagnostic. OPTIK 2023; 287:171134. [DOI: 10.1016/j.ijleo.2023.171134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2024]
|
9
|
Rossi E, Russo S, Maestri D, Magro G, Mirandola A, Molinelli S, Vai A, Grevillot L, Bolsa-Ferruz M, Rossomme S, Ciocca M. Characterization of a flat-panel detector for 2D dosimetry in scanned proton and carbon ion beams. Phys Med 2023; 107:102561. [PMID: 36898300 DOI: 10.1016/j.ejmp.2023.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
PURPOSE To fully characterize the flat panel detector of the new Sphinx Compact device with scanned proton and carbon ion beams. MATERIALS AND METHODS The Sphinx Compact is designed for daily QA in particle therapy. We tested its repeatability and dose rate dependence as well as its proportionality with an increasing number of particles and potential quenching effect. Potential radiation damage was evaluated. Finally, we compared the spot characterization (position and profile FWHM) with our radiochromic EBT3 film baseline. RESULTS The detector showed a repeatability of 1.7% and 0.9% for single spots of protons and carbon ions, respectively, while for small scanned fields it was inferior to 0.2% for both particles. The response was independent from the dose rate (difference from nominal value < 1.5%). We observed an under-response due to quenching effect for both particles, mostly for carbon ions. No radiation damage effects were observed after two months of weekly use and approximately 1350 Gy delivered to the detector. Good agreement was found between the Sphinx and EBT3 films for the spot position (central-axis deviation within 1 mm). The spot size measured with the Sphinx was larger compared to films. For protons, the average and maximum differences over different energies were 0.4 mm (3%) and 1 mm (7%); for carbon ions they were 0.2 mm (4%) and 0.4 mm (6%). CONCLUSIONS Despite the quenching effect the Sphinx Compact fulfills the requirements needed for constancy checks and could represent a time-saving tool for daily QA in scanned particle beams.
Collapse
Affiliation(s)
| | | | - Davide Maestri
- Fondazione CNAO, Pavia, Italy; Ospedale Ca' Foncello, Treviso, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Clark M, Ding X, Zhao L, Pogue B, Gladstone D, Rahman M, Zhang R, Bruza P. Ultra-fast, high spatial resolution single-pulse scintillation imaging of synchrocyclotron pencil beam scanning proton delivery. Phys Med Biol 2023; 68:045016. [PMID: 36716492 PMCID: PMC9935801 DOI: 10.1088/1361-6560/acb753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Objective.To demonstrates the ability of an ultra-fast imaging system to measure high resolution spatial and temporal beam characteristics of a synchrocyclotron proton pencil beam scanning (PBS) system.Approach.An ultra-fast (1 kHz frame rate), intensified CMOS camera was triggered by a scintillation sheet coupled to a remote trigger unit for beam on detection. The camera was calibrated using the linear (R2> 0.9922) dose response of a single spot beam to varying currents. Film taken for the single spot beam was used to produce a scintillation intensity to absolute dose calibration.Main results. Spatial alignment was confirmed with the film, where thexandy-profiles of the single spot cumulative image agreed within 1 mm. A sample brain patient plan was analyzed to demonstrate dose and temporal accuracy for a clinically-relevant plan, through agreement within 1 mm to the planned and delivered spot locations. The cumulative dose agreed with the planned dose with a gamma passing rate of 97.5% (2 mm/3%, 10% dose threshold).Significance. This is the first system able to capture single-pulse spatial and temporal information for the unique pulse structure of a synchrocyclotron PBS systems at conventional dose rates, enabled by the ultra-fast sampling frame rate of this camera. This study indicates that, with continued camera development and testing, target applications in clinical and FLASH proton beam characterization and validation are possible.
