1
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
2
|
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, Rabinovici GD. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2024; 6:fcae159. [PMID: 38784820 PMCID: PMC11114609 DOI: 10.1093/braincomms/fcae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge J Llibre-Guerra
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason Hassenstab
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Silvia Vazquez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Department of Neuroscience, Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, Indiana, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Stephen Salloway
- Memory & Aging Program, Butler Hospital, Brown University in Providence, RI 02906, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Wisch JK, McKay NS, Boerwinkle AH, Kennedy J, Flores S, Handen BL, Christian BT, Head E, Mapstone M, Rafii MS, O'Bryant SE, Price JC, Laymon CM, Krinsky-McHale SJ, Lai F, Rosas HD, Hartley SL, Zaman S, Lott IT, Tudorascu D, Zammit M, Brickman AM, Lee JH, Bird TD, Cohen A, Chrem P, Daniels A, Chhatwal JP, Cruchaga C, Ibanez L, Jucker M, Karch CM, Day GS, Lee JH, Levin J, Llibre-Guerra J, Li Y, Lopera F, Roh JH, Ringman JM, Supnet-Bell C, van Dyck CH, Xiong C, Wang G, Morris JC, McDade E, Bateman RJ, Benzinger TLS, Gordon BA, Ances BM. Comparison of tau spread in people with Down syndrome versus autosomal-dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2024; 23:500-510. [PMID: 38631766 PMCID: PMC11209765 DOI: 10.1016/s1474-4422(24)00084-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING None.
Collapse
Affiliation(s)
- Julie K Wisch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| | - Nicole S McKay
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Anna H Boerwinkle
- McGovern Medical School, University of Texas in Houston, Houston, TX, USA
| | - James Kennedy
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Shaney Flores
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley T Christian
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Head
- Department of Pathology, Gillespie Neuroscience Research Facility, University of California, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sid E O'Bryant
- Institute for Translational Research Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Julie C Price
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon J Krinsky-McHale
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - H Diana Rosas
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Cambridge, UK
| | - Ira T Lott
- Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Zammit
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joseph H Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Annie Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricio Chrem
- Centro de Memoria y Envejecimiento, Buenos Aires, Argentina
| | - Alisha Daniels
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Celeste M Karch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asian Medical Center, Seoul, South Korea
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Jorge Llibre-Guerra
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jee Hoon Roh
- Departments of Physiology and Neurology, Korea University College of Medicine, Seoul, South Korea
| | - John M Ringman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | | | | | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Brian A Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
4
|
Zammit MD, Betthauser TJ, McVea AK, Laymon CM, Tudorascu DL, Johnson SC, Hartley SL, Converse AK, Minhas DS, Zaman SH, Ances BM, Stone CK, Mathis CA, Cohen AD, Klunk WE, Handen BL, Christian BT. Characterizing the emergence of amyloid and tau burden in Down syndrome. Alzheimers Dement 2024; 20:388-398. [PMID: 37641577 PMCID: PMC10843570 DOI: 10.1002/alz.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Almost all individuals with Down syndrome (DS) will develop neuropathological features of Alzheimer's disease (AD). Understanding AD biomarker trajectories is necessary for DS-specific clinical interventions and interpretation of drug-related changes in the disease trajectory. METHODS A total of 177 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) underwent positron emission tomography (PET) and MR imaging. Amyloid-beta (Aβ) trajectories were modeled to provide individual-level estimates of Aβ-positive (A+) chronicity, which were compared against longitudinal tau change. RESULTS Elevated tau was observed in all NFT regions following A+ and longitudinal tau increased with respect to A+ chronicity. Tau increases in NFT regions I-III was observed 0-2.5 years following A+. Nearly all A+ individuals had tau increases in the medial temporal lobe. DISCUSSION These findings highlight the rapid accumulation of amyloid and early onset of tau relative to amyloid in DS and provide a strategy for temporally characterizing AD neuropathology progression that is specific to the DS population and independent of chronological age. HIGHLIGHTS Longitudinal amyloid trajectories reveal rapid Aβ accumulation in Down syndrome NFT stage tau was strongly associated with A+ chronicity Early longitudinal tau increases were observed 2.5-5 years after reaching A.
