1
|
Peng H, Liang Z, Huang B, Zhang S, Yang Y. Negative association of serum neurofilament light chain with estimated glomerular filtration rate levels and the impact of gender. Front Neurol 2024; 15:1457984. [PMID: 39323436 PMCID: PMC11422151 DOI: 10.3389/fneur.2024.1457984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Background The relationship between kidney function and brain function is complex and poorly understood. This study aims to investigate the association between serum neurofilament light chain (sNfL) and levels of estimated glomerular filtration rate (eGFR), offering new insights into their interactions. Methods Data from the national health and nutrition examination survey (NHANES) in 2013-2014, linked with national death index records, were used. Participants who met specific criteria were analyzed. Baseline characteristics were stratified by tertiles of sNfL levels and compared using weighted Kruskal-Wallis and chi-square tests. Weighted linear regression models, both unadjusted and adjusted, evaluated the relationship between log sNfL and eGFR. Subgroup and interaction analyses validated the findings. Restricted cubic spline, scatter plots, and Spearman correlation confirmed the relationship between log sNfL and eGFR. Results A total of 2,038 eligible participants were included. Higher sNfL levels were significantly associated with lower eGFR (p < 0.01). The highest sNfL tertile had a significantly higher mortality rate (p < 0.01). Fully adjusted multivariable weighted linear regression showed a significant negative correlation between log sNfL and eGFR (per 10-unit increase; β = -0.07, 95% CI: -0.10 to -0.04, p < 0.01). Subgroup analyses consistently supported this negative correlation (p < 0.01). Interaction analysis revealed a significant gender difference (p = 0.032), with males showing a - 0.06 (-0.09, -0.04) decrease and females a - 0.07 (-0.11, -0.04) decrease in log sNfL per 10-unit increase in eGFR. Restricted cubic spline confirmed a linear relationship (p-non-linear = 0.121), and the Spearman correlation coefficient was -0.45. Females had slightly lower log sNfL levels compared to males at equivalent eGFR levels. Conclusion A significant negative correlation was found between log sNfL and eGFR levels. Gender influenced the degree of this negative association. Further research is needed to validate these findings and elucidate their underlying mechanisms.
Collapse
Affiliation(s)
- Hongyan Peng
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Intensive Care Medicine, Liuzhou Hospital of Affiliated Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Zhuoxin Liang
- Department of Intensive Care Medicine, Liuzhou Hospital of Affiliated Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Bolun Huang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Senxiong Zhang
- Department of Intensive Care Medicine, Liuzhou Hospital of Affiliated Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Yiyu Yang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu X, Yang Y, Lu Q, Yang J, Yuan J, Hu J, Tu Y. Association between systemic immune-inflammation index and serum neurofilament light chain: a population-based study from the NHANES (2013-2014). Front Neurol 2024; 15:1432401. [PMID: 39239395 PMCID: PMC11374650 DOI: 10.3389/fneur.2024.1432401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Background The systemic immune-inflammation index (SII) is a novel inflammatory marker used to assess the immune-inflammatory status of the human body. The systemic immune inflammation has an interplay and mutual relationship with neurological disorders. Serum neurofilament light chain (sNfL) is widely regarded as a potential biomarker for various neurological diseases. The study aimed to examine the association between SII and sNfL. Methods This cross-sectional investigation was conducted in a population with complete data on SII and sNfL from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). The SII was calculated by dividing the product of platelet count and neutrophil count by the lymphocyte count. Multivariate linear regression models and smooth curves were used to explore the linear connection between SII and sNfL. Sensitivity analyses, interaction tests, and diabetes subgroup smoothing curve fitting were also performed. Results A total of 2,025 participants were included in our present research. SII showed a significant positive association with the natural logarithm-transformed sNfL (ln-sNfL) in crude model [0.17 (0.07, 0.28)], partially adjusted model [0.13 (0.03, 0.22)], and fully adjusted model [0.12 (0.02, 0.22)]. In all participants, the positive association between SII and ln-sNfL served as a linear relationship, as indicated by a smooth curve. Interaction tests showed that age, gender, BMI, hypertension, and diabetes did not have a significant impact on this positive association (p for interaction >0.05). The subgroup analysis of diabetes was conducted using smooth curve fitting. It was found that compared to the group without diabetes and the group in a pre-diabetic state, the effect was more pronounced in the group with diabetes. Conclusion Our findings suggest that there is a positive association between SII and sNfL. Furthermore, in comparison to individuals without diabetes and those in a pre-diabetic state, the positive association between SII and sNfL was more pronounced in individuals with diabetes. Further large-scale prospective studies are needed to confirm the association between SII and sNfL.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Traditional Chinese Medicine Rehabilitation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Yang
- Department of Big Data Management and Application, Health Economics and Management College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiutong Lu
- Department of Chinese Medicine, The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianshu Yang
- Department of Acupuncture, Moxibustion and Massage, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yuan
- Department of Traditional Chinese Medicine Rehabilitation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Hu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Tortosa-Carreres J, Cubas-Núñez L, Quiroga-Varela A, Castillo-Villalba J, Ramió-Torrenta L, Piqueras M, Gasqué-Rubio R, Quintanilla-Bordas C, Sanz MT, Lucas C, Huertas-Pons JM, Miguela A, Casanova B, Laiz-Marro B, Pérez-Miralles FC. Predictive potential of serum and cerebrospinal fluid biomarkers for disease activity in treated multiple sclerosis patients. Mult Scler Relat Disord 2024; 88:105734. [PMID: 38909525 DOI: 10.1016/j.msard.2024.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Our objective was to explore various biomarkers for predicting suboptimal responses to disease-modifying treatments (DMTs) in patients with MS (pwMS). METHODS We conducted a longitudinal, bicentric study with pwMS stratified based on their DMTs responses. Treatment failure (TF) was defined as the onset of a second relapse, presence of two or more T2 new lesions, or disability progression independent of relapse during the follow-up period. We evaluated intrathecal synthesis (ITS) of IgG and IgM using OCB, linear indices, and Reibergrams. Free kappa light chains ITS was assessed using the linear index (FKLCi). NfL and GFAP in serum and CSF, and CHI3L1 in CSF were quantified. Quantitative variables were dichotomized based on the third quartile. Predictive efficacy was assessed through bivariate and multivariate analyses, adjusting for age, sex, EDSS, acute inflammatory activity (AI) -defined as the onset of a relapse or gadolinium-enhancing lesions within a 90-day window of lumbar puncture-, treatment modality, study center, and time from disease onset to treatment initiation. In case of collinearity, multiple models were generated or confounding variables were excluded if collinearity existed between them and the biomarker. The same methodology was used to investigate the predictive potential of various combinations of two biomarkers, based on whether any of them tested positive or exceeded the third quartile. RESULTS A total of 137 pwMS were included. FKLCi showed no differences based on AI, no correlation with EDSS and was significantly higher in pwMS with TF (p = 0.008). FKLCi>130 was associated with TF in bivariate analysis (Log-Rank p = 0.004). Due to collinearity between age and EDSS, two different models were generated with each of them and the rest of the confounding variables, in which FKLCi>130 showed a Hazard Ratio (HR) of 2.69 (CI: 1.35-5.4) and 2.67 (CI: 1.32-5.4), respectively. The combination of either FKLC or sNfL exceeding the third quartile was also significant in bivariate (Log-Rank p = 0.04) and multivariate (HR=3.1 (CI: 1.5-6.5)) analyses. However, when analyzed independently, sNfL did not show significance, and FKLCi mirrored the pattern obtained in the previous model (HR: 3.04; CI: 1.51-6.1). Treatment with highefficacy DMTs emerged as a protective factor in all models. DISCUSSION Our analysis and the fact that FKLCi is independent of EDSS and AI suggest that it might be a valuable parameter for discriminating aggressive phenotypes. We propose implementing high-efficacy drugs in pwMS with elevated FKLCi.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Medicine Department, University of Valencia, Valencia 46010, Spain; Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