Collapse
Affiliation(s)
| | - Xuanfeng Ding
- Beaumont Proton Therapy Center, Detroit, MI, United States of America
| | - Lewei Zhao
- Beaumont Proton Therapy Center, Detroit, MI, United States of America
| | - Brian Pogue
- University of Wisconsin-Madison, Madison, WI, United States of America
| | - David Gladstone
- Dartmouth College, NH, Lebanon
- Dartmouth Cancer Center, NH, Lebanon
| | | | - Rongxiao Zhang
- Dartmouth College, NH, Lebanon
- Dartmouth Cancer Center, NH, Lebanon
| | | |
Collapse
|
11
|
Jeong S, Kim C, An S, Kwon YC, Pak SI, Cheon W, Shin D, Lim Y, Jeong JH, Kim H, Lee SB. Determination of the proton LET using thin film solar cells coated with scintillating powder. Med Phys 2023; 50:1194-1204. [PMID: 36135795 DOI: 10.1002/mp.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The amount of luminescent light detected in a scintillator is reduced with increased proton linear energy transfer (LET) despite receiving the same proton dose, through a phenomenon called quenching. This study evaluated the ability of a solar cell coated with scintillating powder (SC-SP) to measure therapeutic proton LET by measuring the quenching effect of the scintillating powder using a solar cell while simultaneously measuring the dose of the proton beam. METHODS SC-SP was composed of a flexible thin film solar cell and scintillating powder. The LET and dose of the pristine Bragg peak in the 14 cm range were calculated using a validated Monte Carlo model of a double scattering proton beam nozzle. The SC-SP was evaluated by measuring the proton beam under the same conditions at specific depths using SC-SP and Markus chamber. Finally, the 10 and 20 cm range pristine Bragg peaks and 5 cm spread-out Bragg peak (SOBP) in the 14 cm range were measured using the SC-SP and the Markus chamber. LETs measured using the SC-SP were compared with those calculated using Monte Carlo simulations. RESULTS The quenching factors of the SC-SP and solar cell alone, which were slopes of linear fit obtained from quenching correction factors according to LET, were 0.027 and 0.070 µm/keV (R2 : 0.974 and 0.975). For pristine Bragg peaks in the 10 and 20 cm ranges, the maximum differences between LETs measured using the SC-SP and calculated using Monte Carlo simulations were 0.5 keV/µm (15.7%) and 1.2 keV/µm (12.0%), respectively. For a 5 cm SOBP proton beam, the LET measured using the SC-SP and calculated using Monte Carlo simulations differed by up to 1.9 keV/µm (18.7%). CONCLUSIONS Comparisons of LETs for pristine Bragg peaks and SOBP between measured using the SC-SP and calculated using Monte Carlo simulations indicated that the solar cell-based system could simultaneously measure both LET and dose in real-time and is cost-effective.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Chankyu Kim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Seohyeon An
- Proton Therapy Center, National Cancer Center, Goyang, Korea.,Department of Physics, Hanyang University, Seoul, Korea
| | - Yong-Cheol Kwon
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Sang-Il Pak
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Wonjoong Cheon
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Youngkyung Lim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Jong Hwi Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Se Byeong Lee
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| |
Collapse
|
12
|
de Freitas Nascimento L, Leblans P, van der Heyden B, Akselrod M, Goossens J, Correa Rocha LE, Vaniqui A, Verellen D. Characterisation and Quenching Correction for an Al 2O 3:C Optical Fibre Real Time System in Therapeutic Proton, Helium, and Carbon-Charged Beams. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239178. [PMID: 36501879 DOI: 10.1016/j.sna.2022.113781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/24/2023]
Abstract
Real time radioluminescence fibre-based detectors were investigated for application in proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal (1 mm) and two droplets of micro powder in two sizes (38 μm and 4 μm) mixed with a water-equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL) signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations were utilised to acquire a quenching correction method, adapted from Birks' formulation, to restore the linear dose-response for particle therapy beams. The method for quenching correction was applied and yielded the best results for the '4 μm' optical fibre probe, with an agreement at the Bragg peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged particles. The most substantial deviations for the '4 μm' optical fibre probe were found at the falloff regions, with ~3% (protons), ~5% (helium) and 6% (carbon).
