1
|
Xing X, Liu X, Li X, Li M, Wu X, Huang X, Xu A, Liu Y, Zhang J. Insights into spinal muscular atrophy from molecular biomarkers. Neural Regen Res 2025; 20:1849-1863. [PMID: 38934395 DOI: 10.4103/nrr.nrr-d-24-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Becker MM, Nardes F, Dangouloff T, Servais L, Araujo APDQC, Gurgel-Giannetti J. Why should a 5q spinal muscular atrophy neonatal screening program be started? ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 39396519 DOI: 10.1055/s-0044-1791201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular progressive disorder that is currently treatable. The sooner the disease-modifying therapies are started, the better the prognosis. Newborn screening for SMA, which is already performed in many countries, has been scheduled to begin in the near future. The development of a well-organized program is paramount to achieve favorable outcomes for the child who is born with the disease and for the costs involved in health care. We herein present a review paper hoping to point out that SMA neonatal screening is urgent and will not increase the cost of its care.
Collapse
Affiliation(s)
- Michele Michelin Becker
- Hospital de Clínicas de Porto Alegre, Unidade de Neurologia Pediátrica, Departamento de Pediatria, Porto Alegre RS, Brazil
| | - Flávia Nardes
- Universidade Federal do Rio de Janeiro, Instituto de Puericultura e Pediatria Martagão Gesteira, Departamento de Pediatria, Rio de Janeiro RJ, Brazil
| | - Tamara Dangouloff
- Université de Liège, Centre Hospitalier Universitaire de Liège, Centre de Référence des Maladies Neuromusculaires, Service de Pédiatrie, Liège, Belgium
| | - Laurent Servais
- University of Oxford, MDUK Neuromuscular Centre, Oxford, United Kingdom
| | | | - Juliana Gurgel-Giannetti
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Pediatria, Belo Horizonte MG, Brazil
| |
Collapse
|
4
|
Dobelmann V, Roos A, Hentschel A, Della Marina A, Leo M, Schmitt LI, Maggi L, Schara-Schmidt U, Hagenacker T, Ruck T, Kölbel H. Thrombospondin-4 as potential cerebrospinal fluid biomarker for therapy response in pediatric spinal muscular atrophy. J Neurol 2024; 271:7000-7011. [PMID: 39240344 PMCID: PMC11446971 DOI: 10.1007/s00415-024-12670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND PURPOSE Spinal muscular atrophy (SMA) as the second most common neurodegenerative disorder in childhood is characterized by the deficiency of survival of motor neuron (SMN) protein leading predominantly to degeneration of alpha motor neurons and consequently to progressive muscle weakness and atrophy. Besides some biomarkers like SMN2 copy number therapeutic biomarkers for SMA with known relevance for neuromuscular transmission are lacking. Here, we examined the potential of Thrombospondin-4 (TSP4) to serve as a cerebrospinal fluid (CSF) biomarker, which may also indicate treatment response. METHODS We used untargeted proteomic analyses to determine biomarkers in CSF samples derived from pediatric pre-symptomatic (n = 6) and symptomatic (n = 4) SMA patients. The identified biomarker TSP4 was then validated in additional 68 CSF samples (9 adult and 24 pediatric SMA patients, 5 adult and 13 pediatric non-disease controls in addition to 17 pediatric disease controls) by enzyme-linked immunosorbent assay (ELISA) as an additional analytical approach. RESULTS Untargeted proteomic analyses of CSF identified a dysregulation of TSP4 and revealed a difference between pre-symptomatic SMA patients and patients identified after the onset of first symptoms. Subsequent ELISA-analyses showed that TSP4 is decreased in pediatric but not adult SMA patients. CSF of pediatric patients with other neurological disorders demonstrated no alteration of TSP4 levels. Furthermore, CSF TSP4 levels of pediatric SMA patients increased after first dose of Nusinersen. CONCLUSIONS We found that TSP4 levels are exclusively reduced in CSF of pediatric SMA patients and increase after treatment, leading us to the hypothesis that TSP4 could serve as a CSF biomarker with the potential to monitor treatment response in pediatric SMA patients. Moreover, TSP4 enable to distinguish pre-symptomatic and symptomatic patients suggesting a potential to serve as a stratification marker.
Collapse
Affiliation(s)
- Vera Dobelmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, K1H 5B2, Canada
| | | | - Adela Della Marina
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
5
|
Sumner CJ, Miller TM. The expanding application of antisense oligonucleotides to neurodegenerative diseases. J Clin Invest 2024; 134:e186116. [PMID: 39352381 PMCID: PMC11444189 DOI: 10.1172/jci186116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
- Charlotte J. Sumner
- Departments of Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore Maryland, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Musso G, Bello L, Capece G, Bozzoni V, Caumo L, Sabbatini D, Zangaro V, Sogus E, Cosma C, Petrosino A, Sorarù G, Plebani M, Pegoraro E. Neurofilament light chain and profilin-1 dynamics in 30 spinal muscular atrophy type 3 patients treated with nusinersen. Eur J Neurol 2024; 31:e16393. [PMID: 38924263 DOI: 10.1111/ene.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate whether neurofilament light chain (NfL) and profilin-1 (PFN-1) might qualify as surrogate disease and treatment-response biomarkers by correlating their concentrations dynamic with clinical status in a cohort of 30 adult spinal muscular atrophy type 3 patients during nusinersen therapy up to 34 months. METHODS Neurofilament light chain was measured in cerebrospinal fluid at each drug administration with a commercial enzyme-linked immunosorbent assay (ELISA); PFN-1 concentrations were tested in serum sampled at the same time points with commercial ELISA assays. Functional motor scores were evaluated at baseline, at the end of the loading phase and at each maintenance dose and correlated to biomarker levels. The concurrent effect of age and clinical phenotype was studied. RESULTS Neurofilament light chain levels were included in the reference ranges at baseline; a significant increase was measured during loading phase until 1 month. PFN-1 was higher at baseline than in controls and then decreased during therapy until reaching control levels. Age had an effect on NfL but not on PFN-1. NfL was partially correlated to functional scores at baseline and at last time point, whilst no correlation was found for PFN-1. CONCLUSION Cerebrospinal fluid NfL levels did not qualify as an optimal surrogate treatment biomarker in adult spinal muscular atrophy patients with a long disease duration, whilst PFN-1 might to a greater extent represent lower motor neuron pathological processes. The observed biomarker level variation during the first 2 months of nusinersen treatment might suggest a limited effect on axonal remodeling or rearrangement.
Collapse
Affiliation(s)
- G Musso
- Department of Medicine, University of Padova, Padova, Italy
- Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - L Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Capece
- Department of Neurosciences, University of Padova, Padova, Italy
| | - V Bozzoni
- Department of Neurosciences, University of Padova, Padova, Italy
| | - L Caumo
- Department of Neurosciences, University of Padova, Padova, Italy
| | - D Sabbatini
- Department of Neurosciences, University of Padova, Padova, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| | - V Zangaro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - E Sogus
- Department of Neurosciences, University of Padova, Padova, Italy
| | - C Cosma
- Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - A Petrosino
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - M Plebani
- Department of Medicine, University of Padova, Padova, Italy
- Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Panicucci C, Sahin E, Bartolucci M, Casalini S, Brolatti N, Pedemonte M, Baratto S, Pintus S, Principi E, D'Amico A, Pane M, Sframeli M, Messina S, Albamonte E, Sansone VA, Mercuri E, Bertini E, Sezerman U, Petretto A, Bruno C. Proteomics profiling and machine learning in nusinersen-treated patients with spinal muscular atrophy. Cell Mol Life Sci 2024; 81:393. [PMID: 39254732 PMCID: PMC11387582 DOI: 10.1007/s00018-024-05426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
AIM The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen infusion (T302). METHODS In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spectrometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen (SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302. The Random Forest (RF) machine learning algorithm and pathway enrichment analysis were applied for analysis. RESULTS The RF algorithm, applied to the protein expression profile of naïve patients, revealed several proteins that could classify the different types of SMA according to their differential abundance at T0. Analysis of changes in proteomic profiles identified a total of 147 differentially expressed proteins after nusinersen treatment in SMA1, 135 in SMA2, and 289 in SMA3. Overall, nusinersen-induced changes on proteomic profile were consistent with i) common effects observed in allSMA types (i.e. regulation of axonogenesis), and ii) disease severity-specific changes, namely regulation of glucose metabolism in SMA1, of coagulation processes in SMA2, and of complement cascade in SMA3. CONCLUSIONS This untargeted LC-MS proteomic profiling in the CSF of SMA patients revealed differences in protein expression in naïve patients and showed nusinersen-related modulation in several biological processes after 10 months of treatment. Further confirmatory studies are needed to validate these results in larger number of patients and over abroader timeframe.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sara Casalini
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Noemi Brolatti
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Marina Pedemonte
- Pediatric Neurology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Sara Pintus
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marika Pane
- Centro Clinico Nemo, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marina Sframeli
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Sonia Messina
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Emilio Albamonte
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Valeria A Sansone
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health- DINOGMI, University of Genova, Genova, Italy.