Collapse
Affiliation(s)
| | - Tobey J. Betthauser
- University of Wisconsin‐Madison Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Andrew K. McVea
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
| | - Charles M. Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana L. Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sterling C. Johnson
- University of Wisconsin‐Madison Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sigan L. Hartley
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
| | | | - Davneet S. Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid H. Zaman
- Cambridge Intellectual Disability Research GroupUniversity of CambridgeCambridgeUK
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Charles K. Stone
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chester A. Mathis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T. Christian
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | |
Collapse
|
5
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
6
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
7
|
O'Connor A, Cash DM, Poole T, Markiewicz PJ, Fraser MR, Malone IB, Jiao J, Weston PSJ, Flores S, Hornbeck R, McDade E, Schöll M, Gordon BA, Bateman RJ, Benzinger TLS, Fox NC. Tau accumulation in autosomal dominant Alzheimer's disease: a longitudinal [ 18F]flortaucipir study. Alzheimers Res Ther 2023; 15:99. [PMID: 37231491 PMCID: PMC10210376 DOI: 10.1186/s13195-023-01234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Cortical tau accumulation is a key pathological event that partly defines Alzheimer's disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p < 0.001). There were no significant regional differences between presymptomatic carriers and non-carriers in FTP SUVRs, or their rates of change (p > 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK. Antoinette.o'
- UK Dementia Research Institute at UCL, London, UK. Antoinette.o'
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Pawel J Markiewicz
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Maggie R Fraser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jieqing Jiao
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Shaney Flores
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Schöll
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
8
|
Jacobs HIL, Becker JA, Kwong K, Munera D, Ramirez-Gomez L, Engels-Domínguez N, Sanchez JS, Vila-Castelar C, Baena A, Sperling RA, Johnson KA, Lopera F, Quiroz YT. Waning locus coeruleus integrity precedes cortical tau accrual in preclinical autosomal dominant Alzheimer's disease. Alzheimers Dement 2023; 19:169-180. [PMID: 35298083 PMCID: PMC9481982 DOI: 10.1002/alz.12656] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Autopsy studies recognize the locus coeruleus (LC) as one of the first sites accumulating tau in Alzheimer's disease (AD). Recent AD work related in vivo LC magnetic resonance imaging (MRI) integrity to tau and cognitive decline; however, relationships of LC integrity to age, tau, and cognition in autosomal dominant AD (ADAD) remain unexplored. METHODS We associated LC integrity (3T-MRI) with estimated years of onset, cortical amyloid beta, regional tau (positron emission tomography [PET]) and memory (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word-List-Learning) among 27 carriers and 27 non-carriers of the presenilin-1 (PSEN1) E280A mutation. Longitudinal changes between LC integrity and tau were evaluated in 10 carriers. RESULTS LC integrity started to decline at age 32 in carriers, 12 years before clinical onset, and 20 years earlier than in sporadic AD. LC integrity was negatively associated with cortical tau, independent of amyloid beta, and predicted precuneus tau increases. LC integrity was positively associated with memory. DISCUSSION These findings support LC integrity as marker of disease progression in preclinical ADAD.
Collapse
Affiliation(s)
- Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - John Alex Becker
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth Kwong
- Athinoula A. Martinos Center for Biomedial Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Munera
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Liliana Ramirez-Gomez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Justin S Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Baena
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Reisa A Sperling
- Athinoula A. Martinos Center for Biomedial Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francisco Lopera
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
9
|
Long JM, Coble DW, Xiong C, Schindler SE, Perrin RJ, Gordon BA, Benzinger TLS, Grant E, Fagan AM, Harari O, Cruchaga C, Holtzman DM, Morris JC. Preclinical Alzheimer's disease biomarkers accurately predict cognitive and neuropathological outcomes. Brain 2022; 145:4506-4518. [PMID: 35867858 PMCID: PMC10200309 DOI: 10.1093/brain/awac250] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease biomarkers are widely accepted as surrogate markers of underlying neuropathological changes. However, few studies have evaluated whether preclinical Alzheimer's disease biomarkers predict Alzheimer's neuropathology at autopsy. We sought to determine whether amyloid PET imaging or CSF biomarkers accurately predict cognitive outcomes and Alzheimer's disease neuropathological findings. This study included 720 participants, 42-91 years of age, who were enrolled in longitudinal studies of memory and aging in the Washington University Knight Alzheimer Disease Research Center and were cognitively normal at baseline, underwent amyloid PET imaging and/or CSF collection within 1 year of baseline clinical assessment, and had subsequent clinical follow-up. Cognitive status was assessed longitudinally by Clinical Dementia Rating®. Biomarker status was assessed using