| | - Laura Cubas-Núñez
- Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
| | - Ana Quiroga-Varela
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain
| | - Jessica Castillo-Villalba
- Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain
| | - Lluís Ramió-Torrenta
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain
| | - Mónica Piqueras
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Medicine Department, University of Valencia, Valencia 46010, Spain; Respiratory Infections, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Raquel Gasqué-Rubio
- Medicine Department, University of Valencia, Valencia 46010, Spain; Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Carlos Quintanilla-Bordas
- Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Maria Teresa Sanz
- Department of Didactic of Mathematics, University of Valencia, Spain
| | - Celia Lucas
- Computer Systems, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Joana María Huertas-Pons
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain
| | - Albert Miguela
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Begoña Laiz-Marro
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Francisco Carlos Pérez-Miralles
- Neuroimmunology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| |
Collapse
|
4
|
Bava CI, Valentino P, Malucchi S, Bottero R, Martire S, Sapio AD, Bertolotto A. Prevalence of elevated sNFL in a real-world setting: Results on 908 patients with different multiple sclerosis types and treatment conditions. Mult Scler Relat Disord 2024; 88:105748. [PMID: 38959590 DOI: 10.1016/j.msard.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND In the field of research for new validated surrogate biomarkers of treatment efficacy, disease activity and progression in Multiple Sclerosis (MS), serum neurofilament light-chain (sNFL) are actually the best candidate for MS patient monitoring. However, before they can be implemented in clinical practice, their usefulness as additional red flag routine measure must be demonstrated. To tackle the problem, this real-life cross-sectional study at the Regional Referring Center for Multiple Sclerosis (CRESM) aims to characterize sNFL levels and prevalence of elevated sNFL, according to our age-dependent cut-off values, in a large group of patients with different types of MS and treatment conditions. METHODS 908 serum samples from as many MS patients being admitted at CRESM for diagnostic definition and/or during routinary treatment monitoring were consecutively collected between January 2019 and January 2020. sNFL levels were measured by single molecule array (Simoa™) technology on SR-X instrument using NF-light assays (Quanterix); results were interpreted using previously published cut-off values. RESULTS Primary and Secondary Progressive MS (PPMS, SPMS) forms demonstrate higher levels and prevalence of elevated sNFL (PPMS= 32 %, SPMS= 21 %) compared to the Relapse and Remitting one (RRMS = 12 %). Besides, naïve samples of RRMS and PPMS subtypes showed higher prevalence of elevated sNFL (RRMS naïve= 31 %, PPMS naïve=67 %) compared to samples from patients treated for more than 12 months (RRMS treat>12m= 9 %, PPMS treat>12m= 19 %); treated SPMS patients demonstrated higher sNFL levels and a prevalence (22 %) of elevated sNFL compared to RRMS treated patients. Focusing on RRMS, no statistical difference was found between groups of patients treated for whatever time (up to or more than 60 months) and with either DMT type (high or low-efficacy DMT). Finally, RRMS patients treated with all DMTs for more than 12 months, with the exception of teriflunomide and alemtuzumab showed a prevalence of elevated sNFL in the range of 5-10 %. CONCLUSION in a real-world setting comprising about 1000 MS patients, sNFL quantification was elevated in 5-to-67 % of patients, in different MS forms and treatment conditions. Elevated levels of sNFL must be considered a red-flag suggesting the need of a further clinical monitoring in any circumstance, as it can be indicative of new inflammation, ongoing degeneration or co-morbidities. This study supports the introduction of sNFL quantification in everyday patient management.
Collapse
Affiliation(s)
- Cecilia Irene Bava
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy; CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy.
