1
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
2
|
Damodar T, Dunai C, Prabhu N, Jose M, Akhila L, Kinhal UV, Anusha Raj K, Marate S, Lalitha AV, Dsouza FS, Sajjan SV, Gowda VK, Basavaraja GV, Singh B, Prathyusha PV, Tharmaratnam K, Ravi V, Kolamunnage-Dona R, Solomon T, Turtle L, Yadav R, Michael BD, Mani RS. Diagnostic markers of acute encephalitis syndrome and COVID-associated multisystem inflammatory syndrome in children from Southern India. J Med Virol 2024; 96:e29666. [PMID: 38738569 PMCID: PMC7616670 DOI: 10.1002/jmv.29666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Acute encephalitis syndrome (AES) in children poses a significant public health challenge in India. This study aims to explore the utility of host inflammatory mediators and neurofilament (NfL) levels in distinguishing etiologies, assessing disease severity, and predicting outcomes in AES. We assessed 12 mediators in serum (n = 58) and 11 in cerebrospinal fluid (CSF) (n = 42) from 62 children with AES due to scrub typhus, viral etiologies, and COVID-associated multisystem inflammatory syndrome (MIS-C) in Southern India. Additionally, NfL levels in serum (n = 20) and CSF (n = 18) were examined. Clinical data, including Glasgow coma scale (GCS) and Liverpool outcome scores, were recorded. Examining serum and CSF markers in the three AES etiology groups revealed notable distinctions, with scrub typhus differing significantly from viral and MIS-C causes. Viral causes had elevated serum CCL11 and CCL2 compared with scrub typhus, while MIS-C cases showed higher HGF levels than scrub typhus. However, CSF analysis showed a distinct pattern with the scrub typhus group exhibiting elevated levels of IL-1RA, IL-1β, and TNF compared with MIS-C, and lower CCL2 levels compared with the viral group. Modeling the characteristic features, we identified that age ≥3 years with serum CCL11 < 180 pg/mL effectively distinguished scrub typhus from other AES causes. Elevated serum CCL11, HGF, and IL-6:IL-10 ratio were associated with poor outcomes (p = 0.038, 0.005, 0.02). Positive CSF and serum NfL correlation, and negative GCS and serum NfL correlation were observed. Median NfL levels were higher in children with abnormal admission GCS and poor outcomes. Measuring immune mediators and brain injury markers in AES provides valuable diagnostic insights, with the potential to facilitate rapid diagnosis and prognosis. The correlation between CSF and serum NfL, along with distinctive serum cytokine profiles across various etiologies, indicates the adequacy of blood samples alone for assessment and monitoring. The association of elevated levels of CCL11, HGF, and an increased IL-6:IL-10 ratio with adverse outcomes suggests promising avenues for therapeutic exploration, warranting further investigation.