Collapse
Affiliation(s)
| | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, OK 74074, USA
| | - Jo Goossens
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| | - Luis Enrique Correa Rocha
- Department of Economics, Ghent University, 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Ana Vaniqui
- Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | - Dirk Verellen
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
13
|
de Freitas Nascimento L, Leblans P, van der Heyden B, Akselrod M, Goossens J, Correa Rocha LE, Vaniqui A, Verellen D. Characterisation and Quenching Correction for an Al 2O 3:C Optical Fibre Real Time System in Therapeutic Proton, Helium, and Carbon-Charged Beams. SENSORS (BASEL, SWITZERLAND) 2022; 22:9178. [PMID: 36501879 PMCID: PMC9737660 DOI: 10.3390/s22239178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/08/2023]
Abstract
Real time radioluminescence fibre-based detectors were investigated for application in proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal (1 mm) and two droplets of micro powder in two sizes (38 μm and 4 μm) mixed with a water-equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL) signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations were utilised to acquire a quenching correction method, adapted from Birks' formulation, to restore the linear dose-response for particle therapy beams. The method for quenching correction was applied and yielded the best results for the '4 μm' optical fibre probe, with an agreement at the Bragg peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged particles. The most substantial deviations for the '4 μm' optical fibre probe were found at the falloff regions, with ~3% (protons), ~5% (helium) and 6% (carbon).
Collapse
Affiliation(s)
| | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, OK 74074, USA
| | - Jo Goossens
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| | - Luis Enrique Correa Rocha
- Department of Economics, Ghent University, 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Ana Vaniqui
- Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | - Dirk Verellen
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
14
|
Almuqrin AH, Elsafi M, Yasmin S, Sayyed MI. Morphological and Gamma-Ray Attenuation Properties of High-Density Polyethylene Containing Bismuth Oxide. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6410. [PMID: 36143729 PMCID: PMC9505765 DOI: 10.3390/ma15186410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
For extensive radiation exposure, inventing a novel radiation shielding material is a burning issue at present for the purpose of life saving. Considering this thought, in this study, by adding sundry amounts of Bi2O3 into pure high-density polyethylene (HDPE), six HDPE systems were prepared to evaluate the radiation shielding efficiency. These HDPE systems were HDPEBi-0 (pure HDPE), HDPEBi-10 (10 wt% Bi2O3), HDPEBi-20 (20 wt% Bi2O3-), HDPEBi-30 (30 wt% Bi2O3), HDPEBi-40 (40 wt% Bi2O3), and HDPEBi-50 (50 wt% Bi2O3). The values of the linear attenuation coefficients of the experimental results (calculated in the lab using HPGe) were compared with the theoretical results (obtained using Phy-X software) at 0.060, 0.662, 1.173, and 1.333 MeV energies. To ensure the accurateness of the experimental results, this comparison was made. It was crystal clear that for energy values from 0.06 MeV to 1.333 MeV, all the experimental values were in line with Phy-X software data, which demonstrated the research setup's reliability. Here, the linear attenuation coefficient (LAC), and mean free path (MFP) shielding parameters were assessed. At the energy of 1.333 MeV, sample HDPEBi-0 showed an HVL value 1.7 times greater than that of HDPEBi-50, yet it was 23 times greater at 0.0595 MeV. That means that for proper radiation protection, very-low-energy HDPE systems containing 10-50% Bi2O3 could be used; however, the thickness of the HDPE system must be increased according to the energy of incident radiation.
Collapse
Affiliation(s)
- Aljawhara H. Almuqrin
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Elsafi
- Physics Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Sabina Yasmin
- Department of Physics, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| | - M. I. Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman 11622, Jordan
| |
Collapse
|
15
|