| | - Paola Valentino
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Simona Malucchi
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Rugiada Bottero
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Serena Martire
- CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neuroscience "Rita Levi Montalcini", University of Turin, Italy
| | - Alessia Di Sapio
- CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | | |
Collapse
|
5
|
Ashrafzadeh-Kian S, Figdore D, Larson B, Deters R, Abou-Diwan C, Bornhorst J, Algeciras-Schimnich A. Head-to-head comparison of four plasma neurofilament light chain (NfL) immunoassays. Clin Chim Acta 2024; 561:119817. [PMID: 38879065 DOI: 10.1016/j.cca.2024.119817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Neurofilament Light Chain (NfL) is an emerging blood biomarker of neuro-axonal injury and neurodegeneration with the potential to be used in the clinical management of various neurological conditions. Various NfL immunoassays are in development on high-throughput automated systems, but little information is available related to the comparability between assays. In this study, we performed a head-to-head comparison of four NfL immunoassays using plasma samples from individuals with various neurological conditions. METHODS EDTA plasma samples in which NfL was ordered clinically were stratified according to diagnosis. NfL concentrations (pg/mL) in plasma were obtained using the Quanterix Simoa®, the Roche Elecsys, the Siemens Healthineers Atellica®IM, and the Fujirebio Lumipulse® NfL assays. Passing-Bablok regression analyses were performed to assess the correlation and bias between methods. Additionally, the distribution of NfL concentrations for each assay was assessed in three disease groups: amyotrophic lateral sclerosis (ALS) upon initial diagnosis, ALS treated, and multiple sclerosis (MS). RESULTS The R2 between assays were all ≥ 0.95, however, significant proportional bias was observed between some assays. In particular, the Roche Elecsys assay NfL concentrations were significantly lower (∼85 %) when compared against the other three assays. The four assays were comparable with regards to the percentage of patients that were identified as having an elevated NfL result in the various clinical groups: ALS initial diagnoses (83-94 %), ALS untreated (93-100 %), and MS (8-18 %). CONCLUSIONS This is the first study describing a head-to-head comparison of four automated NfL immunoassays. We demonstrate that there is a strong correlation between assays but a lack of standardization which is evident by the bias observed between some of the evaluated methods. These analytical differences will be important to consider when using NfL as a biomarker of neurodegeneration.
Collapse
Affiliation(s)
| | - Daniel Figdore
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bethany Larson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rebecca Deters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Joshua Bornhorst
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Krieger S, Cook K, Hersh CM. Understanding multiple sclerosis as a disease spectrum: above and below the clinical threshold. Curr Opin Neurol 2024; 37:189-201. [PMID: 38535979 PMCID: PMC11064902 DOI: 10.1097/wco.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Research in multiple sclerosis (MS) has long been predicated on clinical groupings that do not reflect the underlying biologic heterogeneity apparent within patient populations. This review explicates the various levels of explanation through which the spectrum of disease is described and investigated both above and below the clinical threshold of detection, as framed by the topographical model of MS, to help advance a cogent mechanistic framework. RECENT FINDINGS Contemporary evidence has amended the view of MS as consisting of sequential disease phases in favor of a spectrum of disease with an admixture of interdependent and dynamic pathobiological axes driving tissue injury and progression. Recent studies have shown the presence of acute and compartmentalized inflammation and mechanisms of neurodegeneration beginning early and evolving throughout the disease continuum. Still, the gap between the understanding of immunopathologic processes in MS and the tools used to measure relevant molecular, laboratory, radiologic, and clinical metrics needs attention to enable better prognostication of disease and monitoring for changes along specific pathologic axes and variable treatment outcomes. SUMMARY Aligning on a consistently-applied mechanistic framework at distinct levels of explanation will enable greater precision across bench and clinical research, and inform discourse on drivers of disability progression and delivery of care for individuals with MS.
Collapse
Affiliation(s)
- Stephen Krieger
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai
| | - Karin Cook
- Medical Education Director, Neurology at Heartbeat/Publicis Health, New York
| | - Carrie M. Hersh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic Las Vegas, Nevada, USA
| |
Collapse
|
7
|