| |
Collapse
|
8
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
9
|
Haque US, Yokota T. Recent Progress in Gene-Targeting Therapies for Spinal Muscular Atrophy: Promises and Challenges. Genes (Basel) 2024; 15:999. [PMID: 39202360 PMCID: PMC11353366 DOI: 10.3390/genes15080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of life if untreated. The condition arises from mutations in the SMN1 (survival of motor neuron 1) gene, causing a deficiency in the survival motor neuron (SMN) protein. Humans possess a near-identical gene, SMN2, which modifies disease severity and is a primary target for therapies. Recent therapeutic advancements include antisense oligonucleotides (ASOs), small molecules targeting SMN2, and virus-mediated gene replacement therapy delivering a functional copy of SMN1. Additionally, recognizing SMA's broader phenotype involving multiple organs has led to the development of SMN-independent therapies. Evidence now indicates that SMA affects multiple organ systems, suggesting the need for SMN-independent treatments along with SMN-targeting therapies. No single therapy can cure SMA; thus, combination therapies may be essential for comprehensive treatment. This review addresses the SMA etiology, the role of SMN, and provides an overview of the rapidly evolving therapeutic landscape, highlighting current achievements and future directions.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
10
|
Kim AS, Lee JM. The limited role of serum neurofilament light chain in predicting pain severity of patients with diabetic polyneuropathy. Sci Rep 2024; 14:15612. [PMID: 38971890 PMCID: PMC11227535 DOI: 10.1038/s41598-024-66444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Pain is one of many complaints expressed by patients with diabetic polyneuropathy. However, no objective measure for pain severity has been available. Neurofilament light chains have been widely used for assessing axonal damage in the neuronal system. Hence, we sought to investigate whether neurofilament light chains can serve as a marker reflecting pain severity in diabetic polyneuropathy. We enrolled the patients with diabetic polyneuropathy. Serum concentrations of neurofilament light chain were then measured using a single-molecule array. Pain severity was evaluated using painDETECT and the Brief Pain Inventory. Moreover, laboratory results including, serum creatinine, HbA1c, and glomerular filtration rate. A correlation test was used to analyze each variable. A total of 42 patients were enrolled. Neurofilament light chain levels were unable to reflect current neuropathic pain severity. However, high levels of neurofilament light chain were a significant predictor of poor diabetes control (r = 0.41; p = 0.02) and kidney damage (r = 0.45; p = 0.01). Serum levels of neurofilament light chain could not reflect current pain severity but was strongly associated with kidney dysfunction and poor diabetes control. Other biomarkers that could predict pain severity need to be uncovered.
Collapse
Affiliation(s)
- A-Sol Kim
- Department of Family Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jong-Mok Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, South Korea.
| |
Collapse
|
11
|
Waldrop MA. Clinical decision making around commercial use of gene and genetic therapies for spinal muscular atrophy. Neurotherapeutics 2024; 21:e00437. [PMID: 39241317 PMCID: PMC11405791 DOI: 10.1016/j.neurot.2024.e00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Spinal muscular atrophy is no longer a leading cause of inherited infant death in the United States. Since 2016, three genetic therapies have been approved for the treatment of spinal muscular atrophy. Each therapy has been well studied with robust data for both safety and efficacy. However, there are no head-to-head comparator studies to inform clinical decision making. Thus, treatment selection, timing, and combination therapy is largely up to clinician preference and insurance policies. As the natural history of spinal muscular atrophy continues to change, more data is needed to assist in evidence-based and cost-effective clinical decision making.
Collapse
Affiliation(s)
- Megan A Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus OH, 43205, USA; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH 43205, USA.
| |
Collapse
|
12
|
Borges B, Varthaliti A, Schwab M, Clarke MT, Pivetti C, Gupta N, Cadwell CR, Guibinga G, Phillips S, Del Rio T, Ozsolak F, Imai-Leonard D, Kong L, Laird DJ, Herzeg A, Sumner CJ, MacKenzie TC. Prenatal AAV9-GFP administration in fetal lambs results in transduction of female germ cells and maternal exposure to virus. Mol Ther Methods Clin Dev 2024; 32:101263. [PMID: 38827250 PMCID: PMC11141462 DOI: 10.1016/j.omtm.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells.
Collapse
Affiliation(s)
- Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antonia Varthaliti
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisa Schwab
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maria T Clarke
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Pivetti
- Department of Surgery, University of California, Davis, Davis, CA 95817, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Weill Neurohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ghiabe Guibinga
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Shirley Phillips
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Tony Del Rio
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Fatih Ozsolak
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Denise Imai-Leonard
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA 95616, USA
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
14
|
Evans LJ, O'Brien D, Shaw PJ. Current neuroprotective therapies and future prospects for motor neuron disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:327-384. [PMID: 38802178 DOI: 10.1016/bs.irn.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Four medications with neuroprotective disease-modifying effects are now in use for motor neuron disease (MND). With FDA approvals for tofersen, relyvrio and edaravone in just the past year, 2022 ended a quarter of a century when riluzole was the sole such drug to offer to patients. The acceleration of approvals may mean we are witnessing the beginning of a step-change in how MND can be treated. Improvements in understanding underlying disease biology has led to more therapies being developed to target specific and multiple disease mechanisms. Consideration for how the pipeline of new therapeutic agents coming through in clinical and preclinical development can be more effectively evaluated with biomarkers, advances in patient stratification and clinical trial design pave the way for more successful translation for this archetypal complex neurodegenerative disease. While it must be cautioned that only slowed rates of progression have so far been demonstrated, pre-empting rapid neurodegeneration by using neurofilament biomarkers to signal when to treat, as is currently being trialled with tofersen, may be more effective for patients with known genetic predisposition to MND. Early intervention with personalized medicines could mean that for some patients at least, in future we may be able to substantially treat what is considered by many to be one of the most distressing diseases in medicine.
Collapse
Affiliation(s)
- Laura J Evans
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - David O'Brien
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
15
|
Brkušanin M, Kosać A, Branković-Srećković V, Jovanović K, Perić S, Karanović J, Matijašević Joković S, Garai N, Pešović J, Nikolić D, Stević Z, Brajušković G, Milić-Rašić V, Savić-Pavićević D. Phosphorylated neurofilament heavy chain in cerebrospinal fluid and plasma as a Nusinersen treatment response marker in childhood-onset SMA individuals from Serbia. Front Neurol 2024; 15:1394001. [PMID: 38756215 PMCID: PMC11097956 DOI: 10.3389/fneur.2024.1394001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Biomarkers capable of reflecting disease onset and short- and long-term therapeutic effects in individuals with spinal muscular atrophy (SMA) are still an unmet need and phosphorylated neurofilament heavy chain (pNF-H) holds significant promise. Methods We conducted a longitudinal prospective study to evaluate pNF-H levels in the cerebrospinal fluid (CSF) and plasma of 29 individuals with childhood-onset SMA treated with Nuinersen (SMA type 1: n = 6, 2: n = 17, 3: n = 6). pNF-H levels before and during treatment were compared with the levels of controls (n = 22), patients with Duchenne muscular dystrophy (n = 17), myotonic dystrophy type 1 (n = 11), untreated SMA individuals with chronic type 3 disease (n = 8), and children with presymptomatic SMA (n = 3). Results SMA type 1 showed the highest mean CSF pNF-H levels before treatment initiation. All Nusinersen-treated individuals (types 1, 2, and 3) showed significantly elevated mean baseline CSF pNF-H compared to controls, which inversely correlated with age at disease onset, age at first dose, disease duration and the initial CHOP INTEND result (SMA type 1 and 2). During 22 months of treatment, CSF pNF-H levels declined during loading doses, stabilizing at reduced levels from the initial maintenance dose in all individuals. Baseline plasma pNF-H levels in type 1 and 2 SMA were significantly increased compared to other cohorts and decreased notably in type 1 after 2 months of treatment and type 2 after 14 months. Conversely, SMA type 3, characterized by lower baseline pNF-H levels, did not show significant fluctuations in plasma pNF-H levels after 14 months of treatment. Conclusion Our findings suggest that CSF pNF-H levels in untreated SMA individuals are significantly higher than in controls and that monitoring of CSF pNF-H levels may serve as an indicator of rapid short-term treatment response in childhood-onset SMA individuals, irrespective of the subtype of the disease, while also suggesting its potential for assessing long-term suppression of neurodegeneration. Plasma pNF-H may serve as an appropriate outcome measure for disease progression and/or response to treatment in types 1 and 2 but not in type 3. Presymptomatic infants with SMA may show elevated pNF-H levels, confirming early neuronal degeneration.