Goddu SM, Westphal GT, Sun B, Wu Y, Bloch CD, Bradley JD, Darafsheh A. Synchronized high-speed scintillation imaging of proton beams, generated by a gantry-mounted synchrocyclotron, on a pulse-by-pulse basis. Med Phys 2022; 49:6209-6220. [PMID: 35760763 DOI: 10.1002/mp.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance (QA) tools with high spatiotemporal resolution to conveniently measure the spatial and temporal properties of the beam. In this context, scintillation-based dosimeters, if synchronized with the radiation beam and corrected for ionization quenching, are appealing. PURPOSE To develop a synchronized high-speed scintillation imaging system for characterization and verification of the proton therapy beams on a pulse-by-pulse basis. MATERIALS AND METHODS A 30 cm × 30 cm × 5 cm block of BC-408 plastic scintillator placed in a light-tight housing was irradiated by proton beams generated by a Mevion S250TM proton therapy synchrocyclotron. A high-speed camera system, placed perpendicular to the beam direction and facing the scintillator, was synchronized to the accelerator's pulses to capture images. Opening and closing of the camera's shutter was controlled by setting a proper time delay and exposure time, respectively. The scintillation signal was recorded as a set of two-dimensional (2D) images. Empirical correction factors were applied to the images to correct for the non-uniformity of the pixel sensitivity and quenching of the scintillator. Proton range and modulation were obtained from the corrected images. RESULTS The camera system was able to capture all data on a pulse-by-pulse basis at a rate of ∼504 frames per second. The applied empirical correction method for ionization quenching was effective and the corrected composite image provided a 2D map of dose distribution. The measured range (depth of distal 90%) through scintillation imaging agreed within 1.2 mm with that obtained from ionization chamber measurement. CONCLUSION A high-speed camera system capable of capturing scintillation signals from individual proton pulses was developed. The scintillation imaging system is promising for rapid proton beam characterization and verification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Yu Wu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Charles D Bloch
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, 98133, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30308, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
16
|
Almurayshid M, Alssalim Y, Aksouh F, Almsalam R, ALQahtani M, Sayyed MI, Almasoud F. Development of New Lead-Free Composite Materials as Potential Radiation Shields. MATERIALS 2021; 14:ma14174957. [PMID: 34501047 PMCID: PMC8434293 DOI: 10.3390/ma14174957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Utilizing a polymer-based radiation shield offers lightweight, low cost, non-toxic compared to lead and solution for eliminating generated secondary neutrons. Incorporating silicon (i.e., one of the most abundant elements) in new applications, such as shielding, would have an impact on the economy and industry. In this study, seven potential shielding materials, composed of silicon, silicon carbide, and boron carbide embedded ethylene vinyl acetate (EVA) copolymers, are proposed. The shielding performance of these composite materials, including the attenuation coefficients (µ), the mass attenuation coefficients (µm), the half value layer (HVL), the mean free path (MFP), and the radiation protection efficiency (RPE) were examined using photon beams. Measured µm were verified against the calculated values. The averaged agreement was within ±7.4% between the experimental measurements and the theoretical calculation results. The HVL and MFP measured values for the polymer composites were lower than that for the pure EVA polymer, indicating the fillers in the polymers enhanced the shielding performance. The EVA + SiC (30%) and EVA + Si (15%) + B4C (15%) composites required the lowest thickness to stop 50% of the incident photons. The evaluation of experimental results of the RPE revealed that the polymer composites containing SiC (30%), Si (15%) + B4C (15%), or SiC (15%) + B4C (15%) succeeded in blocking 90-91% of X-rays at nearly 80 keV. However, a thicker shield of the proposed composite materials or combined layers with other high-Z materials could be used for higher energies.
Collapse
Affiliation(s)
- Mansour Almurayshid
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.A.); (Y.A.); (R.A.); (M.A.); or (F.A.)
| | - Yousif Alssalim
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.A.); (Y.A.); (R.A.); (M.A.); or (F.A.)
| | - Farouk Aksouh
- Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Rashed Almsalam
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.A.); (Y.A.); (R.A.); (M.A.); or (F.A.)
| | - Meshari ALQahtani
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.A.); (Y.A.); (R.A.); (M.A.); or (F.A.)
| | - M. I. Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman 11622, Jordan
- Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia
- Correspondence:
| | - Fahad Almasoud
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.A.); (Y.A.); (R.A.); (M.A.); or (F.A.)
- Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
17
|
Corrigendum. J Appl Clin Med Phys 2021; 22:322. [PMID: 34164915 PMCID: PMC8292682 DOI: 10.1002/acm2.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Almurayshid M, Alsagabi S, Alssalim Y, Alotaibi Z, Almsalam R. Feasibility of polymer-based composite materials as radiation shield. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Ozkan Loch C, Eichenberger MA, Togno M, Zinsli SP, Egloff M, Papa A, Ischebeck R, Lomax AJ, Peier P, Safai S. Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry. SENSORS 2020; 20:s20205727. [PMID: 33050153 PMCID: PMC7601306 DOI: 10.3390/s20205727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023]
Abstract
The Pencil Beam Scanning (PBS) technique in proton therapy uses fast magnets to scan the tumor volume rapidly. Changing the proton energy allows changing to layers in the third dimension, hence scanning the same volume several times. The PBS approach permits adapting the speed and/or current to modulate the delivered dose. We built a simple prototype that measures the dose distribution in a single step. The active detection material consists of a single layer of scintillating fibers (i.e., 1D) with an active length of 100 mm, a width of 18.25 mm, and an insignificant space (20 μm) between them. A commercial CMOS-based camera detects the scintillation light. Short exposure times allow running the camera at high frame rates, thus, monitoring the beam motion. A simple image processing method extracts the dose information from each fiber of the array. The prototype would allow scaling the concept to multiple layers read out by the same camera, such that the costs do not scale with the dimensions of the fiber array. Presented here are the characteristics of the prototype, studied under two modalities: spatial resolution, linearity, and energy dependence, characterized at the Center for Proton Therapy (Paul Scherrer Institute); the dose rate response, measured at an electron accelerator (Swiss Federal Institute of Metrology).
Collapse
Affiliation(s)
- Cigdem Ozkan Loch
- Department of Large Scale Research Facilities, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.A.E.); (S.P.Z.); (R.I.)
- Correspondence:
| | - Michael Alexander Eichenberger
- Department of Large Scale Research Facilities, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.A.E.); (S.P.Z.); (R.I.)
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.T.); (M.E.); (A.J.L.); (S.S.)
| | - Simon Pascal Zinsli
- Department of Large Scale Research Facilities, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.A.E.); (S.P.Z.); (R.I.)
| | - Martina Egloff
- Center for Proton Therapy, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.T.); (M.E.); (A.J.L.); (S.S.)
| | - Angela Papa
- Department for Research with Neutrons and Muons, Paul Scherrer Institut, 5232 Villigen, Switzerland;
| | - Rasmus Ischebeck
- Department of Large Scale Research Facilities, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.A.E.); (S.P.Z.); (R.I.)
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.T.); (M.E.); (A.J.L.); (S.S.)
| | - Peter Peier
- Laboratory Ionising Radiation, Federal Institute of Metrology (METAS), 3003 Bern-Wabern, Switzerland;
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institut, 5232 Villigen, Switzerland; (M.T.); (M.E.); (A.J.L.); (S.S.)
| |
Collapse
|
20
|
Jensen SV, Valdetaro LB, Poulsen PR, Balling P, Petersen JB, Muren LP. Dose-response of deformable radiochromic dosimeters for spot scanning proton therapy. Phys Imaging Radiat Oncol 2020; 16:134-137. [PMID: 33458356 PMCID: PMC7807645 DOI: 10.1016/j.phro.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/23/2022] Open
Abstract
Intrafractional motion and deformation influence proton therapy delivery for tumours in the thorax, abdomen and pelvis. This study aimed to test the dose-response of a compressively strained three-dimensional silicone-based radiochromic dosimeter during proton beam delivery. The dosimeter was read-out in its relaxed state using optical computed tomography and calibrated for the linear energy transfer, based on Monte Carlo simulations. A three-dimensional gamma analysis showed a 99.3% pass rate for 3%/3 mm and 93.9% for 2%/2 mm, for five superimposed measurements using deformation-including Monte Carlo dose calculations as reference. We conclude that the dosimeter's dose-response is unaffected by deformations.