Fox RJ, Cree BAC, de Sèze J, Gold R, Hartung HP, Jeffery D, Kappos L, Montalban X, Weinstock-Guttman B, Singh CM, Altincatal A, Belviso N, Avila RL, Ho PR, Su R, Engle R, Sangurdekar D, de Moor C, Fisher E, Kieseier BC, Rudick RA. Temporal Relationship Between Serum Neurofilament Light Chain and Radiologic Disease Activity in Patients With Multiple Sclerosis. Neurology 2024; 102:e209357. [PMID: 38648580 PMCID: PMC11175646 DOI: 10.1212/wnl.0000000000209357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Serum neurofilament light chain (sNfL) levels correlate with multiple sclerosis (MS) disease activity, but the dynamics of this correlation are unknown. We evaluated the relationship between sNfL levels and radiologic MS disease activity through monthly assessments during the 24-week natalizumab treatment interruption period in RESTORE (NCT01071083). METHODS In the RESTORE trial, participants with relapsing forms of MS who had received natalizumab for ≥12 months were randomized to either continue or stop natalizumab and followed with MRI and blood draws every 4 weeks to week 28 and again at week 52 The sNfL was measured, and its dynamics were correlated with the development of gadolinium-enhancing (Gd+) lesions. Log-linear trend in sNfL levels were modeled longitudinally using generalized estimating equations with robust variance estimator from baseline to week 28. RESULTS Of 175 patients enrolled in RESTORE, 166 had serum samples for analysis. Participants with Gd+ lesions were younger (37.7 vs 43.1, p = 0.001) and had lower Expanded Disability Status Scale scores at baseline (2.7 vs 3.4, p = 0.017) than participants without Gd+ lesions. sNfL levels increased in participants with Gd+ lesions (n = 65) compared with those without (n = 101, mean change from baseline to maximum sNfL value, 12.1 vs 3.2 pg/mL, respectively; p = 0.003). As the number of Gd+ lesions increased, peak median sNfL change also increased by 1.4, 3.0, 4.3, and 19.6 pg/mL in the Gd+ lesion groups of 1 (n = 12), 2-3 (n = 18), 4-9 (n = 21), and ≥10 (n = 14) lesions, respectively. However, 46 of 65 (71%) participants with Gd+ lesions did not increase above the 95th percentile threshold of the group without Gd+ lesions. The initial increase of sNfL typically trailed the first observation of Gd+ lesions, and the peak increase in sNfL was a median [interquartile range] of 8 [0, 12] weeks after the first appearance of the Gd+ lesion. DISCUSSION Although sNfL correlated with the presence of Gd+ lesions, most participants with Gd+ lesions did not have elevations in sNfL levels. These observations have implications for the use and interpretation of sNfL as a biomarker for monitoring MS disease activity in controlled trials and clinical practice.
Collapse
Affiliation(s)
- Robert J Fox
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Bruce A C Cree
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Jérôme de Sèze
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Ralf Gold
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Hans-Peter Hartung
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Douglas Jeffery
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Ludwig Kappos
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Xavier Montalban
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Bianca Weinstock-Guttman
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Carol M Singh
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Arman Altincatal
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Nicholas Belviso
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Robin L Avila
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Pei-Ran Ho
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Ray Su
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Robert Engle
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Dipen Sangurdekar
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Carl de Moor
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Elizabeth Fisher
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Bernd C Kieseier
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| | - Richard A Rudick
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Neurological Institute, Cleveland Clinic, OH; Department of Neurology (B.A.C.C.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (J.S.), Hôpital Civil, Strasbourg, France; Department of Neurology (R.G.), St. Josef Hospital, Ruhr University, Bochum, Germany; Department of Neurology (H.-P.H.), Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Australia; Department of Neurology, Palacky University Olomouc, Czech Republic; Piedmont HealthCare (D.J.), Mooresville, NC; Research Center for Clinical Neuroimmunology and Neuroscience and MS Center (L.K.); Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Switzerland; Vall d'Hebron University Hospital (X.M.), Barcelona, Spain; Jacobs Multiple Sclerosis Center and Pediatric Multiple Sclerosis Center of Excellence (B.W.-G.), Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY; and Biogen (C.M.S., A.A., N.B., R.L.A., P.-R.H., R.S., R.E., D.S., C.M., E.F., B.C.K., R.A.R.), Cambridge, MA
| |
Collapse
|
8
|
Bou Rjeily N, Mowry EM, Ontaneda D, Carlson AK. Highly Effective Therapy Versus Escalation Approaches in Early Multiple Sclerosis: What Is the Future of Multiple Sclerosis Treatment? Neurol Clin 2024; 42:185-201. [PMID: 37980115 DOI: 10.1016/j.ncl.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Treatment options for patients newly diagnosed with multiple sclerosis (MS) are expanding with the continuous development and approval of new disease-modifying therapies (DMTs). The optimal initial treatment strategy, however, remains unclear. The 2 main treatment paradigms currently employed are the escalation (ESC) approach and the early highly effective treatment (EHT) approach. The ESC approach consists of starting a lower- or moderate-efficacy DMT, which offers a potentially safer approach, while the EHT approach favors higher-efficacy treatment early in the disease course, despite a potential increase in risk. Randomized clinical trials aiming to directly compare these approaches in newly diagnosed MS patients are currently underway.