Collapse
Affiliation(s)
- Miloš Brkušanin
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ana Kosać
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | | | - Kristina Jovanović
- University Children's Hospital Tirsova, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Stojan Perić
- Neurology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelena Karanović
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | | | - Nemanja Garai
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Jovan Pešović
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Dimitrije Nikolić
- University Children's Hospital Tirsova, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zorica Stević
- Neurology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Vedrana Milić-Rašić
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Agnello L, Gambino CM, Ciaccio AM, Masucci A, Vassallo R, Tamburello M, Scazzone C, Lo Sasso B, Ciaccio M. Molecular Biomarkers of Neurodegenerative Disorders: A Practical Guide to Their Appropriate Use and Interpretation in Clinical Practice. Int J Mol Sci 2024; 25:4323. [PMID: 38673907 PMCID: PMC11049959 DOI: 10.3390/ijms25084323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative disorders (NDs) represent a group of different diseases characterized by the progressive degeneration and death of the nervous system's cells. The diagnosis is challenging, especially in the early stages, due to no specific clinical signs and symptoms. In this context, laboratory medicine could support clinicians in detecting and differentiating NDs. Indeed, biomarkers could indicate the pathological mechanisms underpinning NDs. The ideal biofluid for detecting the biomarkers of NDs is cerebrospinal fluid (CSF), which has limitations, hampering its widespread use in clinical practice. However, intensive efforts are underway to introduce high-sensitivity analytical methods to detect ND biomarkers in alternative nonivasive biofluid, such as blood or saliva. This study presents an overview of the ND molecular biomarkers currently used in clinical practice. For some diseases, such as Alzheimer's disease or multiple sclerosis, biomarkers are well established and recommended by guidelines. However, for most NDs, intensive research is ongoing to identify reliable and specific biomarkers, and no consensus has yet been achieved.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties “G. D’Alessandro”, Department of Health Promotion, Maternal and Infant Care, University of Palermo, 90127 Palermo, Italy;
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
18
|
Andrés-Benito P, Vázquez-Costa JF, Ñungo Garzón NC, Colomina MJ, Marco C, González L, Terrafeta C, Domínguez R, Ferrer I, Povedano M. Neurodegeneration Biomarkers in Adult Spinal Muscular Atrophy (SMA) Patients Treated with Nusinersen. Int J Mol Sci 2024; 25:3810. [PMID: 38612621 PMCID: PMC11011665 DOI: 10.3390/ijms25073810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The objective of this study is to evaluate biomarkers for neurodegenerative disorders in adult SMA patients and their potential for monitoring the response to nusinersen. Biomarkers for neurodegenerative disorders were assessed in plasma and CSF samples obtained from a total of 30 healthy older adult controls and 31 patients with adult SMA type 2 and 3. The samples were collected before and during nusinersen treatment at various time points, approximately at 2, 6, 10, and 22 months. Using ELISA technology, the levels of total tau, pNF-H, NF-L, sAPPβ, Aβ40, Aβ42, and YKL-40 were evaluated in CSF samples. Additionally, plasma samples were used to measure NF-L and total tau levels using SIMOA technology. SMA patients showed improvements in clinical outcomes after nusinersen treatment, which were statistically significant only in walkers, in RULM (p = 0.04) and HFMSE (p = 0.05) at 24 months. A reduction in sAPPβ levels was found after nusinersen treatment, but these levels did not correlate with clinical outcomes. Other neurodegeneration biomarkers (NF-L, pNF-H, total tau, YKL-40, Aβ40, and Aβ42) were not found consistently changed with nusinersen treatment. The slow progression rate and mild treatment response of adult SMA types 2 and 3 may not lead to detectable changes in common markers of axonal degradation, inflammation, or neurodegeneration, since it does not involve large pools of damaged neurons as observed in pediatric forms. However, changes in biomarkers associated with the APP processing pathway might be linked to treatment administration. Further studies are warranted to better understand these findings.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46021 Valencia, Spain
| | - Nancy Carolina Ñungo Garzón
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe and IIS La Fe, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46026 Valencia, Spain
| | - María J. Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital-University of Barcelona, 08907 Barcelona, Spain
| | - Carla Marco
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Laura González
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Cristina Terrafeta
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Raúl Domínguez
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
| | - Mónica Povedano
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907 Barcelona, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Department of Neurology, Bellvitge University Hospital, 08907 Barcelona, Spain
| |
Collapse
|
19
|
Šimić G, Vukić V, Babić M, Banović M, Berečić I, Španić E, Zubčić K, Golubić AT, Barišić Kutija M, Merkler Šorgić A, Vogrinc Ž, Lehman I, Hof PR, Sertić J, Barišić N. Total tau in cerebrospinal fluid detects treatment responders among spinal muscular atrophy types 1-3 patients treated with nusinersen. CNS Neurosci Ther 2024; 30:e14051. [PMID: 36513962 PMCID: PMC10915981 DOI: 10.1111/cns.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Considering the substantial variability in treatment response across patients with spinal muscular atrophy (SMA), reliable markers for monitoring response to therapy and predicting treatment responders need to be identified. The study aimed to determine if measured concentrations of disease biomarkers (total tau protein, neurofilament light chain, and S100B protein) correlate with the duration of nusinersen treatment and with scores obtained using functional scales for the assessment of motor abilities. METHODS A total of 30 subjects with SMA treated with nusinersen between 2017 and 2021 at the Department of Pediatrics, University Hospital Centre Zagreb, Croatia, were included in this study. Cerebrospinal fluid (CSF) samples were collected by lumbar puncture prior to intrathecal application of nusinersen. Protein concentrations in CSF samples were determined by enzyme-linked immunosorbent assay in 26 subjects. The motor functions were assessed using functional motor scales. RESULTS The main finding was significantly decreased total tau correlating with the number of nusinersen doses and motor improvement in the first 18-24 months of treatment (in all SMA patients and SMA type 1 patients). Neurofilament light chain and S100B were not significantly changed after administration of nusinersen. CONCLUSIONS The measurement of total tau concentration in CSF is a reliable index for monitoring the biomarker and clinical response to nusinersen therapy in patients with SMA.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Vana Vukić
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Marija Babić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Anja Tea Golubić
- Department of Nuclear Medicine and Radiation ProtectionUniversity Hospital Centre ZagrebZagrebCroatia
| | | | - Ana Merkler Šorgić
- Department of Laboratory Diagnostics, Laboratory for Molecular DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Željka Vogrinc
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Ivan Lehman
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jadranka Sertić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
- Department of Medical Chemistry and BiochemistryUniversity of Zagreb School of MedicineZagrebCroatia
| | - Nina Barišić
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| |
Collapse
|
20
|
de Albuquerque ALA, Chadanowicz JK, Giudicelli GC, Staub ALP, Weber AC, Silva JMDS, Becker MM, Kowalski TW, Siebert M, Saute JAM. Serum myostatin as a candidate disease severity and progression biomarker of spinal muscular atrophy. Brain Commun 2024; 6:fcae062. [PMID: 38487549 PMCID: PMC10939446 DOI: 10.1093/braincomms/fcae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The identification of biomarkers for spinal muscular atrophy is crucial for predicting disease progression, severity, and response to new disease-modifying therapies. This study aimed to investigate the role of serum levels of myostatin and follistatin as biomarkers for spinal muscular atrophy, considering muscle atrophy secondary to denervation as the main clinical manifestation of the disease. The study evaluated the differential gene expression of myostatin and follistatin in a lesional model of gastrocnemius denervation in mice, as well as in a meta-analysis of three datasets in transgenic mice models of spinal muscular atrophy, and in two studies involving humans with spinal muscular atrophy. Subsequently, a case-control study involving 27 spinal muscular atrophy patients and 27 controls was conducted, followed by a 12-month cohort study with 25 spinal muscular atrophy cases. Serum levels of myostatin and follistatin were analysed using enzyme-linked immunosorbent assay at a single centre in southern Brazil. Skeletal muscle gene expression of myostatin decreased and of follistatin increased following lesional muscle denervation in mice, consistent with findings in the spinal muscular atrophy transgenic mice meta-analysis and in the iliopsoas muscle of five patients with spinal muscular atrophy type 1. Median serum myostatin levels were significantly lower in spinal muscular atrophy patients (98 pg/mL; 5-157) compared to controls (412 pg/mL; 299-730) (P < 0.001). Lower myostatin levels were associated with greater disease severity based on clinician-rated outcomes (Rho = 0.493-0.812; P < 0.05). After 12 months, there was a further reduction in myostatin levels among spinal muscular atrophy cases (P = 0.021). Follistatin levels did not differ between cases and controls, and no significant changes were observed over time. The follistatin:myostatin ratio was significantly increased in spinal muscular atrophy subjects and inversely correlated with motor severity. Serum myostatin levels show promise as a novel biomarker for evaluating the severity and progression of spinal muscular atrophy. The decrease in myostatin levels and the subsequent favourable environment for muscle growth may be attributed to denervation caused by motor neuron dysfunction.