Collapse
Affiliation(s)
- Simon V. Jensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Lia B. Valdetaro
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Per R. Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Ludvig P. Muren
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Jeong S, Yoon M, Chung K, Ahn SH, Lee B, Seo J. Clinical application of a gantry-attachable plastic scintillating plate dosimetry system in pencil beam scanning proton therapy beam monitoring. Phys Med 2020; 77:181-186. [DOI: 10.1016/j.ejmp.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
|
22
|
Kelleter L, Radogna R, Volz L, Attree D, Basharina-Freshville A, Seco J, Saakyan R, Jolly S. A scintillator-based range telescope for particle therapy. Phys Med Biol 2020; 65:165001. [PMID: 32422621 DOI: 10.1088/1361-6560/ab9415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The commissioning and operation of a particle therapy centre requires an extensive set of detectors for measuring various parameters of the treatment beam. Among the key devices are detectors for beam range quality assurance. In this work, a novel range telescope based on a plastic scintillator and read out by a large-scale CMOS sensor is presented. The detector is made of a stack of 49 plastic scintillator sheets with a thickness of 2-3 mm and an active area of 100 × 100 mm2, resulting in a total physical stack thickness of 124.2 mm. This compact design avoids optical artefacts that are common in other scintillation detectors. The range of a proton beam is reconstructed using a novel Bragg curve model that incorporates scintillator quenching effects. Measurements to characterise the performance of the detector were carried out at the Heidelberger Ionenstrahl-Therapiezentrum (HIT, Heidelberg, GER) and the Clatterbridge Cancer Centre (CCC, Bebington, UK). The maximum difference between the measured range and the reference range was found to be 0.41 mm at a proton beam range of 310 mm and was dominated by detector alignment uncertainties. With the new detector prototype, the water-equivalent thickness of PMMA degrader blocks has been reconstructed within ± 0.1 mm. An evaluation of the radiation hardness proves that the range reconstruction algorithm is robust following the deposition of 6,300 Gy peak dose into the detector. Furthermore, small variations in the beam spot size and transverse beam position are shown to have a negligible effect on the range reconstruction accuracy. The potential for range measurements of ion beams is also investigated.
Collapse
Affiliation(s)
- Laurent Kelleter
- Dept. Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Alsanea F, Darne C, Robertson D, Beddar S. Ionization quenching correction for a 3D scintillator detector exposed to scanning proton beams. Phys Med Biol 2020; 65:075005. [PMID: 32079001 DOI: 10.1088/1361-6560/ab7876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ionization quenching phenomenon in scintillators must be corrected to obtain accurate dosimetry in particle therapy. The purpose of this study was to develop a methodology for correcting camera projection measurements of a 3D scintillator detector exposed to proton pencil beams. Birks' ionization quenching model and the energy deposition by secondary electrons (EDSE) model were used to correct the light captured by a prototype 3D scintillator detector. The detector was made of a 20 cm × 20 cm × 20 cm tank filled with liquid scintillator, and three cameras. The detector was exposed to four proton-beam energies (84.6, 100.9, 144.9, and 161.6 MeV) at The University of Texas MD Anderson Cancer Center's Proton Therapy Center. The dose and track averaged linear energy transfer (LET) were obtained using validated Monte Carlo (MC) simulations. The corrected light output was compared to the dose calculated by the MC simulation. Optical artefact corrections were used to correct for refraction at the air-scintillator interface, and image perspective. These corrections did not account for the non-orthogonal integration of data off the central axis of the image. Therefore, we compared the light output to an integrated MC dose and LET along the non-orthogonal path. After accounting for the non-orthogonal integration of the data, the corrected light output reduced the dose error at the Bragg peak region from 15% to 3% for low proton-beam energies. Overall, the doses at the Bragg peak region using the Birks' model and EDSE model were less than ±3% and ±7% of the MC dose, respectively. We have improved the application of Birks' model quenching corrections in 3D scintillators by numerically projecting the dose and LET 3D grid to camera projections. This study shows that scintillator projections can be corrected using average LET values at the central axes.
Collapse
Affiliation(s)
- Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America. The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | | | | | | |
Collapse
|
24
|
Kelleter L, Jolly S. A mathematical expression for depth-light curves of therapeutic proton beams in a quenching scintillator. Med Phys 2020; 47:2300-2308. [PMID: 32072646 DOI: 10.1002/mp.14099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Recently, there has been increasing interest in the development of scintillator-based detectors for the measurement of depth-dose curves of therapeutic proton beams (Beaulieu and Beddar [2016], Phys Med Biol., 61:R305-R343). These detectors allow the measurement of single beam parameters such as the proton range or the reconstruction of the full three-dimensional dose distribution. Thus, scintillation detectors could play an important role in beam quality assurance, online beam monitoring, and proton imaging. However, the light output of the scintillator as a function of dose deposition is subject to quenching effects due to the high-specific energy loss of incident protons, particularly in the Bragg peak. The aim of this work is to develop a model that describes the percent depth-light curve in a quenching scintillator and allow the extraction of information about the beam range and the strength of the quenching. METHODS A mathematical expression of a depth-light curve, derived from a combination of Birks' law (Birks [1951], Proc Phys Soc A., 64:874) and Bortfeld's Bragg curve (Bortfeld [1997], Med Phys., 24:2024-2033) that is termed a "quenched Bragg" curve, is presented. The model is validated against simulation and measurement. RESULTS A fit of the quenched Bragg model to simulated depth-light curves in a polystyrene-based scintillator shows good agreement between the two, with a maximum deviation of 2.5% at the Bragg peak. The differences are larger behind the Bragg peak and in the dose build-up region. In the same simulation, the difference between the reconstructed range and the reference proton range is found to be always smaller than 0.16 mm. The comparison with measured data shows that the fitted beam range agrees with the reference range within their respective uncertainties. CONCLUSIONS The quenched Bragg model is, therefore, an accurate tool for the range measurement from quenched depth-dose curves. Moreover, it allows the reconstruction of the beam energy spread, the particle fluence, and the magnitude of the quenching effect from a measured depth-light curve.