Collapse
Affiliation(s)
- Nicole Bou Rjeily
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA; Department of Epidemiology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA
| | - Daniel Ontaneda
- Cleveland Clinic Mellen Center, 9500 Euclid Avenue U10, Cleveland, OH 44195, USA
| | - Alise K Carlson
- Cleveland Clinic Mellen Center, 9500 Euclid Avenue U10, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Chertcoff A, Schneider R, Azevedo CJ, Sicotte N, Oh J. Recent Advances in Diagnostic, Prognostic, and Disease-Monitoring Biomarkers in Multiple Sclerosis. Neurol Clin 2024; 42:15-38. [PMID: 37980112 DOI: 10.1016/j.ncl.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease. Currently, a combination of clinical features, MRI, and cerebrospinal fluid markers are used in clinical practice for diagnosis and treatment decisions. In recent years, there has been considerable effort to develop novel biomarkers that better reflect the pathologic substrates of the disease to aid in diagnosis and early prognosis, evaluation of ongoing inflammatory activity, detection and monitoring of disease progression, prediction of treatment response, and monitoring of disease-modifying treatment safety. In this review, the authors provide an overview of promising recent developments in diagnostic, prognostic, and disease-monitoring/treatment-response biomarkers in MS.
Collapse
Affiliation(s)
- Anibal Chertcoff
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine, University of Southern California, HCT 1520 San Pablo Street, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Nancy Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, 127 S San Vicente Boulevard, 6th floor, Suite A6600, Los Angeles, CA 90048, USA
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Sotirchos ES, Hu C, Smith MD, Lord HN, DuVal AL, Arrambide G, Montalban X, Akgün K, Ziemssen T, Naismith RT, Hersh CM, Hyland M, Krupp LB, Nicholas JA, Bermel RA, Mowry EM, Calabresi PA, Fitzgerald KC. Agreement Between Published Reference Resources for Neurofilament Light Chain Levels in People With Multiple Sclerosis. Neurology 2023; 101:e2448-e2453. [PMID: 37816633 PMCID: PMC10752633 DOI: 10.1212/wnl.0000000000207957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES To examine the agreement between published reference resources for neurofilament light chain (NfL) applied to a large population of people with multiple sclerosis (MS). METHODS Six published reference resources were used to classify NfL in participants in the Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) network as elevated or normal and to derive age-specific NfL Z-scores. NfL values were classified as elevated if they exceeded the >95th percentile (i.e., Z-score >1.645) of the age-specific reference range. Furthermore, age-specific NfL Z-scores could be derived for 4 of 6 reference resources. RESULTS NfL measurements were assessed from 12,855 visits of 6,687 people with MS (median 2 samples per individual [range 1-7]). The mean ± SD age was 47.1 ± 11.7 years, 72.1% of participants were female, disease duration was 15.0 ± 10.6 years, body mass index was 28.6 ± 6.9 kg/m2, and serum NfL was 12.87 ± 12.86 pg/mL. Depending on the selection of the reference resource, the proportion of NfL measurements classified as elevated varied from 3.7% to 30.9%. The kappa coefficient across the 6 reference resources used was 0.576 (95% CI 0.571-0.580) indicating moderate agreement. Spearman correlations between Z-scores derived from the various reference resources exceeded 0.90; however, concordance coefficients were lower, ranging from 0.72 to 0.89. DISCUSSION Interpretation of blood NfL values may vary markedly depending on the selection of the reference resource. Borderline elevated values should be interpreted with caution, and future studies should focus on standardizing NfL measurement and reporting across laboratories/platforms, better characterizing the effects of confounding/influencing factors, and defining the performance of NfL (including as part of multimodal predictive algorithms) for prediction of disease-specific outcomes.