Collapse
Affiliation(s)
- Ana Letícia Amorim de Albuquerque
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Júlia Kersting Chadanowicz
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Giovanna Câmara Giudicelli
- Bioinformatics core, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Ana Lucia Portella Staub
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Arthur Carpeggiani Weber
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | | | | | - Thayne Woycinck Kowalski
- Bioinformatics core, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Marina Siebert
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-007, Brazil
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
21
|
Yeo CJJ, Tizzano EF, Darras BT. Challenges and opportunities in spinal muscular atrophy therapeutics. Lancet Neurol 2024; 23:205-218. [PMID: 38267192 DOI: 10.1016/s1474-4422(23)00419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Spinal muscular atrophy was the most common inherited cause of infant death until 2016, when three therapies became available: the antisense oligonucleotide nusinersen, gene replacement therapy with onasemnogene abeparvovec, and the small-molecule splicing modifier risdiplam. These drugs compensate for deficient survival motor neuron protein and have improved lifespan and quality of life in infants and children with spinal muscular atrophy. Given the lifelong implications of these innovative therapies, ways to detect and manage treatment-modified disease characteristics are needed. All three drugs are more effective when given before development of symptoms, or as early as possible in individuals who have already developed symptoms. Early subtle symptoms might be missed, and disease onset might occur in utero in severe spinal muscular atrophy subtypes; in some countries, newborn screening is allowing diagnosis soon after birth and early treatment. Adults with spinal muscular atrophy report stabilisation of disease and less fatigue with treatment. These subjective benefits need to be weighed against the high costs of the drugs to patients and health-care systems. Clinical consensus is required on therapeutic windows and on outcome measures and biomarkers that can be used to monitor drug benefit, toxicity, and treatment-modified disease characteristics.
Collapse
Affiliation(s)
- Crystal J J Yeo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Agency for Science, Technology and Research, Singapore; National Neuroscience Institute, Tan Tock Seng and Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Genetics Medicine, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Benatar M, Ostrow LW, Lewcock JW, Bennett F, Shefner J, Bowser R, Larkin P, Bruijn L, Wuu J. Biomarker Qualification for Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: Theory and Practice. Ann Neurol 2024; 95:211-216. [PMID: 38110839 PMCID: PMC10842825 DOI: 10.1002/ana.26860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use. METHODS Consensus discussion among academic, industry, and patient advocacy group representatives. RESULTS A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit. INTERPRETATION The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- CReATe Biomarkers External Advisory Committee
| | - Joseph W Lewcock
- CReATe Biomarkers External Advisory Committee
- Denali Therapeutics, South San Francisco, CA, USA
| | - Frank Bennett
- CReATe Biomarkers External Advisory Committee
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Jeremy Shefner
- CReATe Biomarkers External Advisory Committee
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Robert Bowser
- CReATe Biomarkers External Advisory Committee
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Lucie Bruijn
- CReATe Biomarkers External Advisory Committee
- Novartis Pharmaceuticals UK, London, UK
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
23
|
Dabaj I, Ducatez F, Marret S, Bekri S, Tebani A. Neuromuscular disorders in the omics era. Clin Chim Acta 2024; 553:117691. [PMID: 38081447 DOI: 10.1016/j.cca.2023.117691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
Neuromuscular disorders encompass a spectrum of conditions characterized by primary lesions within the peripheral nervous system, which include the anterior horn cell, peripheral nerve, neuromuscular junction, and muscle. In pediatrics, most of these disorders are linked to genetic causes. Despite the considerable progress, the diagnosis of these disorders remains a challenging due to wide clinical presentation, disease heterogeneity and rarity. It is noteworthy that certain neuromuscular disorders, once deemed untreatable, can now be effectively managed through novel therapies. Biomarkers emerge as indispensable tools, serving as objective measures that not only refine diagnostic accuracy but also provide guidance for therapeutic decision-making and the ongoing monitoring of long-term outcomes. Herein a comprehensive review of biomarkers in neuromuscular disorders is provided. We highlight the role of omics-based technologies that further characterize neuromuscular pathophysiology as well as identify potential therapeutic targets to guide treatment strategies.
Collapse
Affiliation(s)
- Ivana Dabaj
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France.
| | - Franklin Ducatez
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| |
Collapse
|
24
|
Flotats-Bastardas M, Bitzan L, Grell C, Martakis K, Winter B, Zemlin M, Wurster CD, Uzelac Z, Weiß C, Hahn A. Paradoxical increase of neurofilaments in SMA patients treated with onasemnogene abeparvovec-xioi. Front Neurol 2023; 14:1269406. [PMID: 38162454 PMCID: PMC10756901 DOI: 10.3389/fneur.2023.1269406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background/Objective Neurofilament light chain (NfL) has been proposed as a biomarker reflecting disease severity and therapy response in children with spinal muscular atrophy type 1 and 2 (SMA1 and 2). The objective of this study was to examine how serum NfL changes after gene replacement therapy (GRT) with onasemnogene abeparvovec-xioi. Methods We measured NfL in serum probes from 19 patients (10 SMA 1 and 6 SMA 2; 15 previously treated with nusinersen or risdiplam; 12 male) before and at variable time points after GRT. These values were related to motor scores (CHOP-Intend, HFMSE and RULM). Results Median age at GRT was 19 months (range 2-46 months). Median NfL of all patients before GRT was 39 pg/ml (range 0-663 pg/ml; normal values <25 pg/ml), increased significantly to 297 pg/ml (range 61-1,696 pg/ml; p<0,002) 1 month after GRT, and decreased to 49 pg/ml (range 24-151 pg/ml) after 6 months. Subjects pre-treated with nusinersen or risdiplam had lower baseline NfL levels than naïve patients (p<0,005), but absolute increases of NfL were similar in both groups. While motor scores were improved in 14 out of 18 SMA patients (78%) 6 months after GRT NfL values differed not significantly from those measured at baseline (p = 0,959). Conclusion Serum NfL showed a paradoxical transient increase after GRT in both, pre-treated and naïve patients, which may reflect an immunological reaction in the CNS related to transfection of neuronal cells by AAV9. The clinical meaning of this increase should be assessed in future studies. Our findings encourage regular monitoring of NfL in OA treated patients.
Collapse
Affiliation(s)
- Marina Flotats-Bastardas
- Department of Pediatric Neurology, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Lisa Bitzan
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Grell
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - Kyriakos Martakis
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Benedikt Winter
- Department of Child Neurology, Mannheim University, Mannheim, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, Saarland University, Homburg, Germany
| | | | - Zeljko Uzelac
- Department of Neurology, Ulm University, Ulm, Germany
| | - Claudia Weiß
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Valsecchi V, Errico F, Bassareo V, Marino C, Nuzzo T, Brancaccio P, Laudati G, Casamassa A, Grimaldi M, D'Amico A, Carta M, Bertini E, Pignataro G, D'Ursi AM, Usiello A. SMN deficiency perturbs monoamine neurotransmitter metabolism in spinal muscular atrophy. Commun Biol 2023; 6:1155. [PMID: 37957344 PMCID: PMC10643621 DOI: 10.1038/s42003-023-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DβH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055, Portici, Italy
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, 00163, Rome, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
| |
Collapse
|
26
|
Giorgia Q, Gomez Garcia de la Banda M, Smeriglio P. Role of circulating biomarkers in spinal muscular atrophy: insights from a new treatment era. Front Neurol 2023; 14:1226969. [PMID: 38020652 PMCID: PMC10679720 DOI: 10.3389/fneur.2023.1226969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease due to biallelic mutations in the SMN1 gene on chromosome 5. It is characterized by progressive muscle weakness of limbs, bulbar and respiratory muscles. The disease is usually classified in four different phenotypes (1-4) according to age at symptoms onset and maximal motor milestones achieved. Recently, three disease modifying treatments have received approval from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), while several other innovative drugs are under study. New therapies have been game changing, improving survival and life quality for SMA patients. However, they have also intensified the need for accurate biomarkers to monitor disease progression and treatment efficacy. While clinical and neurophysiological biomarkers are well established and helpful in describing disease progression, there is a great need to develop more robust and sensitive circulating biomarkers, such as proteins, nucleic acids, and other small molecules. Used alone or in combination with clinical biomarkers, they will play a critical role in enhancing patients' stratification for clinical trials and access to approved treatments, as well as in tracking response to therapy, paving the way to the development of individualized therapeutic approaches. In this comprehensive review, we describe the foremost circulating biomarkers of current significance, analyzing existing literature on non-treated and treated patients with a special focus on neurofilaments and circulating miRNA, aiming to identify and examine their role in the follow-up of patients treated with innovative treatments, including gene therapy.