Collapse
Affiliation(s)
- Tina Damodar
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Cordelia Dunai
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Namratha Prabhu
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Maria Jose
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - L. Akhila
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Uddhava V. Kinhal
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - K. Anusha Raj
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Srilatha Marate
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - A. V. Lalitha
- Department of Pediatric Critical Care, St John’s Medical College and Hospital, Bangalore, India
| | | | - Sushma Veeranna Sajjan
- Department of Pediatrics, Bangalore Medical College and Research Institute, Bangalore, India
| | - Vykuntaraju K. Gowda
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bangalore, India
| | - G. V. Basavaraja
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Bhagteshwar Singh
- Tropical & Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - P. V. Prathyusha
- Department of Biostatistics, National Institute of Mental Health & Neurosciences, Bangalore, India
| | | | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | | | - Tom Solomon
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, Liverpool, UK
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Lance Turtle
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Benedict D. Michael
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, Liverpool, UK
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Reeta S. Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| |
Collapse
|
3
|
Piel JHA, Bargemann L, Leypoldt F, Wandinger KP, Dargvainiene J. Serum NFL and tau, but not serum UCHL-1 and GFAP or CSF SNAP-25, NPTX2, or sTREM2, correlate with delirium in a 3-year retrospective analysis. Front Neurol 2024; 15:1356575. [PMID: 38566855 PMCID: PMC10985356 DOI: 10.3389/fneur.2024.1356575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Delirium represents a common terminal pathway of heterogeneous neurological conditions characterized by disturbances in consciousness and attention. Contemporary theories highlight the acute impairment of synaptic function and network connectivity, driven by neuroinflammation, oxidative stress, and neurotransmitter imbalances. However, established biomarkers are still missing. Innovative diagnostic techniques, such as single-molecule array analysis, enable the detection of biomarkers in blood at picomolar concentrations. This approach paves the way for deeper insights into delirium and potentially therapeutic targets for tailored medical treatments. In a retrospective 3-year study, we investigated seven biomarkers indicative of neuroaxonal damage [neurofilament light chain (NFL), ubiquitin carboxyl-terminal hydrolase (UCHL-1), and tau protein], microglial activation [glial fibrillary acidic protein (GFAP) and soluble triggering receptor expressed on myeloid cells 2 (sTREM2)], and synaptic dysfunction [synaptosomal-associated protein 25 (SNAP-25) and neuronal pentraxin 2 (NPTX2)]. The analysis of 71 patients with delirium, Alzheimer's disease (AD), and non-AD controls revealed that serum NFL levels are higher in delirium cases compared to both AD and non-AD. This suggests that elevated NFL levels in delirium are not exclusively the result of dementia-related damage. Serum tau levels were also elevated in delirium cases compared to controls. Conversely, cerebrospinal fluid (CSF) SNAP-25 showed higher levels in AD patients compared to controls only. These findings add to the increasing body of evidence suggesting that serum NFL could be a valuable biomarker of neuroaxonal damage in delirium research. Although SNAP-25 and NPTX2 did not exhibit significant differences in delirium, the exploration of synaptic biomarkers remains promising for enhancing our understanding of this condition.
Collapse
Affiliation(s)
| | - Leon Bargemann
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Balanza N, Francis CK, Crowley VM, Weckman AM, Zhong K, Baro B, Varo R, Bassat Q, Kain KC. Neurofilament Light Chain as a Biomarker of Neuronal Damage in Children With Malaria. J Infect Dis 2024; 229:183-188. [PMID: 37647876 PMCID: PMC10786245 DOI: 10.1093/infdis/jiad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Malaria can cause brain injury. Neurofilament light chain (NfL) is a biomarker of neuronal damage. Here we examined longitudinal plasma NfL levels in children aged 1-12 years with uncomplicated and severe malaria from Mozambique. NfL levels were similar in all malaria cases at hospital admission. However, levels increased over time and the increment was significantly higher in severe malaria cases with neurological manifestations (ie, coma, impaired consciousness, or repeated seizures). NfL may be useful to identify and quantify brain injury in malaria.