Collapse
Affiliation(s)
- Elias S Sotirchos
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH.
| | - Chen Hu
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Matthew D Smith
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Hannah-Noelle Lord
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Anna L DuVal
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Georgina Arrambide
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Xavier Montalban
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Katja Akgün
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Tjalf Ziemssen
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Robert T Naismith
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Carrie M Hersh
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Megan Hyland
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Lauren B Krupp
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Jacqueline A Nicholas
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Robert A Bermel
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Ellen M Mowry
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Peter A Calabresi
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH
| | - Kathryn C Fitzgerald
- From the Johns Hopkins University School of Medicine (E.S.S., C.H., M.D.S., H.-N.L., A.L.D., E.M.M., P.A.C., K.C.F.), Baltimore, MD; Department of Neurology-Neuroimmunology (G.A., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Spain; Center of Clinical Neuroscience (K.A., T.Z.), Department of Neurology, University Clinic Carl-Gustav Carus, TU Dresden, Germany; Department of Neurology (R.T.N.), Washington University in St. Louis, MO; Lou Ruvo Center for Brain Health (C.M.H.), Cleveland Clinic, Las Vegas, NV; Department of Neurology (M.H.), University of Rochester Medical Center, NY; Department of Neurology (L.B.K.), New York University, New York City; OhioHealth Multiple Sclerosis Center (J.A.N.), Riverside Methodist Hospital, Columbus; and Mellen Center (R.A.B.), Neurological Institute, Cleveland Clinic, OH.
| |
Collapse
|
11
|
Ghezzi A, Neuteboom RF. Neurofilament Light Chain in Adult and Pediatric Multiple Sclerosis: A Promising Biomarker to Better Characterize Disease Activity and Personalize MS Treatment. Neurol Ther 2023; 12:1867-1881. [PMID: 37682513 PMCID: PMC10630260 DOI: 10.1007/s40120-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Many biological markers have been explored in multiple sclerosis (MS) to better quantify disease burden and better evaluate response to treatments, beyond clinical and MRI data. Among these, neurofilament light chain (Nf-L), although non-specific for this disease and found to be increased in other neurological conditions, has been shown to be the most promising biomarker for assessing axonal damage in MS, with a definite role in predicting the development of MS in patients at the first neurological episode suggestive of MS, and also in a preclinical phase. There is strong evidence that Nf-L levels are increased more in relapsing versus stable MS patients, and that they predict future disease evolution (relapses, progression, MRI measures of activity/progression) in MS patients, providing information on response to therapy, helping to anticipate clinical decisions in patients with an apparently stable evolution, and identifying patient non-responders to disease-modifying treatments. Moreover, Nf-L can contribute to the better understanding of the mechanisms of demyelination and axonal damage in adult and pediatric MS. A fundamental requirement for its clinical use is the accurate standardization of normal values, corrected for confounding factors, in particular age, sex, body mass index, and presence of comorbidities. In this review, a guide is provided to update clinicians on the use of Nf-L in clinical activity.
Collapse
Affiliation(s)
- Angelo Ghezzi
- Dipartimento di Scienze della Salute, Università Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100, Novara, Italy.
| | - R F Neuteboom
- Department of Neurology, ErasMS Center, Erasmus MC, PO Box 2040, 3000, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Sormani MP, Schiavetti I, Ponzano M, Colato E, De Stefano N. Treatment Effect on Brain Atrophy Correlates with Treatment Effect on Cognition in Multiple Sclerosis. Ann Neurol 2023; 94:925-932. [PMID: 37496368 DOI: 10.1002/ana.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the extent to which treatment effect on magnetic resonance imaging (MRI)-derived measures of brain atrophy and focal lesions can mediate, at the trial level, the treatment effect on cognitive outcomes in multiple sclerosis (MS). METHODS We collected all published randomized clinical trials in MS lasting at least 2 years and including as end points: active MRI lesions (defined as new/enlarging T2 lesions), brain atrophy (defined as a change in brain volume between month 12 and month 24), and change in cognitive performance (assessed by the Paced Auditory Serial Addition Test [PASAT]). Relative reductions were used to quantify the treatment effect on MRI markers (lesions and atrophy), whereas the standardized mean difference (Hedges g) between baseline and follow-up cognitive assessment was used to quantify the treatment effects on cognition. A linear regression, weighted for trial size, was used to assess the relationship between the treatment effects on MRI markers and cognition. RESULTS Fourteen trials including more than 8,813 patients with MS were included in the meta-regression. Treatment effect on cognition was strongly associated with the treatment effect on brain atrophy (R2 = 0.79, p < 0.001), but was not correlated with the treatment effect on active MRI lesions (R2 = 0.16, p = 0.14). INTERPRETATION Results reported here suggest that brain atrophy, a well-established MRI marker in MS clinical trials, can be used as a main outcome for clinical trials with drugs targeting cognitive impairment and neurodegeneration. ANN NEUROL 2023;94:925-932.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Schiavetti