Collapse
Affiliation(s)
- Laurent Kelleter
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London, UK
| | - Simon Jolly
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
25
|
Hsiao TY, Niu H, Chen TY, Chen CH. Develop a high energy proton beam position monitor using linear contact image sensor. MethodsX 2020; 7:100773. [PMID: 32140438 PMCID: PMC7046811 DOI: 10.1016/j.mex.2019.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
A compact beam-position monitor was constructed using a linear contact image sensor attached to a plastic scintillator and tested using a 230 MeV proton beam. The results indicate that the beam position can be obtained in real-time, and the beam position with a precision of up to 0.03 mm. The compactness and high precision of the device hold considerable potential for it to be used as a beam-position monitor and offline, daily quality assurance monitor in hadron therapy. The method can provide a high precision and high resolution beam position for flash irradiation in particle therapy in real-time. The method using contact image sensor with scintillator does not require a long focal length for camera and it is free of image distortion. The method can be integrated into medical particle accelerator for feedback control and daily quality assurance.
Collapse
|
26
|
Jeong S, Chung K, Ahn SH, Lee B, Seo J, Yoon M. Feasibility study of a plastic scintillating plate-based treatment beam fluence monitoring system for use in pencil beam scanning proton therapy. Med Phys 2019; 47:703-712. [PMID: 31732965 DOI: 10.1002/mp.13922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The purpose of this study was to describe a plastic scintillating plate-based gantry-attachable dosimetry system for pencil beam scanning proton therapy to monitor entrance proton beam fluence, and to evaluate the dosimetric characteristics of this system and its feasibility for clinical use. METHODS The dosimetry system, consisting of a plastic scintillating plate and a CMOS camera, was attached to a dedicated scanning nozzle and scintillation during proton beam irradiation was recorded. Dose distribution was calculated from the accumulated recorded frames. The dosimetric characteristics (energy dependency, dose linearity, dose rate dependency, and reproducibility) of the gantry-attachable dosimetry system for use with therapeutic proton beams were measured, and the feasibility of this system during clinical use was evaluated by determining selected quality assurance items at our institution. RESULTS The scintillating plate shortened the range of the proton beam by the water-equivalent thickness of the plate and broadened the spatial profile of the single proton spot by 11% at 70 MeV. The developed system functioned independently of the beam energy (<1.3%) and showed dose linearity, and also functioned independently of the dose rate. The feasibility of the system for clinical use was evaluated by comparing the measured quality assurance dose distribution to that of the treatment planning system. The gamma passing rate with a criterion of 3%/3 mm was 97.58%. CONCLUSIONS This study evaluated the dosimetric characteristics of a plastic scintillating plate-based dosimetry system for use with scanning proton beams. The ability to account for the interference of the dosimetry system on the therapeutic beam enabled offline monitoring of the entrance beam fluence of the pencil beam scanning proton therapy independent of the treatment system with high resolution and in a cost-effective manner.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Hwan Ahn
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Boram Lee
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaehyeon Seo
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Myonggeun Yoon
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Yabe T, Komori M, Toshito T, Yamaguchi M, Kawachi N, Yamamoto S. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry. Phys Med Biol 2018; 63:04NT02. [PMID: 29350196 DOI: 10.1088/1361-6560/aaa90c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.
Collapse
Affiliation(s)
- Takuya Yabe
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | | | |
Collapse
|