predefined cut-offs for amyloid PET imaging or CSF p-tau181/amyloid-β42. Subsequently, 57 participants died and underwent neuropathologic examination. Alzheimer's disease neuropathological changes were assessed using standard criteria. We assessed the predictive value of Alzheimer's disease biomarker status on progression to cognitive impairment and for presence of Alzheimer's disease neuropathological changes. Among cognitively normal participants with positive biomarkers, 34.4% developed cognitive impairment (Clinical Dementia Rating > 0) as compared to 8.4% of those with negative biomarkers. Cox proportional hazards modelling indicated that preclinical Alzheimer's disease biomarker status, APOE ɛ4 carrier status, polygenic risk score and centred age influenced risk of developing cognitive impairment. Among autopsied participants, 90.9% of biomarker-positive participants and 8.6% of biomarker-negative participants had Alzheimer's disease neuropathological changes. Sensitivity was 87.0%, specificity 94.1%, positive predictive value 90.9% and negative predictive value 91.4% for detection of Alzheimer's disease neuropathological changes by preclinical biomarkers. Single CSF and amyloid PET baseline biomarkers were also predictive of Alzheimer's disease neuropathological changes, as well as Thal phase and Braak stage of pathology at autopsy. Biomarker-negative participants who developed cognitive impairment were more likely to exhibit non-Alzheimer's disease pathology at autopsy. The detection of preclinical Alzheimer's disease biomarkers is strongly predictive of future cognitive impairment and accurately predicts presence of Alzheimer's disease neuropathology at autopsy.
Collapse
Affiliation(s)
- Justin M Long
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Dean W Coble
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Suzanne E Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Brian A Gordon
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Elizabeth Grant
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Anne M Fagan
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Oscar Harari
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Carlos Cruchaga
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - David M Holtzman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - John C Morris
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
10
|
Jiang C, Wang Q, Xie S, Chen Z, Fu L, Peng Q, Liang Y, Guo H, Guo T. OUP accepted manuscript. Brain Commun 2022; 4:fcac084. [PMID: 35441134 PMCID: PMC9014538 DOI: 10.1093/braincomms/fcac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518107, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhicheng Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, 2 Yinghuayuan Dongjie, Beijing 100029, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hongbo Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence to: Tengfei Guo, PhD Institute of Biomedical Engineering Shenzhen Bay Laboratory, No.5 Kelian Road Shenzhen 518132, China E-mail:
| | | |
Collapse
|
11
|
Chen CD, Joseph-Mathurin N, Sinha N, Zhou A, Li Y, Friedrichsen K, McCullough A, Franklin EE, Hornbeck R, Gordon B, Sharma V, Cruchaga C, Goate A, Karch C, McDade E, Xiong C, Bateman RJ, Ghetti B, Ringman JM, Chhatwal J, Masters CL, McLean C, Lashley T, Su Y, Koeppe R, Jack C, Klunk WE, Morris JC, Perrin RJ, Cairns NJ, Benzinger TLS. Comparing amyloid-β plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease. Acta Neuropathol 2021; 142:689-706. [PMID: 34319442 PMCID: PMC8815340 DOI: 10.1007/s00401-021-02342-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Pittsburgh compound B (PiB) radiotracer for positron emission tomography (PET) imaging can bind to different types of amyloid-β plaques and blood vessels (cerebral amyloid angiopathy). However, the relative contributions of different plaque subtypes (diffuse versus cored/compact) to in vivo PiB PET signal on a region-by-region basis are incompletely understood. Of particular interest is whether the same staging schemes for summarizing amyloid-β burden are appropriate for both late-onset and autosomal dominant forms of Alzheimer disease (LOAD and ADAD). Here, we compared antemortem PiB PET with follow-up postmortem estimation of amyloid-β burden using stereologic methods to estimate the relative area fraction of diffuse and cored/compact amyloid-β plaques across 16 brain regions in 15 individuals with ADAD and 14 individuals with LOAD. In ADAD, we found that PiB PET correlated with diffuse plaques in the frontal, parietal, temporal, and striatal regions commonly used to summarize amyloid-β burden in PiB PET, and correlated with both diffuse and cored/compact plaques in the occipital lobe and parahippocampal gyrus. In LOAD, we found that PiB PET correlated with both diffuse and cored/compact plaques in the anterior cingulate, frontal lobe (middle frontal gyrus), and parietal lobe, and showed additional correlations with diffuse plaque in the amygdala and occipital lobe, and with cored/compact plaque in the temporal lobe. Thus, commonly used PiB PET summary regions predominantly reflect diffuse plaque burden in ADAD and a mixture of diffuse and cored/compact plaque burden in LOAD. In direct comparisons of ADAD and LOAD, postmortem stereology identified much greater mean amyloid-β plaque burdens in ADAD versus LOAD across almost all brain regions studied. However, standard PiB PET did not recapitulate these stereologic findings, likely due to non-trivial amyloid-β plaque burdens in ADAD within the cerebellum and brainstem-commonly used reference regions in PiB PET. Our findings suggest that PiB PET summary regions correlate with amyloid-β plaque burden in both ADAD and LOAD; however, they might not be reliable in direct comparisons of regional amyloid-β plaque burden between the two forms of AD.