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Marta Ponzano
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Elisa Colato
- Department of Anatomy and Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicola De Stefano
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Carobene A, Maiese K, Abou-Diwan C, Locatelli M, Serteser M, Coskun A, Unsal I. Biological variation estimates for serum neurofilament light chain in healthy subjects. Clin Chim Acta 2023; 551:117608. [PMID: 37844678 DOI: 10.1016/j.cca.2023.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES Neurofilament light chain (NfL) is an emerging biomarker of neurodegeneration disorders. Knowledge of the biological variation (BV) can facilitate proper interpretation between serial measurements. Here BV estimates for serum NfL (sNfL) are provided. METHODS Serum samples were collected weekly from 24 apparently healthy subjects for 10 consecutive weeks and analyzed in duplicate using the Siemens Healthineers sNfL assay on the Atellica® IM Analyzer. Outlier detection, variance homogeneity analyses, and trend analysis were performed followed by CV-ANOVA to determine BV and analytical variation (CVA) estimates with 95%CI and the associated reference change values (RCV) and analytical performance specifications (APS). RESULTS Despite observed differences in sNfL concentrations between males and females, BV estimates remained consistent across genders. Both within-subject BV (CVI) for males (10.7%, 95%CI; 9.2-12.6) and females (9.1%, 95%CI; 7.8-10.9) and between-subject BV (CVG) for males (26.1%, 95%CI; 18.0-45.6) and females (30.2%, 95%CI; 20.9-53.5) were comparable. An index of individuality value of 0.33 highlights significant individuality, indicating the potential efficacy of personalized reference intervals in patient monitoring. CONCLUSIONS The established BV estimates for sNfL underscore its potential as a valuable biomarker for monitoring neurodegenerative diseases, offering a foundation for improved decision-making in clinical settings.
Collapse
Affiliation(s)
- Anna Carobene
- Laboratory Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | | | | - Massimo Locatelli
- Laboratory Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mustafa Serteser
- Acibadem Mehmet Ali Aydınlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Abdurrahman Coskun
- Acibadem Mehmet Ali Aydınlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Ibrahim Unsal
- Acibadem Mehmet Ali Aydınlar University, School of Medicine, Atasehir, Istanbul, Turkey
| |
Collapse
|
14
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
15
|
Chen Z, Wu LP, Peng TC. Prediabetes is associated with a higher serum neurofilament light chain level in adolescents. Front Endocrinol (Lausanne) 2023; 14:1207045. [PMID: 37435483 PMCID: PMC10332149 DOI: 10.3389/fendo.2023.1207045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Objective Serum neurofilament light chain (sNfL) level, which is a biomarker indicative of neuroaxonal damage and cognitive impairment, has been reported in several neurological diseases. There has been a lack of studies on the association between sNfL levels and prediabetes in adolescents. This study investigated whether sNfL levels were higher in adolescents with prediabetes undergoing elective orthopedic surgery. Methods The sNfL level was measured in 149 adolescents aged from 12 to 18 years who underwent elective orthopedic surgery at the Hunan Children's Hospital (18 with and 131 without prediabetes). We evaluated the association between prediabetes and sNfL level after adjusting for age, sex, and triglycerides using a multivariable linear regression model. Results The prevalence of prediabetes in adolescents was 12.08%. Univariate logistic regression analysis showed that prediabetes was related to sNfL. In multivariate logistic regression analysis, the association between prediabetes with sNfL levels remained significant after adjustment for age, sex, and triglyceride. The relationship between the two was further visualized by a smoothed curve. Conclusions Prediabetes is associated with a higher sNfL. Further large-scale and prospective studies are needed to verify the clinical application of sNfL as a monitoring biomarker for adolescent prediabetes in adolescents and to evaluate the performance of sNfL in predicting the incidence of neuropathy and cognitive dysfunction in adolescents with prediabetes.
Collapse
|
16
|
Serum NfL as an MS biomarker. Nat Rev Neurol 2023; 19:3. [PMID: 36477431 DOI: 10.1038/s41582-022-00760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|