Collapse
Affiliation(s)
- Querin Giorgia
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Marta Gomez Garcia de la Banda
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- APHP, Pediatric Neurology Department, Hôpital Armand Trousseau, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- APHP, Pediatric Neurology and ICU Department, Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France
| | - Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, Paris, France
| |
Collapse
|
27
|
Seo G, Kim S, Byun JC, Kwon S, Lee YJ. Evaluation of the neurofilament light chain as a biomarker in children with spinal muscular atrophy treated with nusinersen. Brain Dev 2023; 45:554-563. [PMID: 37541812 DOI: 10.1016/j.braindev.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND This study aimed to evaluate the neurofilament light chain (NfL) as a biomarker for treatment responses in children with a broad spectrum of spinal muscular atrophy (SMA) under nusinersen treatment. METHOD We measured NfL levels in serum (sNfL) and cerebrospinal fluid (cNfL) in nusinersen-treated patients with SMA and children without neurologic disorders. Correlations between cNfL and sNfL levels and motor function scores were analyzed. RESULTS sNfL and cNfL levels were measured in eight patients with SMA (SMA type 1, n = 3; SMA type 2, n = 5). sNfL levels were strongly correlated with cNfL levels regardless of the SMA subtype (r = 0.97, P < 0.001). Patients with SMA type 1 had higher baseline cNfL and sNfL levels before treatment initiation than those with SMA type 2 and neurologically healthy children. In patients with acute stage of SMA type 1 and 2, the NfL level rapidly decreased during the nusinersen treatment loading phase followed by stabilization at a lower plateau level. In contrast, in a patient with a chronic stage of SMA type 2, the NfL level remained within the normal range with no apparent downward trend. Motor function scores showed a tendency toward an inverse correlation with NfL levels in patients with acute stage although not in patients with chronic stage. CONCLUSIONS cNfL and sNfL levels can be promising biomarkers for monitoring treatment response in patients within their acute stage, particularly in SMA type 1, although not in patients with a chronic stage of SMA type 2.
Collapse
Affiliation(s)
- Gigyo Seo
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Saeyoon Kim
- Department of Pediatrics, School of Medicine, Yeungnam University, Daegu, South Korea
| | - Jun Chul Byun
- Department of Pediatrics, School of Medicine, Keimyung University, Daegu, South Korea
| | - Soonhak Kwon
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yun Jeong Lee
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
28
|
Beaudin M, Kamali T, Tang W, Hagerman KA, Dunaway Young S, Ghiglieri L, Parker DM, Lehallier B, Tesi-Rocha C, Sampson JB, Duong T, Day JW. Cerebrospinal Fluid Proteomic Changes after Nusinersen in Patients with Spinal Muscular Atrophy. J Clin Med 2023; 12:6696. [PMID: 37892834 PMCID: PMC10607664 DOI: 10.3390/jcm12206696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Disease-modifying treatments have transformed the natural history of spinal muscular atrophy (SMA), but the cellular pathways altered by SMN restoration remain undefined and biomarkers cannot yet precisely predict treatment response. We performed an exploratory cerebrospinal fluid (CSF) proteomic study in a diverse sample of SMA patients treated with nusinersen to elucidate therapeutic pathways and identify predictors of motor improvement. Proteomic analyses were performed on CSF samples collected before treatment (T0) and at 6 months (T6) using an Olink panel to quantify 1113 peptides. A supervised machine learning approach was used to identify proteins that discriminated patients who improved functionally from those who did not after 2 years of treatment. A total of 49 SMA patients were included (10 type 1, 18 type 2, and 21 type 3), ranging in age from 3 months to 65 years. Most proteins showed a decrease in CSF concentration at T6. The machine learning algorithm identified ARSB, ENTPD2, NEFL, and IFI30 as the proteins most predictive of improvement. The machine learning model was able to predict motor improvement at 2 years with 79.6% accuracy. The results highlight the potential application of CSF biomarkers to predict motor improvement following SMA treatment. Validation in larger datasets is needed.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Tahereh Kamali
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Whitney Tang
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Katharine A. Hagerman
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Sally Dunaway Young
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Lisa Ghiglieri
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Dana M. Parker
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Carolina Tesi-Rocha
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Jacinda B. Sampson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Tina Duong
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - John W. Day
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| |
Collapse
|
29
|
Gavriilaki M, Papaliagkas V, Stamperna A, Moschou M, Notas K, Papagiannopoulos S, Arnaoutoglou M, Kimiskidis VK. Biomarkers of therapeutic efficacy in adolescents and adults with 5q spinal muscular atrophy: a systematic review. Acta Neurol Belg 2023; 123:1735-1745. [PMID: 35861914 DOI: 10.1007/s13760-022-02028-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The therapeutic landscape of spinal muscular atrophy (SMA) was dramatically transformed with the introduction of three disease-modifying therapies (DMTs). A systematic review was performed to assess available evidence regarding quantitative therapeutic biomarkers used in SMA patients older than 11 years under treatment with DMTs. METHODS Latest literature search in MEDLINE, EMBASE, Cochrane databases and gray literature resources was performed in June 2021. Studies reporting only motor function or muscle strength scales or pulmonary function tests were excluded. Primary outcome was the change from baseline score of any serum, cerebrospinal fluid (CSF) or neurophysiologic biomarker examined. RESULTS Database and gray literature search yielded a total of 8050 records. We identified 14 records published from 2019 until 2021 examining 18 putative serum, CSF or neurophysiologic biomarkers along with routine CSF parameters in 295 SMA nusinersen-treated type 2-4 patients older than 11 years of age. There is evidence based on real-world observational studies suggesting that serum creatinine, creatine kinase activity levels along with CSF Αβ42, glial fibrillary acidic protein concentration as well as ulnar compound motor action potential amplitude and single motor unit potential amplitude changes may depict therapeutic response in this population. CONCLUSION This systematic review explored for the first-time biomarkers used to monitor therapeutic efficacy in SMA adolescents and adults treated with DMTs. Research in this area is in its early stages, and our systematic review can facilitate selection of quantitative therapeutic biomarkers that may be used as surrogate measures of treatment efficacy in future trials. PROTOCOL REGISTRATION PROSPERO CRD42021245516.
Collapse
Affiliation(s)
- Maria Gavriilaki
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, S. Kyriakidi Str. 1, 546 36, Thessaloniki, Greece.
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Alexandra Stamperna
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moschou
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, S. Kyriakidi Str. 1, 546 36, Thessaloniki, Greece
| | - Konstantinos Notas
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotirios Papagiannopoulos
- 3rd Department of Neurology, School of Medicine, G. Papanicolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, S. Kyriakidi Str. 1, 546 36, Thessaloniki, Greece
| |
Collapse
|
30
|
Schjørring ME, Parkner T, Knudsen CS, Tybirk L, Hviid CVB. Neurofilament light chain: serum reference intervals in Danish children aged 0-17 years. Scand J Clin Lab Invest 2023; 83:403-407. [PMID: 37632388 DOI: 10.1080/00365513.2023.2251003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Elevated levels of neurofilament light chain (NfL) in the blood is an unspecific biomarker for damage to neuronal axons. The measurement of NfL levels in the blood can provide useful information for monitoring and prognostication of various neurological disorders in children, but a reference interval (RI) is needed before the clinical implementation of the biomarker. We aimed to establish a RI for children aged 0-17 years. Serum samples from 292 healthy reference subjects aged 0.4-17.9 years were analysed by a single-molecule array (Simoa®) established for routine clinical use. Non-parametric quantile regression was used to model a continuous RI, and a traditional age-partitioned non-parametric RI was established according to Clinical and Laboratory Standard Institute (CLSI) guideline C28-A3. Furthermore, we investigated the effect of hemolysis on assay performance. The traditional age-partitioned non-parametric RI for the age group <3 years was 3.5-16.6 ng/L and 2.1-13.9 ng/L in the age group ≥3 years, respectively. The continuous RI showed an age-dependent decrease in median NfL levels in the first three years of life which was also evident in the age-partitioning of the traditional RI. We found no difference between sexes and no impact of hemolysis on the NfL test results. This study establishes a pediatric RI for serum NfL and lays the groundwork for its future use in clinical practice.
Collapse
Affiliation(s)
- Mia Elbek Schjørring
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
31
|
Lapp HS, Freigang M, Hagenacker T, Weiler M, Wurster CD, Günther R. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review. J Neurol 2023; 270:4157-4178. [PMID: 37289324 PMCID: PMC10421827 DOI: 10.1007/s00415-023-11787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in the SMN1 gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs driving SMN gene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.
Collapse
Affiliation(s)
- H S Lapp
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Freigang
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Science (C-TNBS), University Medicine Essen, Essen, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C D Wurster
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
32
|
Faravelli I, Gagliardi D, Abati E, Meneri M, Ongaro J, Magri F, Parente V, Petrozzi L, Ricci G, Farè F, Garrone G, Fontana M, Caruso D, Siciliano G, Comi GP, Govoni A, Corti S, Ottoboni L. Multi-omics profiling of CSF from spinal muscular atrophy type 3 patients after nusinersen treatment: a 2-year follow-up multicenter retrospective study. Cell Mol Life Sci 2023; 80:241. [PMID: 37543540 PMCID: PMC10404194 DOI: 10.1007/s00018-023-04885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Ongaro
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | | | | | | | - Donatella Caruso
- Unitech OMICs, University of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
| |
Collapse
|
33
|
Babić M, Banović M, Berečić I, Banić T, Babić Leko M, Ulamec M, Junaković A, Kopić J, Sertić J, Barišić N, Šimić G. Molecular Biomarkers for the Diagnosis, Prognosis, and Pharmacodynamics of Spinal Muscular Atrophy. J Clin Med 2023; 12:5060. [PMID: 37568462 PMCID: PMC10419842 DOI: 10.3390/jcm12155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive degenerative illness that affects 1 in every 6 to 11,000 live births. This autosomal recessive disorder is caused by homozygous deletion or mutation of the SMN1 gene (survival motor neuron). As a backup, the SMN1 gene has the SMN2 gene, which produces only 10% of the functional SMN protein. Nusinersen and risdiplam, the first FDA-approved medications, act as SMN2 pre-mRNA splicing modifiers and enhance the quantity of SMN protein produced by this gene. The emergence of new therapies for SMA has increased the demand for good prognostic and pharmacodynamic (response) biomarkers in SMA. This article discusses current molecular diagnostic, prognostic, and pharmacodynamic biomarkers that could be assessed in SMA patients' body fluids. Although various proteomic, genetic, and epigenetic biomarkers have been explored in SMA patients, more research is needed to uncover new prognostic and pharmacodynamic biomarkers (or a combination of biomarkers).