Collapse
Affiliation(s)
- Charles D Chen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Namita Sinha
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology, University of Manitoba, Shared Health, Winnipeg, MB, Canada
| | - Aihong Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Karl Friedrichsen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin McCullough
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Erin E Franklin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John M Ringman
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Catriona McLean
- Department of Anatomic Pathology, Alfred Hospital, Melbourne, VIC, Australia
| | - Tammaryn Lashley
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Yi Su
- Banner Alzheimer's Institute, Banner Health, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Banner Health, Phoenix, AZ, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Clifford Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
12
|
Boerwinkle AH, Wisch JK, Chen CD, Gordon BA, Butt OH, Schindler SE, Sutphen C, Flores S, Dincer A, Benzinger TLS, Fagan AM, Morris JC, Ances BM. Temporal Correlation of CSF and Neuroimaging in the Amyloid-Tau-Neurodegeneration Model of Alzheimer Disease. Neurology 2021; 97:e76-e87. [PMID: 33931538 DOI: 10.1212/wnl.0000000000012123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/23/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate temporal correlations between CSF and neuroimaging (PET and MRI) measures of amyloid, tau, and neurodegeneration in relation to Alzheimer disease (AD) progression. METHODS A total of 371 cognitively unimpaired and impaired participants enrolled in longitudinal studies of AD had both CSF (β-amyloid [Aβ]42, phosphorylated tau181, total tau, and neurofilament light chain) and neuroimaging (Pittsburgh compound B [PiB] PET, flortaucipir PET, and structural MRI) measures. The pairwise time interval between CSF and neuroimaging measures was binned into 2-year periods. Spearman correlations identified the time bin when CSF and neuroimaging measures most strongly correlated. CSF and neuroimaging measures were then binarized as biomarker-positive or biomarker-negative using Gaussian mixture modeling. Cohen kappa coefficient identified the time bin when CSF measures best agreed with corresponding neuroimaging measures when determining amyloid, tau, and neurodegeneration biomarker positivity. RESULTS CSF Aβ42 and PiB PET showed maximal correlation when collected within 6 years of each other (R ≈ -0.5). CSF phosphorylated tau181 and flortaucipir PET showed maximal correlation when CSF was collected 4 to 8 years prior to PET (R ≈ 0.4). CSF neurofilament light chain and cortical thickness showed low correlation, regardless of time interval (R avg ≈ -0.3). Similarly, CSF total tau and cortical thickness had low correlation, regardless of time interval (R avg < -0.2). CONCLUSIONS CSF Aβ42 and PiB PET best agree when acquired in close temporal proximity, whereas CSF phosphorylated tau precedes flortaucipir PET by 4 to 8 years. CSF and neuroimaging measures of neurodegeneration have low correspondence and are not interchangeable at any time interval.
Collapse
Affiliation(s)
- Anna H Boerwinkle
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Julie K Wisch
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Charles D Chen
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Brian A Gordon
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Omar H Butt
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Suzanne E Schindler
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Courtney Sutphen
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Shaney Flores
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Aylin Dincer
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Tammie L S Benzinger
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Anne M Fagan
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - John C Morris
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO
| | - Beau M Ances
- From the Departments of Neurology (A.H.B., J.K.W., O.H.B., S.E.S., C.S., A.M.F., J.C.M., B.M.A.) and Radiology (C.D.C., B.A.G., S.F., A.D., T.L.S.B.), Washington University in St. Louis, MO.
| |
Collapse
|