Collapse
Affiliation(s)
- Núria Balanza
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
| | - Caroline K Francis
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
| | - Valerie M Crowley
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M Weckman
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Zhong
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
| | - Bàrbara Baro
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
| | - Rosauro Varo
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu–University of Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Mein N, von Stackelberg N, Wickel J, Geis C, Chung HY. Low-dose PLX5622 treatment prevents neuroinflammatory and neurocognitive sequelae after sepsis. J Neuroinflammation 2023; 20:289. [PMID: 38041192 PMCID: PMC10691003 DOI: 10.1186/s12974-023-02975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by symptoms of delirium including hallucinations, impaired concentration, agitation, or coma and is associated with poor outcome in the early phase of sepsis. In addition, sepsis survivors often suffer from persisting memory deficits and impaired executive functions. Recent studies provide evidence that microglia are involved in the pathophysiology of SAE. METHODS Here, we investigated whether pharmacological depletion of microglia using PLX5622 (1200 ppm or 300 ppm) in the acute phase of sepsis is able to prevent long-term neurocognitive decline in a male mouse model of polymicrobial sepsis or lipopolysaccharide-induced sterile neuroinflammation. Therefore, we performed the novel object recognition test at different time points after sepsis to address hippocampus-dependent learning. To further assess synapse engulfment in microglia, colocalization analysis was performed using high-resolution 3D Airyscan imaging of Iba1 and Homer1. We also investigated the effect of PLX5622 on acute astrocyte and chronic microglia proliferation in the hippocampus after sepsis induction using immunofluorescence staining. RESULTS High-dose application of the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 (1200 ppm) seven days prior to sepsis induction lead to 70-80% microglia reduction but resulted in fatal outcome of bacterial sepsis or LPS induced inflammation. This is likely caused by severely compromised host immune response upon PLX5622-induced depletion of peripheral monocytes and macrophages. We therefore tested partial microglia depletion using a low-dose of PLX5622 (300 ppm) for seven days prior to sepsis which resulted in an increased survival in comparison to littermates subjected to high-dose CSF1R inhibiton and to a stable microglia reduction of ~ 40%. This partial microglia depletion in the acute stage of sepsis largely prevented the engulfment and microglia-induced stripping of postsynaptic terminals. In addition, PLX5622 low-dose microglia depletion attenuated acute astrogliosis as well as long-term microgliosis and prevented long-term neurocognitive decline after experimental sepsis. CONCLUSIONS We conclude that partial microglia depletion before the induction of sepsis may be sufficient to attenuate long-term neurocognitive dysfunction. Application of PLX5622 (300 ppm) acts by reducing microglia-induced synaptic attachement/engulfment and preventing chronic microgliosis.
Collapse
Affiliation(s)
- Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- German Center for Mental Health, Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
6
|
Schütze S, Drevets DA, Tauber SC, Nau R. Septic encephalopathy in the elderly - biomarkers of potential clinical utility. Front Cell Neurosci 2023; 17:1238149. [PMID: 37744876 PMCID: PMC10512712 DOI: 10.3389/fncel.2023.1238149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Next to acute sickness behavior, septic encephalopathy is the most frequent involvement of the brain during infection. It is characterized by a cross-talk of pro-inflammatory cells across the blood-brain barrier, by microglial activation and leukocyte migration, but not by the entry of infecting organisms into the brain tissue. Septic encephalopathy is very frequent in older persons because of their limited cognitive reserve. The predominant clinical manifestation is delirium, whereas focal neurological signs and symptoms are absent. Electroencephalography is a very sensitive method to detect functional abnormalities, but these abnormalities are not specific for septic encephalopathy and of limited prognostic value. Routine cerebral imaging by computer tomography usually fails to visualize the subtle abnormalities produced by septic involvement of the brain. Magnetic resonance imaging is by far more sensitive to detect vasogenic edema, diffuse axonal injury or small ischemic lesions. Routine laboratory parameters most suitable to monitor sepsis, but not specific for septic encephalopathy, are C-reactive protein and procalcitonin. The additional measurement of interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor-α increases the accuracy to predict delirium and an unfavorable outcome. The most promising laboratory parameters to quantify neuronal and axonal injury caused by septic encephalopathy are neurofilament light chains (NfL) and S100B protein. Neuron-specific enolase (NSE) plasma concentrations are strongly influenced by hemolysis. We propose to determine NSE only in non-hemolytic plasma or serum samples for the estimation of outcome in septic encephalopathy.
Collapse
Affiliation(s)
- Sandra Schütze
- Department of Neuropathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics, AGAPLESION Markus Krankenhaus, Frankfurt, Germany
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, University of Oklahoma HSC, Oklahoma City, OK, United States
| | - Simone C. Tauber
- Department of Neurology, University Medicine Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Roland Nau
- Department of Neuropathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
7
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|