Collapse
Affiliation(s)
- Marija Babić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tea Banić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Department of Pathology, University Clinical Hospital Sestre Milosrdnice Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Alisa Junaković
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jadranka Sertić
- Department of Medical Chemistry and Biochemistry, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Badina M, Bejan GC, Sporea C, Padure L, Mirea A, Leanca MC, Axente M, Grigoras FP, Bejan M, Shelby ES, Neagu E, Ion DA. Changes in pNFH Levels in Cerebrospinal Fluid and Motor Evolution after the Loading Dose with Nusinersen in Different Types of Spinal Muscular Atrophy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1244. [PMID: 37512056 PMCID: PMC10385472 DOI: 10.3390/medicina59071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Aim and Objectives: The objective of our retrospective study was to investigate the changes in pNFH levels in cerebrospinal fluid, which is a reliable marker of neuronal damage, after the loading dose of nusinersen in different types of spinal muscular atrophy. Materials and Methods: We analyzed the spinal muscular atrophy types, the number of copies of the SMN2 gene, and the progression of the motor status using specific motor function scales in a group of 38 patients with spinal muscular atrophy types 1, 2, and 3. Results: We found a significant inverse correlation between pNFH levels and patient age, progress on functional motor scales, and nusinersen administration. Our results also revealed that the neurofilament levels in the cerebrospinal fluid were higher in patients with 2 SMN2 copies than those with more than 2 copies, although the association was not statistically significant due to the abnormal distribution of the values. Conclusions: We identified several predictors of favorable evolution under nusinersen treatment, including spinal muscular atrophy type 1, children aged ≤ 30 months, and the presence of only 2 copies of SMN2. Our study provides important insights into the use of pNFH as a biomarker to monitor disease progression and responses to treatment in patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Mihaela Badina
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Gabriel Cristian Bejan
- Department of Family Medicine, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Bvd., 050474 Bucharest, Romania
| | - Corina Sporea
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Liliana Padure
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Andrada Mirea
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Madalina-Cristina Leanca
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Mihaela Axente
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Florin Petru Grigoras
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Mihaela Bejan
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Elena-Silvia Shelby
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Elena Neagu
- National Teaching Center for Children's Neurorehabilitation "Dr. Nicolae Robanescu", 44 Dumitru Minca Street, 041408 Bucharest, Romania
| | - Daniela Adriana Ion
- Department of Pathophysiology, National Institute for Infectious Diseases Prof. Dr. Matei Bals, University of Medicine and Pharmacy "Carol Davila", 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
35
|
Balaji L, Farrar MA, D'Silva AM, Kariyawasam DS. Decision-making and challenges within the evolving treatment algorithm in spinal muscular atrophy: a clinical perspective. Expert Rev Neurother 2023; 23:571-586. [PMID: 37227306 DOI: 10.1080/14737175.2023.2218549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION The clinical application of disease modifying therapies has dramatically changed the paradigm of the management of people with spinal muscular atrophy (SMA), from sole reliance on symptomatic care directed toward the downstream consequences of muscle weakness, to proactive intervention and even preventative care. AREAS COVERED In this perspective, the authors evaluate the contemporary therapeutic landscape of SMA and discuss the evolution of novel phenotypes and the treatment algorithm, including the key factors that define individual treatment choice and treatment response. The benefits achieved by early diagnosis and treatment through newborn screening are highlighted, alongside an appraisal of emerging prognostic methods and classification frameworks to inform clinicians, patients, and families about disease course, manage expectations, and improve care planning. A future perspective of unmet needs and challenges is provided, emphasizing the key role of research. EXPERT OPINION SMN-augmenting therapies have improved health outcomes for people with SMA and powered the practice of personalized medicine. Within this new proactive diagnostic and treatment paradigm, new phenotypes and different disease trajectories are emerging. Ongoing collaborative research efforts to understand the biology of SMA and define optimal response are critical to refining future approaches.
Collapse
Affiliation(s)
- Lakshmi Balaji
- Department of Neurology, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health UNSW, Sydney, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health UNSW, Sydney, Australia
- UNSW Kensington Campus, Sydney, Australia
| | - Arlene M D'Silva
- Department of Neurology, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health UNSW, Sydney, Australia
- UNSW Kensington Campus, Sydney, Australia
| | - Didu S Kariyawasam
- Department of Neurology, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health UNSW, Sydney, Australia
| |
Collapse
|
36
|
Walter MC, Laforêt P, van der Pol WL, Pegoraro E. 254th ENMC international workshop. Formation of a European network to initiate a European data collection, along with development and sharing of treatment guidelines for adult SMA patients. Virtual meeting 28 - 30 January 2022. Neuromuscul Disord 2023; 33:511-522. [PMID: 37245491 DOI: 10.1016/j.nmd.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Maggie C Walter
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Ziemssenstr. 1, Munich 80336, Germany.
| | - Pascal Laforêt
- Department of Neurology, Nord/Est/Ile de France Neuromuscular Reference Center, AP-HP, Raymond-Poincaré Teaching Hospital, Paris Saclay University, Garches, France
| | - W Ludo van der Pol
- Department of Neurology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Elena Pegoraro
- Department of Neuroscience DNS, Neuromuscular Unit, University of Padova, Italy
| |
Collapse
|
37
|
McCluskey G, Morrison KE, Donaghy C, McConville J, McCarron MO, McVerry F, Duddy W, Duguez S. Serum Neurofilaments in Motor Neuron Disease and Their Utility in Differentiating ALS, PMA and PLS. Life (Basel) 2023; 13:1301. [PMID: 37374084 DOI: 10.3390/life13061301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Neurofilament levels are elevated in many neurodegenerative diseases and have shown promise as diagnostic and prognostic biomarkers in Amyotrophic Lateral Sclerosis (ALS), the most common form of Motor Neuron Disease (MND). This study assesses serum neurofilament light (NFL) and neurofilament heavy (NFH) chain concentrations in patients with ALS, other variants of motor neuron disease such as Progressive Muscular Atrophy (PMA) and Primary Lateral Sclerosis (PLS), and a range of other neurological diseases. It aims to evaluate the use of NFL and NFH to differentiate these conditions and for the prognosis of MND disease progression. NFL and NFH levels were quantified using electrochemiluminescence immunoassays (ECLIA). Both were elevated in 47 patients with MND compared to 34 patients with other neurological diseases and 33 healthy controls. NFL was able to differentiate patients with MND from the other groups with a Receiver Operating Characteristic (ROC) curve area under the curve (AUC) of 0.90 (p < 0.001). NFL correlated with the rate of disease progression in MND (rho 0.758, p < 0.001) and with the ALS Functional Rating Scale (rho -0.335, p = 0.021). NFL levels were higher in patients with ALS compared to both PMA (p = 0.032) and PLS (p = 0.012) and were able to distinguish ALS from both PMA and PLS with a ROC curve AUC of 0.767 (p = 0.005). These findings support the use of serum NFL to help diagnose and differentiate types of MND, in addition to providing prognostic information to patients and their families.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Karen E Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen's University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Belfast BT16 1RH, UK
| | - Mark O McCarron
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Ferghal McVerry
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| |
Collapse
|
38
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
39
|
Antonaci L, Pera MC, Mercuri E. New therapies for spinal muscular atrophy: where we stand and what is next. Eur J Pediatr 2023:10.1007/s00431-023-04883-8. [PMID: 37067602 DOI: 10.1007/s00431-023-04883-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 04/18/2023]
Abstract
The natural history of spinal muscular atrophy has been radically changed by the advent of improved standards of care and the availability of disease-modifying therapies. The aim of this paper is to provide the current therapeutic scenario including new perspectives and to report the challenges related to new phenotypes a few years after the therapies have become available. The paper also includes a review of real-world data that provides information on safety and efficacy in individuals that were not included in clinical trials. Special attention is paid to future perspectives both in terms of new drugs that are currently investigated in clinical trials or providing details on current developments in the use of the available drugs, including combination therapies or new modalities of dose or administration. Conclusion: Clinical trials and real world data support the efficacy and safety profiles of the available drugs. At the moment there is not enough published evidence about the superiority of one product compared to the others. What is Known: • Safety and efficacy results of clinical trials have led in the last 6 years to the marketing of three drugs for spinal muscular atrophy, with different mechanisms of action. What is New: • Since the drug's approval, real-world data allow us to have data on bigger and heterogeneous groups of patients in contrast with those included in clinical trials. • In addition to the new molecules, combinations of therapies are currently being evaluated.
Collapse
Affiliation(s)
- Laura Antonaci
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Eugenio Mercuri
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
40
|
Kong L, Hassinan CW, Gerstner F, Buettner JM, Petigrow JB, Valdivia DO, Chan-Cortés MH, Mistri A, Cao A, McGaugh SA, Denton M, Brown S, Ross J, Schwab MH, Simon CM, Sumner CJ. Boosting neuregulin 1 type-III expression hastens SMA motor axon maturation. Acta Neuropathol Commun 2023; 11:53. [PMID: 36997967 PMCID: PMC10061791 DOI: 10.1186/s40478-023-01551-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
Intercellular communication between axons and Schwann cells is critical for attaining the complex morphological steps necessary for axon maturation. In the early onset motor neuron disease spinal muscular atrophy (SMA), many motor axons are not ensheathed by Schwann cells nor grow sufficiently in radial diameter to become myelinated. These developmentally arrested motor axons are dysfunctional and vulnerable to rapid degeneration, limiting efficacy of current SMA therapeutics. We hypothesized that accelerating SMA motor axon maturation would improve their function and reduce disease features. A principle regulator of peripheral axon development is neuregulin 1 type III (NRG1-III). Expressed on axon surfaces, it interacts with Schwann cell receptors to mediate axon ensheathment and myelination. We examined NRG1 mRNA and protein expression levels in human and mouse SMA tissues and observed reduced expression in SMA spinal cord and in ventral, but not dorsal root axons. To determine the impact of neuronal NRG1-III overexpression on SMA motor axon development, we bred NRG1-III overexpressing mice to SMA∆7 mice. Neonatally, elevated NRG1-III expression increased SMA ventral root size as well as axon segregation, diameter, and myelination resulting in improved motor axon conduction velocities. NRG1-III was not able to prevent distal axonal degeneration nor improve axon electrophysiology, motor behavior, or survival of older mice. Together these findings demonstrate that early SMA motor axon developmental impairments can be ameliorated by a molecular strategy independent of SMN replacement providing hope for future SMA combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Lingling Kong
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Cera W Hassinan
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jeffrey B Petigrow
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - David O Valdivia
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Michelle H Chan-Cortés
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Amy Mistri
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Annie Cao
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Scott Alan McGaugh
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Madeline Denton
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Stephen Brown
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Joshua Ross
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Markus H Schwab
- Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Charlotte J Sumner
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
42
|
Trifunov S, Natera-de Benito D, Carrera-García L, Codina A, Expósito-Escudero J, Ortez C, Medina J, Torres Alcala S, Bernal S, Alias L, Badosa C, Balsells S, Alcolea D, Nascimento A, Jimenez-Mallebrera C. Full-Length SMN Transcript in Extracellular Vesicles as Biomarker in Individuals with Spinal Muscular Atrophy Type 2 Treated with Nusinersen. J Neuromuscul Dis 2023; 10:653-665. [PMID: 37038823 PMCID: PMC10357204 DOI: 10.3233/jnd-230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Three therapeutic strategies have radically changed the therapeutic scenario for spinal muscular atrophy (SMA). However, therapeutic response differs between individuals. There is a need to identify biomarkers to further assess therapeutic response and to better understand which variables determine the extent of response. METHODS We conducted a study using an optimized digital droplet PCR-based method for the ultra-sensitive detection of SMN transcript in serum EVs from SMA 2 individuals treated with nusinersen over 14 months. In parallel, we investigated levels of serum and CSF neurofilament heavy chain (pNF-H) in the same cohort. RESULTS Expression of flSMN transcript in EVs of SMA 2 individuals prior to nusinersen was lower than in controls (0.40 vs 2.79 copies/ul; p < 0.05) and increased after 14 months of nusinersen (0.40 vs 1.11 copies/ul; p < 0.05). The increase in flSMN with nusinersen was significantly higher in younger individuals (p < 0.05). Serum pNF-h was higher in non-treated individuals with SMA 2 than in controls (230.72 vs 22.88 pg/ml; p < 0.05) and decreased with nusinersen (45.72 pg/ml at 6 months, 39.02 pg/ml at 14 months). CSF pNF-h in SMA 2 individuals also decreased with nusinersen (248.04 pg/ml prior to treatment, 197.10 pg/dl at 2 months, 104.43 pg/dl at 6 months, 131.03 pg/dl at 14 months). CONCLUSIONS We identified an increase of flSMN transcript in serum EVs of SMA 2 individuals treated with nusinersen that was more pronounced in the younger individuals. Our results indicate that flSMN transcript expression in serum EVs is a possible biomarker in SMA to predict or monitor the response to treatment.
Collapse
Affiliation(s)
- Selena Trifunov
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Natera-de Benito
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Carrera-García
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jesica Expósito-Escudero
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Julita Medina
- Rehabilitation and Physical Unit Department, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Soraya Torres Alcala
- Department of Neurology, Institut d’InvestigacionsBiomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sara Bernal
- Department of Genetics, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Alias
- Department of Genetics, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Badosa
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sol Balsells
- Statistics Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d’InvestigacionsBiomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andres Nascimento
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilia Jimenez-Mallebrera
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology and Statistics; University of Barcelona
| |
Collapse
|
43
|
Glascock J, Darras BT, Crawford TO, Sumner CJ, Kolb SJ, DiDonato C, Elsheikh B, Howell K, Farwell W, Valente M, Petrillo M, Tingey J, Jarecki J. Identifying Biomarkers of Spinal Muscular Atrophy for Further Development. J Neuromuscul Dis 2023; 10:937-954. [PMID: 37458045 PMCID: PMC10578234 DOI: 10.3233/jnd-230054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by bi-allelic, recessive mutations of the survival motor neuron 1 (SMN1) gene and reduced expression levels of the survival motor neuron (SMN) protein. Degeneration of alpha motor neurons in the spinal cord causes progressive skeletal muscle weakness. The wide range of disease severities, variable rates of decline, and heterogenous clinical responses to approved disease-modifying treatment remain poorly understood and limit the ability to optimize treatment for patients. Validation of a reliable biomarker(s) with the potential to support early diagnosis, inform disease prognosis and therapeutic suitability, and/or confirm response to treatment(s) represents a significant unmet need in SMA. OBJECTIVES The SMA Multidisciplinary Biomarkers Working Group, comprising 11 experts in a variety of relevant fields, sought to determine the most promising candidate biomarker currently available, determine key knowledge gaps, and recommend next steps toward validating that biomarker for SMA. METHODS The Working Group engaged in a modified Delphi process to answer questions about candidate SMA biomarkers. Members participated in six rounds of reiterative surveys that were designed to build upon previous discussions. RESULTS The Working Group reached a consensus that neurofilament (NF) is the candidate biomarker best poised for further development. Several important knowledge gaps were identified, and the next steps toward filling these gaps were proposed. CONCLUSIONS NF is a promising SMA biomarker with the potential for prognostic, predictive, and pharmacodynamic capabilities. The Working Group has identified needed information to continue efforts toward the validation of NF as a biomarker for SMA.
Collapse
Affiliation(s)
| | - Basil T. Darras
- Boston Children’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Thomas O. Crawford
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Charlotte J. Sumner
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Bakri Elsheikh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelly Howell
- Spinal Muscular Atrophy Foundation, Jackson, WY, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Spinal muscular atrophy (SMA) is caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles. Over the past decade, disease-modifying therapies have become available based on splicing modulation of the SMN2 with SMN1 gene replacement, which if initiated significantly modifies the natural course of the disease. Newborn screening for SMA has been implemented in an increasing number of centers; however, available evidence for these new treatments is often limited to a small spectrum of patients concerning age and disease stage.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Jerry R Mendell
- Department of Neurology and Pediatrics, Center for Gene Therapy, Abigail Wexner Research Institute, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
45
|
Scheijmans FEV, Cuppen I, Zwartkruis MM, Signoria I, van Ekris C, Asselman F, Wadman RI, Knol EF, van der Pol WL, Groen EJN. Inflammatory markers in cerebrospinal fluid of paediatric spinal muscular atrophy patients receiving nusinersen treatment. Eur J Paediatr Neurol 2023; 42:34-41. [PMID: 36525882 DOI: 10.1016/j.ejpn.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease with onset during infancy or early childhood. Recent therapeutic advances targeting the genetic defect that underlies SMA improved survival in patients with infantile onset SMA (type 1) and improved motor function in SMA type 1-3. The most commonly used therapy for SMA, the antisense oligonucleotide nusinersen, is delivered by repeated intrathecal injections. The long-term safety effects of this procedure, however, have not yet been investigated in detail. We here present case reports of three children with SMA in which routine laboratory investigation revealed increased leukocyte counts in cerebrospinal fluid (CSF) collected during the course of nusinersen treatment. To further characterize this observation, we used a multiplex method to analyse a broad spectrum of inflammatory markers in the CSF of these patients. We found that interleukin-10 (IL10) was consistently elevated in CSF with increased leukocyte counts, but other inflammatory markers were not. Based on this analysis we selected 7 markers for further analysis in a cohort of 38 children with SMA and determined their expression during the course of nusinersen therapy. No consistent association was found between levels of inflammatory markers and the duration of nusinersen therapy in individual patients. However, monocyte chemoactive protein 1 (MCP1/CCL2) -a neuroprotective protein secreted by astrocytes and previously associated with SMA- levels increased over the course of nusinersen treatment, indicating a possible neuroprotective mechanism associated with nusinersen therapy. In summary, our findings confirm that repeated intrathecal injections are safe and do not trigger unwanted immune responses.
Collapse
Affiliation(s)
- F E V Scheijmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I Cuppen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C van Ekris
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R I Wadman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E F Knol
- Department of Dermatology and Allergology, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - W L van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - E J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
46
|
Paris A, Bora P, Parolo S, MacCannell D, Monine M, van der Munnik N, Tong X, Eraly S, Berger Z, Graham D, Ferguson T, Domenici E, Nestorov I, Marchetti L. A pediatric quantitative systems pharmacology model of neurofilament trafficking in spinal muscular atrophy treated with the antisense oligonucleotide nusinersen. CPT Pharmacometrics Syst Pharmacol 2022; 12:196-206. [PMID: 36471456 PMCID: PMC9931427 DOI: 10.1002/psp4.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphorylated neurofilament heavy subunit (pNfH) has been recently identified as a promising biomarker of disease onset and treatment efficacy in spinal muscular atrophy (SMA). This study introduces a quantitative systems pharmacology model representing the SMA pediatric scenario in the age range of 0-20 years with and without treatment with the antisense oligonucleotide nusinersen. Physiological changes typical of the pediatric age and the contribution of SMA and its treatment to the peripheral pNfH levels were included in the model by extending the equations of a previously developed mathematical model describing the neurofilament trafficking in healthy adults. All model parameters were estimated by fitting data from clinical trials that enrolled SMA patients treated with nusinersen. The data from the control group of the study was employed to build an in silico population of untreated subjects, and the parameters related to the treatment were estimated by fitting individual pNfH time series of SMA patients followed during the treatment. The final model reproduces well the pNfH levels in the presence of SMA in both the treated and untreated conditions. The results were validated by comparing model predictions with the data obtained from an additional cohort of SMA patients. The reported good predictive model performance makes it a valuable tool for investigating pNfH as a biomarker of disease progression and treatment response in SMA and for the in silico evaluation of novel treatment protocols.
Collapse
Affiliation(s)
- Alessio Paris
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems Biology (COSBI)RoveretoItaly
| | - Pranami Bora
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems Biology (COSBI)RoveretoItaly
| | - Silvia Parolo
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems Biology (COSBI)RoveretoItaly
| | - Drew MacCannell
- Biogen, Inc.CambridgeMassachusettsUSA,Present address:
Dyne TherapeuticsWalthamMassachusettsUSA
| | | | - Nick van der Munnik
- Biogen, Inc.CambridgeMassachusettsUSA,Present address:
GSKGreater BostonMassachusettsUSA
| | - Xiao Tong
- Biogen, Inc.CambridgeMassachusettsUSA
| | - Satish Eraly
- Biogen, Inc.CambridgeMassachusettsUSA,Present address:
Alnylam PharmaceuticalsCambridgeMassachusettsUSA
| | | | | | | | - Enrico Domenici
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems Biology (COSBI)RoveretoItaly,Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | | | - Luca Marchetti
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems Biology (COSBI)RoveretoItaly,Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
47
|
Messina S, Sframeli M, Maggi L, D'Amico A, Bruno C, Comi G, Mercuri E. Spinal muscular atrophy: state of the art and new therapeutic strategies. Neurol Sci 2022; 43:615-624. [PMID: 33871750 DOI: 10.1007/s10072-021-05258-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Spinal muscular atrophy (SMA) is a severe disorder of motor neurons and the most frequent cause of genetic mortality, due to respiratory complications. We are facing an exciting era with three available therapeutic options in a disease considered incurable for more than a century. However, the availability of effective approaches has raised up ethical, medical, and financial issues that are routinely faced by the SMA community. Each therapeutic strategy has its weaknesses and strengths and clinicians need to know them to optimize clinical care. In this review, the state of the art and the results and challenges of the new SMA therapeutic strategies are highlighted.
Collapse
Affiliation(s)
- Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy. .,NEuroMuscular Omnicentre (NEMO) Sud Clinical Centre, University Hospital "G. Martino", Messina, Italy.
| | - Maria Sframeli
- NEuroMuscular Omnicentre (NEMO) Sud Clinical Centre, University Hospital "G. Martino", Messina, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disease Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giacomo Comi
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Eugenio Mercuri
- Department of Child Neurology, University Policlinico Gemelli, Rome, Italy
| |
Collapse
|
48
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
49
|
Herzeg A, Almeida-Porada G, Charo RA, David AL, Gonzalez-Velez J, Gupta N, Lapteva L, Lianoglou B, Peranteau W, Porada C, Sanders SJ, Sparks TN, Stitelman DH, Struble E, Sumner CJ, MacKenzie TC. Prenatal Somatic Cell Gene Therapies: Charting a Path Toward Clinical Applications (Proceedings of the CERSI-FDA Meeting). J Clin Pharmacol 2022; 62 Suppl 1:S36-S52. [PMID: 36106778 PMCID: PMC9547535 DOI: 10.1002/jcph.2127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/24/2022] [Indexed: 01/19/2023]
Abstract
We are living in a golden age of medicine in which the availability of prenatal diagnosis, fetal therapy, and gene therapy/editing make it theoretically possible to repair almost any defect in the genetic code. Furthermore, the ability to diagnose genetic disorders before birth and the presence of established surgical techniques enable these therapies to be delivered safely to the fetus. Prenatal therapies are generally used in the second or early third trimester for severe, life-threatening disorders for which there is a clear rationale for intervening before birth. While there has been promising work for prenatal gene therapy in preclinical models, the path to a clinical prenatal gene therapy approach is complex. We recently held a conference with the University of California, San Francisco-Stanford Center of Excellence in Regulatory Science and Innovation, researchers, patient advocates, regulatory (members of the Food and Drug Administration), and other stakeholders to review the scientific background and rationale for prenatal somatic cell gene therapy for severe monogenic diseases and initiate a dialogue toward a safe regulatory path for phase 1 clinical trials. This review represents a summary of the considerations and discussions from these conversations.
Collapse
Affiliation(s)
- Akos Herzeg
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Graca Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, USA
| | - R. Alta Charo
- University of Wisconsin Law School, Madison, Wisconsin, USA
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London Medical School, London, UK
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Juan Gonzalez-Velez
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children’s Hospital, University of California San Francisco, San Francisco, California, USA
| | - Larissa Lapteva
- Office of Tissues and Advanced Therapies/Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA
| | - Billie Lianoglou
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - William Peranteau
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, USA
| | - Stephan J. Sanders
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Teresa N. Sparks
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, USA
| | - David H. Stitelman
- Yale University School of Medicine, Department of Surgery, Division of Pediatric Surgery, New Haven, CT, USA
| | - Evi Struble
- Office of Tissues and Advanced Therapies/Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA
| | - Charlotte J. Sumner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tippi C. MacKenzie
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, USA
- Department of Pediatrics and Benioff Children’s Hospital, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
50
|
Mak G, Menon S, Lu JQ. Neurofilaments in neurologic disorders and beyond. J Neurol Sci 2022; 441:120380. [PMID: 36027641 DOI: 10.1016/j.jns.2022.120380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Many neurologic diseases can initially present as a diagnostic challenge and even when a diagnosis is made, monitoring of disease activity, progression and response to therapy may be limited with existing clinical and paraclinical assessments. As such, the identification of disease specific biomarkers provides a promising avenue by which diseases can be effectively diagnosed, monitored and used as a prognostic indicator for long-term outcomes. Neurofilaments are an integral component of the neuronal cytoskeleton, where assessment of neurofilaments in the blood, cerebrospinal fluid (CSF) and diseased tissue has been shown to have value in providing diagnostic clarity, monitoring disease activity, tracking progression and treatment efficacy, as well as lending prognostic insight into long-term outcomes. As such, this review attempts to provide a glimpse into the structure and function of neurofilaments, their role in various neurologic and non-neurologic disorders, including uncommon conditions with recent knowledge of neurofilament-related pathology, as well as their applicability in future clinical practice.
Collapse
Affiliation(s)
- Gloria Mak
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Suresh Menon
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|